
Mixed-Resolution Patch-Matching

Harshit Sureka and P. J. Narayanan

Centre for Visual Information Technology
International Institute of Information Technology, Hyderabad
harshit.sureka@research.iiit.ac.in, pjn@iiit.ac.in

Abstract. Matching patches of a source image with patches of itself or
a target image is a first step for many operations. Finding the optimum
nearest-neighbors of each patch using a global search of the image is
expensive. Optimality is often sacrificed for speed as a result. We present
the Mixed-Resolution Patch-Matching (MRPM) algorithm that uses a
pyramid representation to perform fast global search. We compare mixed-
resolution patches at coarser pyramid levels to alleviate the effects of
smoothing. We store more matches at coarser resolutions to ensure wider
search ranges and better accuracy at finer levels. Our method achieves
near optimality in terms of exhaustive search. Our approach is simple
compared to complex trees or hash tables used by others. This enables
fast parallel implementations on the GPU, yielding upto 70× speedup
compared to other iterative approaches. Our approach is best suited
when multiple, global matches are needed.

1 Introduction

Matching patches between two images or two regions is at the core of many
applications including image denoising [1], super-resolution [2], texture synthesis
[3], image summarization and editing [4], etc. The problem of patch-matching
is to find K most similar patches in image B, for every patch in image A. The
matching is dense if matches for every patch in image A are calculated and is
sparse if matches for selected interest points are calculated. It can also be local
if the search is restricted to a region in image B, or global if all possible patches
of image B are searched.

Calculating dense and global matches is computationally intensive. The nat-
ural trade-off is between the accuracy of the matches and the computation time.
This is used by most approaches in different ways. Many applications use sparse
key-point matches which can be computed fast [5]. The local or sparse matches
may only provide approximate solutions for the given performance requirements,
with the optimal solution requiring dense or global matching. Interactive applica-
tions such as image editing/re-targeting [4, 6, 7] need fast matching to maintain
user interest. Sparse matching is used by them as dense matching is slow. Local
matching combined with multi-resolution refinement is used for optical flow [8],
but large displacements of small objects are often missed.

The PatchMatch algorithm [9] performs a randomized, cooperative hill climb-
ing search to calculate dense nearest neighbor matches quickly. It relies on the



2 Harshit Sureka and P. J. Narayanan

coherence between patches of an image for speedup. PatchMatch is fast for many
interactive applications, but is not very accurate. More iterations are required
for higher accuracy. Locality sensitive hashing (LSH) [10] finds good matches
and was extended to Coherency Sensitive Hashing [11] recently. CSH replaces
the random step of PatchMatch with a hashing scheme and combines cues of
appearance and coherence (of location) in a novel manner. This gives a rich set
of candidate patches which are searched to calculate the final patch correspon-
dences.

In this paper, we present an adaptation of multiresolution image processing
as a simple alternative for dense and near-optimal patch matching. We define
optimal matches as those generated by an exhaustive search across the target im-
age. The pyramid approach reduces the resolution of the images to be matched.
Dense and global patch matches are evaluated at the coarsest level using exhaus-
tive search. We keep at-least the best K matches at each level for each patch.
The matches are transferred to the next resolution level by upsampling. The
search range for the pixels of the upsampled source region at these levels is an
expanded window around the upsampled target patches. This naturally brings in
coherence indirectly in the matches, while searching locally. This process repeats
until matches at the original image resolution are found.

The multiresolution representation can smooth the image at lower resolution
levels, resulting in flat peaks in the matching score. We match mixed-resolution
or mixed-scale patches to reduce this problem. We match a space-scale 3D win-
dow of pixels from a multi-scale representation of the source patch with a similar
window of the target patch. We can mix multiple scales for matching. In practice,
adding the immediate next higher resolution level with gives sufficiently good
matches. We call this the Mixed Resolution Patch Matching (MRPM) scheme.
Our method gives near-optimal matches at faster speeds than PatchMatch and
CSH methods. The MRPM method works well different kinds of images and
applications but its benefits are most pronounced when they require multiple
globally similar patches to be matched to each.

The contributions of this paper are the following: (a) a simple multiresolution
extension to patch matching that performs fast matching, (b) a mixed-resolution
patch representation to enhance the specificity of matches achieving near-optimal
matches, and (c) a fast implementation of the algorithm on multi-core CPUs
and a GPU for fast performance. The simplicity of the method enables a fast
parallel implementation, compared to the hashing based methods. We show how
mixing resolutions is better than increasing the search window around upsampled
patches. We also show how the parameters of our approach give time-accuracy
trade-off. We use the dataset of 133 image pairs generated by [11] for comparison
with CSH. We consistently achieve lower error values than CSH in terms of RMS
distance of matched patches. Our method finds up to 8% more of the globally
optimal top 10 nearest patches compared to CSH over ten image pairs with
ground-truth.



Mixed-Resolution Patch-Matching 3

2 Related Work

An exhaustive search for nearest patches is computationally expensive and sev-
eral optimizations have been proposed. Xiao et al. [12] eliminate redundant sim-
ilarity computation of sequential overlap between patches to find exact nearest
patches fast. It is practical only for local matching and has an increased memory
overhead. Many other methods for finding approximate or exact nearest patches
have been suggested, a review of which can be found in [13].

Patch matching has been posed as a search in a high dimensional space of
patches. Efficient data structures were used for this like the KD-tree [14], Tree
Structure Vector Quantization (TSVQ) [15], and Vantage Point trees [16]. These
methods can perform exact matching but are popular for approximate patch-
matching. A randomized PatchMatch algorithm [9] quickly finds approximate
nearest matches. It was generalized to include K nearest matches, rotations and
scale [17]. PatchMatch uses a cooperative hill climbing strategy and exploits
coherency to achieve speed. However, the matches found by it are not as accu-
rate. Korman and Avidan proposed Coherency Sensitive Hashing (CSH) that
includes coherency cues [11]. CSH replaces the random step of PatchMatch with
a hashing scheme similar to the one used in Locality Sensitive Hashing [10]. They
propagate information to patches that are close in the image plane or are similar
in appearance. CSH is more accurate and is about 2 times faster, making it the
best today. Several image processing methods use multiresolution representation
of images for acceleration and accuracy [18]. Glasner et al. find patches at differ-
ent scales for super-resolution from a single image represented at multiple scales
[2].

Our method combines exhaustive search at the lowest resolution level fol-
lowed by local search in upsampled search windows at other levels. The search
is initialized using matches at lower resolution levels as opposed to random sam-
pling or hashing based techniques. We extend traditional pyramid approaches
by using mixed-resolution vectors for matching. The simplicity of our method
also allows fast parallel implementations on multiple cores and on GPUs.

3 Mixed Resolution Pyramid Matching

We adapt multi-resolution ideas to perform a global search at reduced effort. The
first step of our algorithm is to generate the spatial image resolution pyramid,
starting with the original Image I0. An image at a higher level p of the pyramid
is generated using

Ip =↓s (Ip−1), (1)

where ↓s is the down-sampling operator by a factor s. For down-sampling,
we experimented with several standard methods like Gaussian averaging, area-
averaging, cubic interpolation and nearest neighbor. All except the nearest-
neighbor method did similarly on accuracy and speed. In our experiments, we
down-sample using Gaussian averaging. Number of pyramid levels P is deter-
mined such that the lowest resolution image IP has size at least Pthold. The



4 Harshit Sureka and P. J. Narayanan

(a) (b)

Fig. 1. 1(a): Exhaustive search is done at a reduced resolution level. The search range
for the pixels of the upsampled source region at the next level is an expanded win-
dow around the upsampled target patches. 1(b): A search in this range gives the best
matches

pyramid is constructed for both source and target images as PyrA and PyrB .We
denote the image at level p of PyrA as IA(p).

Images IA(P ) and IB(P ) at the highest level are small. It is feasible to perform
an exhaustive global search on them. However, it is also possible to use other
techniques, such as CSH [11] or PatchMatch [9] to find the matching at this
level based on the application. Every patch of IB(P ) is considered as a candidate
match for every patch in IA(P ). K best matches are stored for each patch after
the search. The search in level p is limited to a few windows, given the matches
at level p + 1. This is illustrated in Figure 1. The procedure is as follows:

1. For each pixel in level p, search only in a window around the matches trans-
ferred from level p + 1.

2. Transfer is done by mapping the current patch a at level p to patch a∗ in
level p + 1 using the downsampling rule.

3. The matched-list of a∗ is upsampled to find their corresponding locations at
the current level p.

4. The union of u× u windows around each of these transferred matches form
the search range for matching patch a.

The candidate list for patch a at level p is given by

candidateListIA(p)
(a) =

⋃
N(↑s (matchListIA(p+1)

(a∗))), (2)

where a∗ is the downsampled patch in IA(p+1) corresponding to a, ↑s represents
upsampling, and N() represents a neighborhood operator. This is outlined in



Mixed-Resolution Patch-Matching 5

Algorithm 1 Calculate matchList(0) (Dense matching from image A to B)

candidateList(P ) ← IB(P )

matchList(P ) ← Search candidateList(P ) //(Algorithm 2)
candidateList(P−1) ← s ∗matchList(P ) //map matchList(P ) to the next level
for p = P − 1 to 0 do

matchList(p) ← Search candidateList(p) //(Algorithm 2)
if p = 0 then

return matchList(0) //original resolution level
else

candidateList(p− 1)← Nu×u(↑s matchList(p))
end if

end for

Algorithm 1. Matches from level p for patch a are given by

matchListIA(p)
(a) = argminK

bi

D(a, bi), bi ∈ candidateListIA(p)
(a), (3)

which are locations of the nearest K patches in image B from the candidate
list. D(a, b) is an arbitrary distance measure between two patches (or patch
descriptors) a and b. In our experiments, the Euclidean distance is used. This is
outlined in Algorithm 2.

This process is repeated until level 0 is reached. At each level and for each
patch, the candidate list is generated by transferring matched-list of the down-
sampled pixels to the current level and considering a window around them. At
the original image resolution IA(0), we get the final list of K best matches for
each patch. For a pair of real images (image 4(d) of Figure 4 and its pair),
an example run of the algorithm is shown describing a simple two level pyra-
mid matching process in Figure 2. This method combines the advantages of
fast exhaustive search at the highest level with local searches at other levels.
This achieves near-optimal matching at fast speeds. However, small regions can
disappear with repeated downsampling and if a match is missed at a lower res-
olution level, its vicinity may not be searched in higher resolution levels by this
approach.

Algorithm 2 function Search. Given candidateList(p), Return matchList(p)
for all patches a at level p do

Form mixed resolution vectors V (a, ↑s (a), . . . , ↑ls (a)) //mixing l resolution levels
Calculate match distance D(Va, Vbi) for bi ∈ candidateList(p)(a)
matchList(p)(i)← Nearest K matches

end for
return matchList(P )



6 Harshit Sureka and P. J. Narayanan

Fig. 2. Original images are downsampled and exhaustive search for matches is per-
formed. More number of matches than required are located at coarser resolutions. The
matches found here are transfered to the original resolution level by upsampling. Union
of windows around them defines a search range. This is shown for three patches (in
red, blue and green). The search for best match is done within this search range. Please
note that the patches are drawn for representation purpose and are not to scale.

3.1 Mixed-Resolution Matching

The matching can be performed using patches at each level of the pyramid.
The higher levels of the pyramid contain approximate or smoothed versions
of the original image. This can lead to smooth distance functions and poor
localization of matches. We use mixed-resolution or mixed-scale windows for
matching to solve this problem. This is different from traditional multi-scale
matching that looks for a patch at different resolutions. We use a vector for each
patch containing pixels from representations at multiple scales. These mixed
resolution vectors are matched with other such vectors to reduce the effects of
smoothing. In theory, any number of resolutions can be mixed. Mixing pixels
represented at resolution levels finer than the current level alone helps because

(a) (b)

Fig. 3. Mixed Resolution Matching Process. Vectors to be matched are formed using
information from the current as well as higher resolution levels



Mixed-Resolution Patch-Matching 7

Table 1. Increasing search range and mixing resolutions both have a positive effect
on accuracy but different effects on time. Error is the average Euclidean distance in
RGB space between source patch and matched patches over all patches and all images.
Lower error values are achieved with less cost of time by mixing resolutions. Depending
upon the application these parameters can be set accordingly. Values are for K = 5,
patch = 7× 7, Pthold = 32

Search Range
No. of Resolutions Mixed (l)

Values: [Avg. Error (Time)]

l = 1 (no mixing) l = 2 l = 3

3x3 109.47 (13 sec) 96.71 (19 sec) 93.93 (24 sec)

5x5 99.92 (22 sec) 90.38 (30 sec) 87.74 (35 sec)

7x7 96.81 (30 sec) 88.62 (45 sec) 86.18 (53 sec)

9x9 94.8 (41 sec) 87.36 (63 sec) 85.03 (73 sec)

they contain more information. Figure 3 illustrates how the mixed-resolution
vectors are formed by mixing two resolution levels, which works best in practice.

In a mixed-resolution approach, windows to be matched would contain pixels
from l levels of the pyramid. Such a patch is a d× d× l cuboid (or a di × di × l
pyramid, where di is the size of the window from level i) in the x−y−scale space.
A 1D vector representation of this mixed-scale-patch is matched with other such
vectors in its candidate list to find the top K matches.

Increasing the search range around upsampled matches reduces the error with
extra cost in time. This behavior can be seen down the rows in Table 1. Mix-
ing resolutions achieves even lower error values with less cost in time, as shown
across the columns in Table 1. Finer resolutions surely contain more significant
information for matching than areas around upsampled matches. Hence, mixing
resolutions is more effective than increasing the search range. However, mixing
more than 3 resolution levels incurs more cost in time without significantly im-
proving accuracy. The choice of parameters depends entirely on the application.
In general, mixing 2 or 3 resolution levels and a search range of 5× 5 gives the
best of time and accuracy.

The following modifications improve the accuracy and speed of the mixed-
resolution patch matching process:

Increase K: The best match at the original resolution level may not be the best
match at a lower resolution level. Decisions made early cannot be reversed later.
Hence, at lower resolution levels, we store more matched patches by increasing K
than required finally. This number is slowly reduced towards the required num-
ber towards the higher resolution levels. More matches provide a wider search
range at the next level which helps in searching for accurate matches. Accuracy
significantly improves when only few matches are required.

Reduce Patch-size: The same size patch at a lower-resolution level captures
a bigger area. If the required patch size at the original-resolution level is d× d,
the size can be reduced at lower resolution levels. At the lowest resolution level,



8 Harshit Sureka and P. J. Narayanan

tiny patches of source image can be matched with tiny patches from the target
image. We reduce the patch size as we move up in the pyramid until the size
reaches 3× 3. The reduced patch-size makes matching more efficient.

Early Termination: Calculating distance between patches is expensive. We
can terminate the distance calculation of a patch if it exceeds the distance of
the farthest patch currently in the matched list of patches. This speeds up the
matching process by eliminating dissimilar patches quickly.

3.2 GPU Implementation

Our approach works in the pixel space, which is inherently parallel. We take ad-
vantage of this by using the multiple cores of the CPU using OpenMP. This
achieves near-linear time speed up with number of cores. Mixed-Resolution
Patch-Matching (MRPM) processes each pixel independently which enables fast
parallel implementations. We implemented our matching algorithm in GPU us-
ing CUDA with pyramid construction and mapping done on the GPU. Each
thread handles a pixel and performs the matching independently. Upscaling of
the matched locations and forming the search ranges for the next resolution
level are also done by the GPU. We use the shared memory to store the per-
pixel mixed-resolution-patch for fast access. Table 2 shows the performance of
our GPU code compared against the multi-core implementation.

The GPU code is further optimized by representing each patch as a vector
and making each thread handle a vector distance calculation. Parallel sorting
of the distances and picking top K values gives the best matches. The CPU
algorithm achieves a 4× speed-up with a 4 core CPU and a further 70× speed-
up is seen on a commodity GPU. The GPU used is an Nvidia GTX580 with 512
cores. Benefits of GPU are best visible in global exhaustive search, which can
enable strict thresholds in the pyramid and parameter values for more accuracy.

4 Experiments

We use the 133 image-pairs dataset provided by Korman and Avidan [11, 19] for
experiments. We selected 10 image pairs among these (one of each pair shown in
Figure 4) and calculated the ground truth matching of patches using exhaustive
global search for comparison. The ground truth was calculated for 10 nearest

Table 2. GPU and CPU timings of MRPM implementation. Values for K = 5, Patch
= 7× 7 and Pthold = 32 px, except in global exhaustive search

Image(s) Search CPU GPU Speed-up

Images of Fig. 4
3× 3 13.46 sec 278 msec 48×
5× 5 20.45 sec 684 msec 30×
7× 7 29.68 sec 1113 msec 26×

Lena (256× 256) Global 356.63 sec 4.89 sec 72×



Mixed-Resolution Patch-Matching 9

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Fig. 4. One each from image pairs of the CSH dataset used in our experiments

neighbors using 8× 8 patches. Our implementation of MRPM is in C++ using
OpenMP. Code for CSH [11] was taken from their webpage [19]. Both algorithms
were run on the same computational platform: an Intel i7 920 processor running
at 2.67GHz with 3 GB of RAM. In these experiments, we mix pixels from two
resolution levels in the matching windows. Avg. Error used to quantify matching
quality is the average L2 distance between a patch and its matches in RGB space,
averaged over all patches in the image and across all images whenever multiple
images are used.

4.1 Varying Parameters

The performance of global nearest patch matching algorithms usually depends
on several factors, including image size, patch size, and the number of nearest
patches. Other parameters allow trade off between time and accuracy also. Ef-
fects of varying the number of required matches K and the patch-size can be
seen in Table 3.

The number of pyramid levels depend upon the parameter Pthold. It sets
the minimum image size allowed in the pyramid and can be varied to favor time
or accuracy. Table 4 shows the running time and average error using different

Table 3. Table showing the effects of varying KNN and Patch-size. Error is RMS patch
distance averaged over all matched patches and over all images in Fig. 4.

KNN Patch-size Error CPU Time GPU Time

1 5x5 68.1 11 sec 120 msec

1 7x7 108.4 12 sec 135 msec

1 9x9 146.8 14 sec 150 msec

5 5x5 58.1 14 sec 230 msec

5 7x7 96.1 18 sec 315 msec

5 9x9 138.3 25 sec 420 msec

10 5x5 56.7 19 sec 370 msec

10 7x7 94.5 28 sec 530 msec

10 9x9 136.5 37 sec 750 msec



10 Harshit Sureka and P. J. Narayanan

Table 4. Effect of changing the pyramid threshold parameter Pthold. Error increases
and time decreases as smaller images are allowed in the pyramid. It can be seen that
choosing a 32× 32 threshold works best in practice.

Pthold Avg. Error Avg. Time

64 pixels 45.41 30.84 sec

32 pixels 54.47 13.03 sec

16 pixels 62.13 10.19 sec

values of Pthold for 10-NN using 5×5 patches. Error values increase as we allow
smaller images in the pyramid. Search range used is 3 × 3 around upsampled
matches. It can be seen that stopping at a resolution near 32 × 32 gives best
performance and accuracy.

4.2 Comparison with CSH

We compare our algorithm with the state-of-the-art Coherency Sensitive Hashing
[11]. We perform the following experiments:

Proximity to ground-truth: For each image pair, we calculate 10 nearest
neighbors in the target image using 8× 8 patches. We then compute how many
of the ground truth matches are found by this process. Table 5 shows the average
across all patches and images as the percentage of top-10, top-5, and the best
matches contained in the ground truth matches found by our MRPM approach
and CSH approach. The best match is mostly captured by both the algorithms
and MRPM holds only a slight edge over CSH. However, MRPM finds around
8% more ground-truth matches among the top-5 and top-10 matches than CSH.

Error: For each image in Fig. 4, we calculated the 10 nearest neighbors with
8×8 patches by matching image pairs. Matches of CSH are found using the code
provided [19]. Figure 5 compares the average error for each image of our approach
with CSH and the ground truth. Our match error is very close to ground truth
error and we outperform CSH significantly. CSH focuses on finding coherent
matches and misses far-off optimal matches increasing their error. We use their
default setting of 5 iterations for calculating their matches. Our parameters at
Pthold = 32 pixels and u×u = 3× 3 achieve similar computation times as CSH
for this problem.

Table 5. Percentage of ground truth matches captured by MRPM and CSH. MRPM
captures up to 8% more matches when the top 10 matches are required.

Best K Matches CSH [11] MRPM

Best Match 92.43% 93.57%

Best 5 Matches 88.06% 91.51%

Best 10 Matches 81.72% 89.87%



Mixed-Resolution Patch-Matching 11

Fig. 5. Average error values of CSH and MRPM compared with ground truth.

We also perform an experiment by fixing an error value and monitoring the
time taken by both algorithms to achieve it. CSH is an iterative algorithm which
improves its matches with each iteration based on the framework of coherency.
This framework is different from the optimality framework of MRPM. In most
cases, the error values fixed are achieved at similar times by both the algorithms.
However, with more iterations of CSH, average RMS error between patches does
not decrease significantly, even increasing in some cases. This is due to the focus
of CSH on finding coherent matches which might vary from optimal matches.
Hence, the choice of algorithm depends highly upon the application.

Image Reconstruction: We reconstruct image A using image B, given a dense
patch-matching from A to B. This was done over all 133-image pairs in the CSH
dataset. Each pixel is simply replaced by the average of corresponding pixels that
it is mapped to by all patches that contain it. Error is the RMS distance (in RGB
space) between original and reconstructed pixels. See [11] for experiment details.
We obtain an average error value of 6.47 while CSH achieves a marginally better
value of 6.29 and PatchMatch gets 7.62 compared to the ground-truth value of
5.81. We focus on finding the optimal matches without enforcing coherency. Our
performance on image reconstruction is comparable even without this facility.

5 Conclusion

We proposed a simple multiresolution approach for nearest-patch finding using
mixed-resolution vectors for matching. Our simplicity enables fast parallel imple-
mentations. We find near-optimal match locations and reach lower error values
than Coherency Sensitive Hashing. Advantages of the MRPM method are more
pronounced when several nearest matches are needed. The advantages in time
and quality over CSH diminish while finding one closest match. Several applica-
tions require matched patches to be coherent. Upsampling maintains coherency
but including other cues in our framework is part of the future work. We further
wish to explore matching patches across arbitrary rotations and scale and in
videos.
Acknowledgements: We acknowledge the partial financial support of the DST
Indo-Israeli project.



12 Harshit Sureka and P. J. Narayanan

References

1. Buades, A., Coll, B.: A non-local algorithm for image denoising. In: CVPR. (2005)
2. Glasner, D., Bagon, S., Irani, M.: Super-resolution from a single image. In: Com-

puter Vision, 2009 IEEE 12th International Conference on. (2009) 349 –356
3. Efros, A., Leung, T.: Texture synthesis by non-parametric sampling. In: In Inter-

national Conference on Computer Vision. (1999) 1033–1038
4. Simakov, D., Caspi, Y., Shechtman, E., Irani, M.: Summarizing visual data using

bidirectional similarity. In: Computer Vision and Pattern Recognition, 2008. CVPR
2008. IEEE Conference on. (2008) 1 –8

5. Lowe, D.G.: Distinctive Image Features from Scale-Invariant Keypoints. Interna-
tional Journal of Computer Vision 60 (2004) 91–110

6. Kopf, J., Fu, C.W., Cohen-Or, D., Deussen, O., Lischinski, D., Wong, T.T.: Solid
texture synthesis from 2d exemplars. In: ACM SIGGRAPH 2007 papers, ACM
(2007)

7. Wei, L.Y., Han, J., Zhou, K., Bao, H., Guo, B., Shum, H.Y.: Inverse texture
synthesis. ACM Transactions on Graphics 27 (2008)

8. Baker, S., Scharstein, D., Lewis, J.P., Roth, S., Black, M.J., Szeliski, R.: A database
and evaluation methodology for optical flow. In: In Proceedings of the IEEE
International Conference on Computer Vision. (2007)

9. Barnes, C., Shechtman, E., Finkelstein, A., Goldman, D.B.: Patchmatch: a random-
ized correspondence algorithm for structural image editing. ACM Trans. Graph.
28 (2009)

10. Datar, M., Immorlica, N., Indyk, P., Mirrokni, V.S.: Locality-sensitive hashing
scheme based on p-stable distributions. In: Proceedings of the twentieth annual
symposium on Computational geometry. SCG ’04 (2004) 253–262

11. Korman, S., Avidan, S.: Coherency sensitive hashing. In: ICCV. (2011)
12. Xiao, C., Liu, M., Yongwei, N., Dong, Z.: Fast exact nearest patch matching for

patch-based image editing and processing. IEEE Transactions on Visualization
and Computer Graphics 17 (2011) 1122–1134

13. Kumar, N., Zhang, L., Nayar, S.: What is a good nearest neighbors algorithm for
finding similar patches in images? In: Proceedings of the 10th European Conference
on Computer Vision: Part II. ECCV ’08 (2008) 364–378

14. Arya, S., Mount, D.M., Netanyahu, N.S., Silverman, R., Wu, A.Y.: An optimal
algorithm for approximate nearest neighbor searching fixed dimensions. J. ACM
45 (1998) 891–923

15. Wei, L.Y., Levoy, M.: Fast texture synthesis using tree-structured vector quanti-
zation. In: Proceedings of the 27th annual conference on Computer graphics and
interactive techniques. SIGGRAPH ’00 (2000) 479–488

16. Yianilos, P.N.: Data structures and algorithms for nearest neighbor search in gen-
eral metric spaces. In: Proceedings of the fourth annual ACM-SIAM Symposium
on Discrete algorithms. SODA ’93 (1993) 311–321

17. Barnes, C., Shechtman, E., Goldman, D.B., Finkelstein, A.: The generalized Patch-
Match correspondence algorithm. In: European Conference on Computer Vision.
(2010)

18. Anderson, C.H., Bergen, J.R., Burt, P.J., Ogden, J.M.: Pyramid methods in image
processing (1984)

19. CSH webpage: http://www.eng.tau.ac.il/~simonk/CSH/index.html.


