

.

Experiences of Integration and Performance Testing of
Multilingual OCR for Printed Indian Scripts

Deepak Arya
CDAC, Noida

deepakarya@cdacnoida.in

C V Jawahar
IIIT,Hyderabad

jawahar@iiit.ac.in

Chakravorty Bhagvati
University of Hyderabad

chakcs@uohyd.ernet.in

Tushar Patnaik
CDAC Noida

tusharpatnaik@cdacnoida.in

B.B.Chaudhuri
ISI,Kolkata

bbc@isical.ac.in

G. S. Lehal
Punjabi University, Patiala
gslehal@gmail.com

Santanu Chaudhury
IIT Delhi

santanuc@ee.iitd.ac.in

A.G.Ramakrishna
IISC,Bangalore

ramkiag@ee.iisc.ernet.in

ABSTRACT
This paper presents integration and testing scheme for managing a
large Multilingual OCR Project. The project is an attempt to
implement an integrated platform for OCR of different Indian
languages. Software engineering, workflow management and
testing processes have been discussed in this paper. The OCR has
now been experimentally deployed for some specific applications
and currently is being enhanced for handling the space and time
constraints, achieving higher recognition accuracies and adding
new functionalities.

Keywords
Multilingual, Feature Extraction, Hierarchical classification,
Template matching, Shape analysis

1. INTRODUCTION
Optical Character Recognition (OCR) is the electronic translation
of images of printed text (usually captured by a scanner) into
machine-editable text. OCR is being studied for about sixty years,
but Indian script OCR is being seriously studied since only past
decade. OCR systems for English are readily available but OCR’s
for different Indian languages have still not reached their full

maturity [6]. There have been many attempts in development of
OCRs for Indian Scripts like Devanagari, Malayalam[10], Telugu,
Tamil[7], Bangla[14], Gurumukhi[15] and Kannada[8]. These
individual OCRs do not take care of various script-independent
document image analysis issues. In this paper, we describe an
integrated OCR which exploits common characteristics and
common solutions across scripts to generate a robust system. This
OCR is the outcome of a consortium mode project executed at
various institutes for the development of printed Indian script OCR
systems, sponsored by Department of Information Technology,
Govt. of India.

Each center had the liberty to choose the approaches of
preprocessing including symbol and parts segmentation, feature
selection, Choice of Recognition engine and combining the
outputs into words and sentences. However, for uniformity in the
overall system an integrated platform was agreed upon.

Key challenges involved in the development of the integrated
OCR platform were the following:

 Developing specification scheme for each functional
module so that modules can be independently developed,
tested and subsequently integrated, thereby minimizing
coupling between modules.

 Maintaining the coding standards decided upon during
the initial stages of the project (C++, Fedora core6
compatible, Doxygen, etc).

 Representation scheme for rendering and editing the
electronic version of the documents in different scripts.

 Developing, testing and performance evaluation
strategies.

The paper is organized into the following sections: Section 2 gives
the overall architecture of the Multilingual OCR system. Section 3
talks about the challenges faced during system integration and
testing. Section 4 presents the strategy for performance evaluation
of the OCR system as a whole and evaluating the individual
modules [2]. Section 5 presents OCR Performance Result.

Key challenges involved in development of OCR System

Bangla and Devanagari are among the most symbol-rich since
originally about 2000 shapes need to be recognized for a complete
OCR system[14]. However, if the zone above the headline
(shirorekha) as well as that below the baseline are separated and
the symbols and parts of symbols are segmented and recognized,
then the number of classes comes down to about 500. This
approach was adopted in the current OCR systems.

There is a trade-off of OCR accuracy because of the above step.
Reduction of classes from 2000 to 500 resulted in higher symbol
recognition accuracy. On the other hand, segmentation of the
upper zone and lower zone as well as combining the output of the
classifiers into character and words resulted in additional errors.
We have noted that if this error can be substantially reduced, the
overall OCR accuracy could be substantially improved. It is more
difficult to do this for old letterpress printing and that is the main
reason of higher error rates of Devanagari OCR.

Devanagari and Bangla OCR system was a two stage. In the first
stage we clubbed similar characters into groups and classified the
test character into one of the groups. At the second stage we
classified into characters belonging to the group. In both cases we
sub-divided the character bounding box into 5 x 5 windows and
calculated the cumulative value of moves in four directions (Up-
down, Left-right, Right slant at 45 degree, Left slant at 45 degree)
while traversal of the border. Thus we got 5 x 5 x 4 = 100
dimensional features in both stages

We initially worked on minimum distance and K-NN classifier.
Later on, it was noted that SVM classifier yielded more consistent
and accurate results. For the mid-zone symbols, it was a two stage
classifier. In the first stage, several characters having high shape
similarity and are highly confusable among them according to
single character SVM, were put in a single group. In this way,
several groups were formed. SVM classifiers for such groups were
trained using prototypes. Then for the second stage, another set of
SVM classifiers were designed for the symbols of the individual
groups. Since the symbols of the upper zone and lower zone of the
text line are few in number, single stage classifier system was
designed for each zone.

Combination of the recognition results needed knowledge of the
script grammar. We had to discover the rules used for combining
to form the Ortho-syllables (Akshara) using the symbols and part
of symbols in the upper, middle and lower zone. Making it
exhaustive is still a problem and the erroneous and spurious
outputs of three zones sometimes created difficulty in word
formation.

However, the systems were not too bad, at least for Bangla OCR,
though we need improvements for Devanagari, which we plan to
take in the second phase of the project

Tamil is one of the most ancient languages and has recently been
recognized as a classical language by Government of India. Tamil
has 18 consonants and 12 vowels[7]. In addition, there are 5 more
graphemes commonly used to represent the consonants borrowed
from Sanskrit. There is another character, called /Aytam/. The
current version of the Tamil OCR deals with about 200 classes,
including all the punctuation marks, special symbols and Indo-
Arabic numerals. Based on the high performance of the Tamil
OCR, it is being regularly used by Worth Trust, a not-for-profit
organization in Chennai to convert printed Tamil books to Braille
books. Over the past one year period, about 150 school, college
and other books, involving around 25,000 pages have been
converted to Braille books, which are already being used by about
100 persons with visual disability. The OCR has been found to
work with any arbitrary font, without any major degradation of
performance.
The main challenges of segmentation of merged and broken
characters have already been handled to quite an extent, and thus
the OCR has delivered an average performance of about 93% in
testing about 1500 pages. It is to be noted that this performance is
based on raw recognition, without incorporating any language
model or dictionary based spell correction. Thus, the potential
exists for further good improvement of the recognition accuracy.

The Malayalam writing system is mostly syllabic. The predominant
orthographic unit is a vowel ending syllable with the canonical
structure (C)V. The obligatory V represents a short or long vowel.
The optional C represents one or more consonants Except in a few
instances the system follows the principles of phonology and
mostly corresponds to the pronunciation Each consonant letter
represents a single consonant sound. There are 56 letters in
Malayalam, 15 vowels and 36 consonants in addition to the many
conjugated and miscellaneous letters[10]. The conjugated letters
are combinations of two consonants, but they are written distinctly.

Script Change: By the arrival of modern word-processors, which
can generate any complex shape, most of the old lipi characters
again came into picture. Also, among the word processors and
fonts, there is no standardization followed. Nowadays, a mixture of
old and new lipi characters are used by different word-
processors[11].

Similar Characters: There are a set of characters which look similar
to each other. The variation between these characters are so small
that, even human reads the text usually only by its context[10].

Glyph Variation: As the font or style changes, the glyph of a
character also changes considerably, which makes the recognition
difficult.

Malayalam character recognition engine uses an SVM classifier
inside. Pairwise SVM classifiers are arranged in a Directed Acyclic
Graph (DAG) architecture. At present all the pairwise classifiers
are linear. All the pairwise classifiers use the same feature
description. Simple statistical features like PCA & random
projection give satisfactory results. However for wider support (for
multifont system) HOG (Histogram Of Gradient) features are
getting tried. Initial results are promising.

Character segmentation is based on connected component analysis.
These characters/symbols are recognized and the class labels are
converted to UNICODE with the help of a loop up table.
Additional language specific clues are used at this stage. Initial
experiments with sub symbol language models show that a post
processing can significantly improve the recognition results.

Gurmukhi syllabary initially consisted of thirty two consonants,
three vowel bearers, ten vowel modifiers (including mukt having
no sign) and three auxiliary signs. Later on, six more consonants
have been added to this script. These six consonants are multi
component characters that can be decomposed into isolated parts.
Besides these, some characters modify the consonants once they
are appended just below them. These are called half characters or
subjoined characters.

Touching Characters[15]

This is the most commonly found degradation in printed Gurmukhi
script. In this category of degraded text, two neighboring
characters touch each other. The important issue involved in
recognition of the touching characters is to segment them correctly,
i.e., identifying the position at which the touching pair of
characters must be segmented

Multiple Skew in documents

Another typical problem found in old printed Gurmukhi text is
existence of multiple skew on same page. Each word or line could
be skewed differently, which calls for development of skew
detection and correction algorithms at global and local level.

Kannada script is distinctly different from Devanagari related
scripts such as Bangla and Gujarati, as well as the classical
Dravidian script of Tamil[8]..
Modern kannada script has 48 characters, called varnamale.
Consonants are divided into grouped consonants and ungrouped
consonants. There are 14 vowels 34 consonants and 10 numerals.
Vowels along with consonants constitute basic character. Vowel
modifiers can appear to the right on the top or at the bottom of a
base consonant. . In addition, consonant clusters in Kannada have
a two-dimensional structure[8], as shown in Table 1.

Table 1. Some examples of CCV and CCCV

CCV
Combinations

 CCCV
Combinations

Combinations in Kannada.
The Kannada OCR [9] handles all the above basic and compound
characters, the Kannada numerals and most other symbols that can
be keyed in from a QWERTY keyboard. Thus, there are totally
about 300 classes to be recognized. Karhunen Leuve transform is
used to extract features from the normalized images of the
segmented components. SVM is used as the classifier. The
characters, which have multiple distinct connected components
that appear one above the other are segmented as a single unit, by a
judicious combination of connected component analysis and
vertical projection. Thus, the component segmentation accuracy is
very high, except when there are merged or broken characters.
Thus, the real challenge in developing a good Kannada (or for that
matter, any other script) OCR is in obtaining a high quality
segmentation of the primitives.

Telugu is a phonetic language with characters roughly representing
spoken sounds (often syllables). Telugu script contains rounded
characters of complex shapes with no vertical lines there are 16
vowels (12), 36 consonants (35) and 2 vowel
Modifiers.

Complex shapes very localized structures (e.g.,)

Subset/Superset relationships (e.g.,)

Visually similar and confusing sets

(e.g.,)

Vowel modifiers connect to consonants and consonant conjuncts
modifying their shapes.

2. ARCHITECTURE OF MULTILINGUAL
OCR SYSTEM
The user provides input to the OCR system either a scanned
document image or selects an image from database. The user has
control over each module of the system to change the parameters
and view the effects. Each input image undergoes few of the
preprocessing steps for making it fit for recognition engine.

Pre-processing routines available are:

 Skew correction
 Noise cleaning
 Binarization
 Orientation detection
 Block segmentation
 Text non-text separation.

4

The above routines listed come under the category of script-
independent processes. The segmentation routine identifies each
segmented block/document image component as text, picture or
graphics at the coarser level. Further a semantic label is also
attached to each text block as paragraph, column, heading, section,
sub-heading etc.
After pre-processing the image is passed to the recognition engine.
Here each text block is further segmented to get Line and Word
boundaries, followed by character and symbol level segmentation.
The processes involved in recognition engine are script-dependent.
This engine is capable of recognizing text images of Devanagari,
Bangla, Tamil, Kannada, Telugu, Malayalam, Gurumukhi scripts.

The last module is layout retention, which involves rendering of
the recognized text and presenting it in a editable format
maintaining the layout structure for the end-user. This module is
also capable of representing the electronic document in various
formats (odt, doc, html etc.).
XML has been used as architecture specication language and
enables handling huge amount of data in such large projects [1].
XML based Input/Output interface has been adopted for smooth
interaction between all the modules. All modules developed as part
of this project are expected to be consistent with this extensible
specification of the architectural model.

3. SYSTEM INTEGRATION AND TESTING
Earlier OCR’s for each Indian language were available as separate
stand-alone package. This is the first complete software package
where OCR’s for seven Indian Scripts along with different pre-
processing and post-processing algorithms are integrated together.
The major challenge faced in integrating each of the modules was
that all the modules were developed by different people having
different software development practices. Below we shall discuss
the challenges faced and the remedies for them. In order to handle
the modules coming from different members, a website was created
by CDAC, Noida coupled with SVN. SVN facilitated updation of
repositories. Log-in IDs were provided to each member for
uploading & downloading modules. The website works on the
concepts of black board architecture for sharing information
among the other consortia members. The codes coming from

different consortia members were checked against a set of code
acceptance parameters listed below:

 Codes submitted should be strictly in C++ and Fedora 6
compatible.

 Use of OpenCV library only.
 It should support all image formats (PGM, TIFF, BMP

and JPG).
 Namespace should be used.
 It should follow the Input/Output XML scheme specified

for the project [1].
 It should be Doxygen compatible.
 It should follow the specified directory structure.
 It should have a Makefile and Readme.

Each accepted module is tested and re-engineered to handle the
following:

 Taking care of memory leaks.
 Exception handling wherever required.
 Avoid intermixing of new and malloc for memory

allocation.
 Optimization with respect to speed and memory size,

without tampering the logical meaning of the module.
The project undergoes the following testing phases:

 Unit testing
 Integration testing
 System testing.

Unit testing was done for testing the functionality of individual
modules us ing the dataset provided by the respective member and
test dataset created by CDAC, Noida. The modules are tested
against specified parameters and the identified bugs are reported to
respective consortia member. The modified codes received after
removing bugs are re-tested. Once the code is accepted for
integration shared library (.so) of each module is created. Further
individual modules are combined and tested to evaluate their
interaction against the design parameters. We follow the bottom-up
approach wherein we test small software elements first and keep on
integrating and testing the bigger module. After each module has
been integrated the bigger module undergoes regression testing to
verify that modifications have not caused unintended affects on the
integrated system and the performance. System is also tested to
verify

 Abnormal behavior(system crashing, abrupt termination)
 Handling invalid input and large volume of data.
 Analyzing processing time and memory utilization.
 Evaluating Human Computer Interface

A Graphical user interface (see Figure 2) was developed over the
integrated system. The GUI provides various options for the user
to play with the integrated system.

 Using basic image enhancement and editing tools
(cropping, rotation, zoom in/zoom out, orientation,
binarization, noise removal etc.).

 Running individual modules successively for obtaining
final OCR’ed output.

 End-to-End OCR (Figure 2).
 Defining workflows (Figure 3).
 Text editing tool coupled with dictionary.

Figure 1: Overall Architecture of Multilingual OCR System

User has the facility to run the end-to-end OCR, wherein the best
possible combination of the pre-processing routines and the script
specific recognition engine are packaged. Also the user can choose
from a set of pre-processing routines suitable for a set of input
images jointly with the script specific recognition engine. This can
be saved as a user defined workflow which can be used in future
for batch processes like OCRing complete books.

Figure 2: Multilingual OCR GUI

Figure 3a: Bangla OCR Input and Output

Figure 3: Multilingual OCR Workflow

Figure 3b: Devanagari OCR Output

Figure 3c: Gurumukhi OCR Output

Figure 3d: Kannada OCR Output

Figure 3e: Malayalam OCR Output

4. PERFORMANCE EVALUATIONS
Performance Evaluation Tool has been developed by CDAC,
Noida [2] to analyze the error statistics of OCR output with ground
truth data. Figure 4 shows the performance evaluation testing
flowchart.

The Error rate in OCR output with respect to Ground truth is
calculated using Levenshtein distance [2]. It gives the measure of
in-equality in terms of insertion, deletion, or substitution at
character level. To show the recognition errors a browser window
has been created on which ground truth data and OCR output with
substitution, insertion and deleted characters are highlighted with

different colors. Match characters have been shown with black
color. The characters which are substituted have been shown with
red color in both ground truth and OCR output. Insertion error
represents those characters which are generated by Recognition
engine and have been shown with blue color in OCR output.
Deletion error represents those characters which are not recognized
by Recognition engine and are shown with green color in Ground
truth data.

Using the Levenshtein distance[2] we get count of match & mis-
match of each character in OCR output with respect to ground
truth. These counts are used to generate a confusion matrix of n x n
size for every script, where n is the number of UNICODE values in
a particular script. The diagonal elements represent the number of
times a recognized character matches with ground truth character.

The elements in red color represent the number of character
mismatch in OCR output as compared to ground truth data. This
tool has helped in identifying the problems in various routines
which can be worked upon thereby improving the accuracy of
OCRs. Figure 6 shows the snapshot of Confusion matrix.

Word level comparison of the final output Unicode sequence with
the ground truth using Edit distance based measure. We can define
word error rate (WER) as:-
WER = WordEditDistance(Wtrue,Wocr)/Wtrue
Where Wtrue is the aligned word in the ground truth data. Edit
distance is expected weigh equally insertion, deletion and
substitution errors.

Figure 3g: Telugu OCR Output

Figure 3f: Tamil OCR Output

Figure 4: Performance Evaluation Flowchart

Figure 5: Character Level Testing Browser

Figure 6: Confusion Matrix

5. OCR RESULTS

OCR Performance was also tested by Third Party Tester.
We have defined different quality types of documents images:-

Quality B: Books printed on normal paper. Computer typesetting.
Without degradations. Higher text density

Table2: QualityB Documents

Quality C: Average or inferior quality print documents with
degradations,.
(i) Partly non-computer typeset but normal paper/ink.
(ii) Documents with complex manhattan layout.
(iii) Computer typeset with poorer paper, degradations, some
backside reflections

Table3: QualityC Documents

Quality D: Bad quality print, low quality paper, low quality ink,
noise, merges, cuts and breaks, blobs, etc.

Table4: QualityD Documents

6. CONCLUSION

Currently we have developed shared linked libraries of each
module (script-independent or script-dependent module) received
by other consortia members and integrated with GUI which is
packaged into RPM. We are testing each language OCR for
character level accuracy and word level accuracy. We are in the
process of testing for 5000 pages atleast of each script for character
and word level accuracy.

Figure 7: Word Level Testing Browser

As a future prospect of the OCR project we are trying to tune the
recognition to respond well to a variety of fonts and font/point
sizes. Also multilingual OCR could be integrated with Braille
interface for all Indian scripts addressed here. We can aim of
developing large Document Management Systems.
The integration and testing of complex software like Multilingual
OCR System is a difficult phase. It was required to verify each
module, identify problems/issues and coordinate with the
developer.

7. ACKNOWLEDGMENT

This work is funded by the grant from Ministry of Communication
and Information Technology, Govt. of India. We thank all the
consortium members for their active participation in the project
and making it a success.

8. REFERENCES

[1] Gaurav Harit, K. J. Jinesh, Ritu Garg C.V Jawahar and
Santanu Chaudhury Managing Multilingual OCR Project
using XML Proc. of International Workshop on
Multilingual OCR 2009 Barcelona, Spain.

[2] Tushar Patnaik, Shalu Gupta and Gaurav K. Rai.
Performance evaluation for Indian Languages in
Consortia based OCR. ASCNT 2009, CDAC, Noida.

[3] A. Lear, “XML seen as integral to application
integration,” IT Professional, vol. 1, no. 5, pp. 12–16,
Sep/Oct 1999.

[4] S Rice, J Kanai and T Nartker, An evaluation of OCR
accuracy, UNLV Annual Report, pp 9-33, 1993.

[5] J Esakov, D. P. Lopresti and J. S Sandberg,
Classification and distribution of Optical Character
Recognition errors, SPIE Vol. 2181, Document
Recognition, 1994.

[6] P. B. Pati and A. G. Ramakrishnan, " OCR in Indian
scripts: A Survey," IETE Technical Review, May-Jun
2005, 22(3):217-227.

[7] K. G. Aparna and A. G. Ramakrishnan, " A complete
Tamil Optical Character Recognition System," Proc.
Fifth IAPR Workshop on Document Analysis Systems
DAS-02, Princeton, NJ, August 19-21, 2002, pp. 53-57.

[8] B. Vijay Kumar and A. G. Ramakrishnan, " Machine
Recognition of Printed Kannada Text," Proc. Fifth IAPR
Workshop on Document Analysis Systems (DAS-02),
August 19-21, 2002, Springer Verlag, Berlin. pp. 37-48.

[9] R S Umesh, Peeta Basa Pati and A G Ramakrishnan,
Design of a bilingual Kannada-English OCR, in the book
"Guide to OCR for Indic Scripts: Document Recognition
and Retrieval" Springer, 2009 in the Advances in Pattern
Recognition Series. Ed: Venu Govindaraju and Setlur
Srirangaraj. pp. 97-124. ISBN: 978-1-84800-330-9

[10] Karthika Mohan and C.V.Jawahar A Post-Processing
Scheme for Malayalam using Statistical Sub-character
Language Models Proceedings of Ninth IAPR
International Workshop on Document Analysis Systems
(DAS'10), pp.493-500, 9-11 June, 2010, Boston, MA,
USA.

[11] C.V. Jawahar and Anand Kumar Content-level
Annotation of Large Collection of Printed Document
Images Proc of 9th International Conference on
Document Analysis and Recognition, Brazil, 23-26
September, 2007.

[12] U. Pal, B. B. Chaudhuri: Indian script character
recognition: a survey. Pattern Recognition 37(9): 1887-
1899 (2004)

[13] V. Govindaraju and S. Setlur (Editors), "Guide to OCR
for Indic Scripts", Springer, Sep 2009.

[14] B. B. Chaudhuri and U. Pal, "A Complete Printed
Bangla OCR System", Pattern Recognition, vol. 31, pp.
531-549, 1998.

[15] M K Jindal, G S Lehal and R K Sharma, “On
Segmentation of Touching Characters and Overlapping
Lines in Degraded Printed Gurmukhi Script”,
International Journal of Image and Graphics, Volume 9,
No. 3, pp. 321-353 (July 2009).

