
A GPU-Assisted Personal Video Organizing System

K Wasif Mohiuddin

Center for Visual Information Technology

IIIT Hyderabad

wasif.m@research.iiit.ac.in

P J Narayanan

Center for Visual Information Technology

IIIT Hyderabad

pjn@.iiit.ac.in

Abstract

Video data is increasing rapidly along with the capacity

of storage devices owned by a lay user. Users have mod-

erate to large personal collections of videos and would like

to keep them in an organized manner based on its content.

Video organizing tools for personal users are way behind

even the primitive image organizing tools. We present a

mechanism in this paper to help ordinary users organize

their personal collection of videos based on categories they

choose. We cluster the PHOG features extracted from se-

lected key frames to form a representation for each user-

selected category during the learning phase. During the

organization phase, labels from a K-NN classifier on these

cluster centres for each key frame are aggregated to give a

label to the video while categorizing. Video processing is

computationally intensive. To perform the computationally

intensive steps involved, we exploit the CPU as well as the

GPU that is common even on personal systems. Effective

use of the parallel hardware on the system is the only way

to make the tool scale reasonably to large collections that

will be available soon. Our tool is able to organize a set of

100 sport videos of total duration of 1375 minutes in about

9.5 minutes. The process of learning the categories from 12

annotated videos of duration 165 minutes took 75 seconds

on a GTX 580 card. These were on a standard desktop with

an off-the-shelf GPU. The labeling accuracy is about 96%

on all videos.

1. Introduction

Video recording devices are now commonly available to

the average consumer. The amount of personal video con-

tent generated by users is increasing exponentially as a re-

sult. With the popularity of video sharing services and in-

creased access to web, a great number of videos are avail-

able today. Taking into account the volume of the data, tasks

such as organization or searching through the available con-

tent can be very time consuming and tiresome. Therefore,

such tasks need to be done automatically, preferably us-

ing the content of the videos to accomplish this. Collect-

ing videos of interest has become a hobby lately given the

fact that people have large storage devices. Everyone has

different category of interest in terms of video. Sports is a

genre with large following around the world. People tend to

store full recorded matches or selected highlights of sport

events of interest on their personal storage devices. An in-

dividual may have interest in multiple categories of sports

and would like to maintain a personal collection in an orga-

nized fashion. There is no tool to do this today for videos;

even those available for images are not sufficiently sophis-

ticated. Other genres of interest to everyday users would be

family events, outings, graduation ceremonies, etc., which

also need to be organized appropriately for easy access in

the future.

We present in this paper the design and initial imple-

mentation of a scheme that helps categorize large collec-

tions of videos on a desktop or laptop. Videos are bulky

and so content based organization can be computationally

heavy. On the other hand, we can use evidence from multi-

ple parts of the video for its categorization. Individual inter-

ests may vary; a personal categorization is thus preferable.

In this paper, we focus on the sports genre which has wide

range of categories and will be a good test subject for our

approach. Our categorization approach is an extension to

videos of current scene classification and object detection

research carried out by computer vision community. The

user annotates a few videos or parts of it by one of the cat-

egory names which he wishes to use. Our scheme uses the

Pyramidal Histogram of Oriented Gradients (PHOG) fea-

tures and their clustered collection as the representation for

each category the user provides, which is computed by the

system in the learning phase. A K-NN classifier and aggre-

gation of votes by individual key frames are used to assign

categories to the unlabeled collection in the categorization

phase. The focus is on a scalable implementation in this

work and not on pushing the state of the art on image/video

classification.

Video processing is computationally expensive. We ex-

ploit all compute power available in a typical desktop or

1



laptop of the user to achieve this. Graphic Processor Units

(GPU) have become popular on even personal systems and

have tremendous compute power in them. Our system ex-

ploits the parallelism of multicore CPUs as well as the

GPUs found on personal desktops and laptops today. Video

segmentation is assisted by the GPU and the PHOG com-

putation is performed entirely on the GPU. The GPU also

does bulk of the K-Means clustering to select representa-

tive vectors in the learning phase. In the categorization

phase, the distance evaluation for the K-NN classifier for

each frame is performed on the GPU in addition to fea-

ture extraction. The final aggregation and decision mak-

ing takes place on the CPU. Our tool is able to organize a

set of 100 sport videos of total duration of 1375 minutes in

about 9.5 minutes. The process of learning the categories

from 12 annotated videos of duration 165 minutes took 75

seconds. These were on a standard desktop with an off-the-

shelf GPU.

2. Related Work

Much has been done in the field of computer vision to-

wards analyzing the image content for scene classification,

object detection, image search, etc. Less work has gone

on doing the same on videos. A video genre can be dis-

criminated from the other based on the analogous features

and attributes that is disparate from other genres. Based

on the content of video, the video could be categorized

into different genres such as Cartoon, Sports, Commercials,

News, Serials etc. The technique described in Vakkalanka

et al. [19] uses different types of spatial and temporal fea-

tures. The features are modeled using two different classi-

fier methodologies, namely Hidden Markov Model (HMM)

and Support Vector Machines (SVMs).

A number of algorithms have been designed for key

frame extraction for videos based on flow. Lui et al. pro-

posed a triangular model of perceived motion energy to

model motion patterns in videos [7]. The key frames were

the turning points of motion acceleration and deceleration.

Chen et al. extracted optical flows and used them to clus-

ter human crowds into groups in unsupervised manner us-

ing adjacency-matrix based clustering (AMC) [2]. Gross

image features such as motion and color were used to

classify video genre, along with a decision tree classifier

[18] concentrated on background or camera motion and the

foreground object motion using Gaussian Mixture Model

(GMM) as the classifier [16]. Ekenel et al. addressed the

problem of video genre classification for five classes with

a set of visual features, with SVM used for classification

[4]. They used temporal and spatial information to build

an HMM classifier. Rea et al. near-automatically classified

tennis videos by modeling the spatio temporal behaviour of

the serving player [15]. They then summarized a match us-

ing a number of key frames on a synthesized court.

A survey of techniques for automatic indexing and re-

trieval of video data can be found in Lebart et al. [6] and

Wang et al. [5]. A number of descriptors have been pro-

posed for image representation like GIST [11], PHOG [1],

etc. GIST has been found useful for scene classification

while PHOG has been used for object identification [3]. We

follow the current approach using such features to classify

videos into appropriate categories. The learning phase uses

a few videos tagged by the user of each sports category. We

extract a few keyframes from each video and build a repre-

sentation using K-Means clustering. Matching is done for

similar keyframes of the testing videos using a K-Nearest

Neighbour approach. The votes by individual keyframes

are aggregated to give one final label to each video.

3. GPU Architecture

Graphic cards have become popular and are being used

by a large number of people. The use of graphic cards is

no longer restricted to gaming; general purpose computing

on them (GPGPU) is used for wide range of applications.

GPUs are computationally powerful devices which are able

to perform data intensive tasks quickly. NVIDIA’s Fermi

architecture [12]consists of 16 Streaming Multiprocessors

(SM) as shown in Figure 1 with each SM having 32 cores.

On the whole, their GTX580 model has 512 CUDA cores.

Every core in an SM executes the same instruction. A set

of threads forms a block which put together forms a grid.

Blocks are assigned to SMs for execution. An SM processes

one warp at a time where each warp is of 32 threads from

a block. The function calls are made in the form of kernels

which unleash multiple threads to perform a task in a Sin-

gle Instruction Multiple Data (SIMD) fashion. The Com-

pute Unified Device Architecture (CUDA) [10] program-

ming model allows programmers to design a kernel.

Figure 1. The Fermi Architecture

Each SM has its registers divided equally amongst the

2



threads that time share it in a kernel. Each thread has a

private local memory. The off-chip global device memory

per card can be accessed by every thread in the grid but

consumes hundred of clock cycles for a single fetch. The

GPUs have a moderate amount of shared memory per SM,

which is shared between the blocks that map to it at a time.

The Fermi GPUs have upto 48KB of shared memory while

the older architectures had only 16KB. The Fermi archi-

tecture has a single unified memory request path for loads

and stores using the L1 cache per SM multiprocessor and

unified L2 cache that services all operations. L1 cache is

configurable to support both shared memory and caching of

local and global memory operations. The 64 KB memory

can be configured as either 48 KB of shared memory with

16 KB of L1 cache or vice-versa. By configuring 48 KB of

shared memory, programs that make extensive use of shared

memory performed up to three times faster. The lifetime of

this memory is same as that of a block. Fermi features a

768 KB unified L2 cache that services all load, store, and

texture requests. The L2 provides efficient, high speed data

sharing across the GPU. The GPUs prior to Fermi had no

caching facility.

4. Video Classification

Describing the entire video using a single descriptor –

as is often done in images – is not easy. Videos for many

purposes can be considered as a collection of images which

have a certain association or pattern with each other. In our

discussions, we use the term frame to refer to an image from

the video stream. A video can be broken into small shots

which are a collection of similar frames. Our classification

approach has two parts: Category Determination and Cat-

egory Assignment. There is no off-line training data avail-

able; so we need to form a basis for classification in order

to categorize the remaining test videos. Also our training

process adapts to the user’s collections.

4.1. Category Determination

In this phase, we use a few videos tagged with their cat-

egories by the user. These are used to train our organiza-

tion system. Figure 2 shows the flow of the algorithm for

this step. The representation formed at the end is the ba-

sis for categorizing the videos. We extract the key frames

using color histogram differencing. We remove small shots

from the obtained result using a threshold on the number of

frames to keep only major content. Each remaining shot is

represented using a small number of key frames for further

processing.

We use PHOG feature descriptor. In our experience,

video frames are best distinguished based on objects present

in the frames like pitch in the case of cricket, net in the case

of tennis, etc. In the image, each region is represented as

a Histogram Of Gradients (HOG) as explained in [3]. The

Figure 2. Category Determination: Algorithm Flow

HOG vector is computed for each grid cell at each pyra-

mid resolution level. The final PHOG descriptor for the

image is a concatenation of all the HOG vectors. In form-

ing the pyramid, the grid at level l has 2l cells along each

dimension. Level 0 is represented by a V -dimensional vec-

tor corresponding to V bins of the histogram, level 1 by

a 4V vector, etc. Three spatial pyramid levels are used

(1 × 1, 2 × 2, 4 × 4). The PHOG vector is normalized to

sum to unity. This normalization ensures that images with

more edges or texture rich or larger are not weighted more

strongly than others. The dimension of our PHOG descrip-

tors is 640. We compute descriptors for all key frames of

the tagged videos. The distance between two PHOG image

descriptors then reflects the extent to which images contain

similar shapes and corresponding in their spatial layout. We

use K-Means clustering to group similar frames so that mi-

nor variations can be accounted for, similar to how visual

words are formed in the object process of Video Google

[17]. This results in a set of meaningful centers to repre-

sent each category. Our aim is to reduce the large number

of descriptors to those that describe a particular category.

We typically use 200 clusters to represent each video cate-

gory. The cluster centers of form the representation for each

category.

4.2. Category Assignment

The above representation is used to assign categories to

other videos in the user’s collection. Shot segmentation and

PHOG extraction on user videos are carried out as described

earlier. We use a K-nearest neighbor (K-NN) approach us-

ing Euclidean distance to assign a label to each key frame of

the video. Algorithm 1 shows flow for category assignment

phase. Some of the frames may be classified wrongly due

to the similarity in individual frames between different cat-

egories, such as the ground seen in different sports videos.

We give all labels to each frame based on the distances to K
nearest neighbors. K may be decided based on the close-

ness of these sport categories. We use a number that is close

3



Algorithm 1 Category Assignment

Input: Test Keyframe Descriptors, Centers

Output: Category Label

l: number of key frames, kF: Key frame

1: for y = 1 to l in parallel do

2: K-NN (kFy) /* Returns K neighbors, distances */

3: end for

4: for y = 1 to l do

5: d1← distance(1st-NN(kFy))

6: d2← distance(2nd-NN(kFy))

7: if d1/d2 > r then

8: Allocate kFy a single category, of Centre[1]

9: else

10: Allocate kFy to all K categories for the frame

11: end if

12: end for

13: topper← Highest count among categories for video

14: runner-up← Next highest count

15: if topper is 20% more than runner-up then

16: Assign video to category of the highest count

17: else

18: Ask user for category assignment

19: end if

to half the number of categories for K in practice.

Lowe’s criterion [8] considers the distances d1 and d2
(d2 > d1) to the first and the second nearest neighbors. A

query and its closest neighbor are matched when the ratio

r = d1/d2 between these two distances is below a thresh-

old. This criterion is more robust than a global thresh-

old on distances and behaves well when the structure to be

matched is present exactly once in the candidate database.

In our case, if the top match passes the ratio test, only one

category is assigned to that frame. Otherwise, multiple la-

bels are assigned to it as per the K nearest neighbors. In this

manner, we are able to ensure that multiple close matches

against the training frames are considered for final scoring.

Each frame has one or more labels at the end of this process.

We aggregate them for a video to give it a final label. We

compute a category histogram for each video by combining

the labels of its key frames. Frames with multiple labels

contribute to multiple bins. We assign the most probable

label to the video based on the final histogram, provided its

score is clearly above all others. To assign a category based

on score we require that the top category of a video to have

20% more score than the next best category. We let the

user decide the category manually if a clear label cannot be

assigned using this criterion. Involving user at the end en-

sures even ambiguous videos are classified properly also in

our view, preferable over mislabeling them. Fewer than 5%

of the videos required user intervention in our experiments.

5. Implementation Details

The computationally intensive tasks like segmentation,

PHOG feature extraction, K-Means clustering and K near-

est neighbor are performed on GPU. Figure 3 indicates

the division of work between CPU and GPU for different

steps. We adapted the histogram sample code provided by

NVIDIA for segmentation and key frame extraction. Af-

ter the histograms are evaluated, we perform difference be-

tween consecutive frames to mark boundaries for shots.

PHOG feature descriptors are evaluated on GPU using the

approach by Prisacariu and Reid [14]. Their approach uses

one thread per pixel and the thread block size is 16×16. Tri-

linear interpolation is used in cell/block configuration and

pixel contributes to up to 4 histograms (one for each cell),

and up to 2 bins per histogram. To compute the color gra-

dients, we use two separable convolution kernels similar to

the ones from the NVIDIA CUDA SDK. There are two ker-

nels, the first kernel convolutes the row with the centered

1-D mask, while the second kernel computes the column

convolution, gradient orientations and magnitudes. HOG is

computed for different scales and then merged to get PHOG

descriptors. Using the results we get from K-NN we per-

form the final scoring on CPU.

5.1. K­Means on GPU

We use our own GPU implementation [9] of K-Means.

The implementation is divided into two parts: membership

evaluation and mean evaluation. We extended parallelism

to the computation done on the d components of each in-

put and center vector. Center evaluation involves finding

the sum of all vectors with the same label. For a parallel

approach this task involves concurrent writes since data ob-

jects having the same membership may add the histogram

count at a time. Performing the entire process on the GPU

is one of our contributions compared to earlier GPU im-

plementations. The row major storage of the vectors make

component-wise addition uncoalesced in memory accesses

and hence inefficient on the GPUs. The mean evaluation

used was able to fix the concurrent write problem which

most of the previous approaches failed to solve. The pure

coalesced memory access for data rearrangement proved to

be vital step in enhancing the mean evaluation on GPU.

������
������
������

������
������
������

�������
�������
�������

�������
�������
�������

�������
�������
�������

�������
�������
�������

������
������
������
������

������
������
������
������

������
������
������
������

������
������
������
������

�������
�������
�������
�������

�������
�������
�������
�������

���
���
���
���

Reading
PHOGVideo 

GPUCPU

PHOGSegmentation
Reading
Video 

Category Determination

Thresholding

Category Assignment

ScoringKNNThresholdingSegmentation

K−Means

Figure 3. Work division between CPU and GPU.

4



5.2. K­NN on GPU

The basic process of K-NN algorithm involves finding

K nearest neighbors for each keyframe of our test video.

To achieve this, we find the distances to the given centers

for each test vector and sort them on a distance criteria. The

class label of the point is given by the labels of the closest

K vectors. For K nearest neighbor evaluations, we use Al-

gorithm 2. Distance of a vector from a centre is evaluated

using Algorithm 3. Data elements which are frequently ac-

cessed are stored onto the shared memory. We store the

following onto the shared memory: s data holds the in-

put keyframe vector, s dist stores square of the differences

for every dimension, min y and membershipy store the

global minimum distance and label for vector id y. The

syncThreads ensures that threads in a block which have

completed the task to wait for other threads to finish the task

before executing the next instruction. We have all the dis-

tances for the testing frames from the centers. The number

of testing frames is typically large. We use the SplitSort op-

eration to get K nearest centers. We sort the index of center

based on their distance from a single data object, using the

split primitive [13]. This is done by forming a list of 64-bit

records combining the distance and center index. We split

this using the distance value as the key as shown in Figure

4, shuffling the original center index order. After sorting the

centers index based on distance we send the top K centers

from the sorted list to the CPU for the final categorization.

Algorithm 2 KNN in parallel for all keyframes

1: Each block handles l new keyframes at a time loops

over all keyframes

2: Find distances for each keyframe against all centers se-

quentially using Algorithm 3

3: k distances are in the global memory

4: Sort the distances using Splitsort for each keyframe

1 2 3 p

14

14

29

29 157

157

58

58119

119

87

87

93

93 99

99

3 p 21p−1

p−1

Indices of cluster centers 

1 2 k

Sorted Distance Array 

 Distance Array 

Figure 4. The distance array is sorted as per the distance values.

The top k values represent the K Nearest Neighbors

Algorithm 3 Distance Finding for K-NN

Input: inpVector, Centers

Output: distances

tid: Thread Id in a block, dim: Vector dimensionality

distz: Distance between vector and center z
s dist: Distance components in the shared memory

/* d threads process a vector, each a component */

1: s data← inpV ector[tid]
2: for z = 1 to k clusters do

3: s dist[tid] = (s data− centerz[tid])
2

4: SyncThreads

5: i = dim/2
6: while i ≥ 0 do
7: if tid ≤ i then
8: s dist[tid] = s dist[tid] + s dist[tid+ i]
9: end if

10: SyncThreads

11: i← i/2
12: end while

13: disty[z]← s distyz[0]
14: end for

6. Results

We worked on a collection with four sport category

videos, including cricket, tennis, football, table tennis, for

our initial experiments. We downloaded highlights of these

sports from popular websites like You Tube, Vimeo, Meta-

cafe, etc., ranging over a period of 5-6 years. The videos

typically have 30 frames per second and range from 8-15

minutes of duration. For our experiments, we took 100

videos belonging to 4 categories. Each video roughly had

20K frames. The user tagged 12 videos belonging to four

categories. We performed our experiments using computers

which have a dual-core Intel CPU and a GPU. A high-end

Nvidia GTX 580 and a low end Nvidia 8600 GPUs under

the CUDA programming model were tried to gauge the ef-

fect of performing the classification on a desktop and on a

laptop. In case of cricket videos, we observed that the fol-

lowing shots emerged as key frames: Full screen Score card,

Pitch, Wicket celebration, Boundary, Focus on a player,

Hawkeye prediction and Crowd (Figure 5). Even in case

of football we found such similar frames of player position-

ing, goal post, goal celebration, football trajectory, crowd

etc. Pretty similar was the case for other categories. During

the category determining phase, we performed video seg-

mentation, PHOG evaluation, and K-Means clustering on

the GPU device. Instead of representing a shot by single

frame we take 4 frames to represent a single shot. In this

manner, we get an entire summary of the shot consisting of

adequate details. Figure 5 shows typical key frames in case

of cricket, as discussed above we can see the typical frames

5



GPU No of No of Segmenting PHOG K-Means

Device Videos Key frames video features Clustering

8600 4 756 182.7 139.6 3.94

12 2432 584.3 468.4 14.3

280 4 756 24.8 19.2 0.59

12 2432 76.9 61.8 1.97

580 4 756 11.8 9.1 0.26

12 2432 37.91 30.2 0.89

Table 1. Time taken in seconds to process the Category Labeling phase on NVIDIA 8600, GTX 280 and GTX 580 cards

standing out. Figure 6 shows the key frames extracted dur-

ing the category determining phase using the tagged infor-

mation. We perform 10 iterations of K-Means on each cat-

egory to get representative centers for each. The final rep-

resentation consists of about 200 key frames for each cate-

gory, distributed evenly.

During the labeling phase we perform the video segmen-

tation, PHOG feature descriptor, K-nearest neighbor on the

GPU. Table 1 shows the time taken for each stage of train-

ing process for 4 videos of one category and 12 videos of

all categories by the user. The times in seconds are shown

on a low-end (8600) and a hig-end (GTX 280, GTX 580)

GPU showing that the algorithm can be scaled to number of

cores. The comparison shows that even the low-end users

can benefit from our application.

Table 2 shows the processing time of K-NN algorithm

for the category assignment phase on 8600, GTX 280 and

GTX 580. The time consuming steps in our application are

the video segmentation and PHOG feature extraction. The

ratio test was useful for frames which had close ups of an in-

dividual or the crowd. Such frames were labeled in multiple

categories. Frames consisting of the cricket pitch, the table

in tennis table, etc., were classified clearly. In Table 3 we

see the percentages of individual frames which are correctly

classified for different number of neighbors for a single test

video in each category. In case of 3 neighbors, we label the

category of a frame based on the majority neighbor crite-

ria. In cases where there was no majority the frame may

belong to any of the 3 neighbor categories. Improvement

Figure 5. Key Frames for Cricket

Figure 6. Training Frames

could be seen in categories which have frames consisting of

field, players, etc. Not much improvement could be seen

in table tennis as majority of the frames consisted of the

table views which were easy to match. Using K-NN was

beneficial in boosting the classification of frames. We did

have some misclassification in certain categories like foot-

ball due to lack of information from majority of the key

frames which have field, players in it. Our tool is able to

organize a set of 100 sport videos of total duration of 1375

minutes in about 9.5 minutes. The process of learning the

categories from 12 annotated videos of duration 165 min-

utes took 75 seconds. We achieved an accuracy of nearly

96% on our testing dataset.

GPU No of No of K-NN

Device Videos Key frames

8600 88 16946 40.33

280 88 16946 5.39

580 88 16946 2.46

Table 2. Time taken in seconds for K-NN during the category as-

signment phase on NVIDIA 8600, GTX 280 GTX 580 cards

7. Conclusions

In this paper, we presented the design and initial results

from a GPU-assisted system to organize a personal collec-

tion of videos. We used a combination of the CPU and the

6



No of Cricket Football Tennis TT

Neighbors Videos Videos Videos Videos

1 64% 58% 69% 82%

3 73% 66% 77% 84%

Table 3. The percentage of frames correctly classified using K-NN

GPU to get good computational performance. We used sim-

ple methods adapted from object recognition literature to

classify video frames. We would like to use more sophis-

ticated methods from the visual object detection and scene

classification literature in the future. We have to be selective

about this as computational requirements have to be kept

reasonable for any personal system. We intend to test the

system on larger databases with more categories popular in

personal videos. In future, with people having thousands

of videos, GPU devices on their machines such application

will always be handy for maintaining an organized collec-

tion of personal videos.

References

[1] A. Bosch and A. Zisserman. Representing shape with

spatial pyramid kernel. In ACM International Confer-

ence on Image and Video Retrieval, CIVR, 2007. 2

[2] D.-Y. Chen and P.-C. Huang. Motion-based unusual

event detection in human crowds. J. Vis. Comun. Im-

age Represent., 22:178–186, February 2011. 2

[3] N. Dalal and B. Triggs. Histograms of oriented gradi-

ents for human detection. In Proceedings of the IEEE

Computer Society Conference on Computer Vision

and Pattern Recognition - Volume 1, CVPR, pages

886–893, 2005. 2, 3

[4] H. K. Ekenel, T. Semela, and R. Stiefelhagen.

Content-based video genre classification using multi-

ple cues. In Proceedings of the 3rd international work-

shop on Automated information extraction in media

production, AIEMPro, pages 21–26, 2010. 2

[5] W. Lao, J. Han, and P. H. N. de With. Automatic sports

video analysis using audio clues and context knowl-

edge. In Proceedings of the 24th IASTED interna-

tional conference on Internet and multimedia systems

and applications, pages 198–202, 2006. 2

[6] K. Lebart, C. Smith, E. Trucco, and D. Lane. Auto-

matic indexing of underwater survey video: algorithm

and benchmarking method. IEEE Journal of Oceanic

Engineering, 28(4):673 – 686, 2003. 2

[7] T. Liu, H. Zhang, and F. Qi. A novel video key-frame-

extraction algorithm based on perceived motion en-

ergy model. IEEE Transactions on Circuits Systems

for Video Technology, 13(10):1006–1013, 2003. 2

[8] D. G. Lowe. Distinctive image features from scale-

invariant keypoints. International Journal of Com-

puter Vision, 60:91–110, November 2004. 4

[9] K. W. Mohiuddin and P. J. Narayanan. Scalable Clus-

tering using multiple GPUs. In IEEE International

Conference on High Performance Computing, HiPC,

2011. 4

[10] NVIDIA. www.developer.nvidia.com/object/cuda.html.

2

[11] A. Oliva and A. Torralba. Modeling the shape of

the scene: A holistic representation of the spatial en-

velope. International Journal of Computer Vision,

42:145–175, May 2001. 2

[12] V. Osipov, N. Leischner, and P. Sanders. Nvidia fermi

architecture white paper - www.nvidia.com, 2009. 2

[13] S. Patidar and P. J. Narayanan. Scalable split and sort

primitives using ordered atomic operations on the gpu.

In IIIT/TR/2009/99. IIIT Hyderabad Technical Report,

2009. 5

[14] V. Prisacariu and I. Reid. FastHOG - a real-time GPU

implementation of HOG. Technical Report 2310/09,

Department of Engineering Science, Oxford Univer-

sity. 4

[15] N. Rea, R. Dahyot, and A. C. Kokaram. Classifica-

tion and representation of semantic content in broad-

cast tennis videos. In IEEE International Conference

on Image Processing, ICIP, pages 1204–1207, 2005. 2

[16] M. J. Roach, J. D. Mason, and M. Pawlewski. Video

genre classification using dynamics. In Proceedings

of the IEEE International Conference on Acoustics,

Speech, and Signal Processing, 2001. Volume 03,

ICASSP ’01, pages 1557–1560, 2001. 2

[17] J. Sivic and A. Zisserman. Video google: A text

retrieval approach to object matching in videos. In

Proceedings of the Ninth IEEE International Confer-

ence on Computer Vision - Volume 2, ICCV ’03, pages

1470–1478, 2003. 3

[18] B. T. Truong, S. Venkatesh, and C. Dorai. Auto-

matic genre identification for content-based video cat-

egorization. In International Conference on Pattern

Recognition, ICPR, pages 4230–4233, 2000. 2

[19] S. Vakkalanka, C. Krishna Mohan, R. Kumaraswamy,

and B. Yegnanarayana. In Proceedings of 2005 Inter-

national Conference on Intelligent Sensing and Infor-

mation Processing, pages 187 – 192, 2005. 2

7


