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ABSTRACT

We present a scheme for interactive ray tracing of Bezier bicubic
patches using Newton iteration in this paper. We use a mixed hi-
erarchy representation as the acceleration structure. This has a
bounding volume hierarchy above the patches and a fixed depth
subpatch tree below it. This helps reduce the number of ray-patch
intersections that needs to be evaluated and provides good initial-
ization for the iterative step, keeping the memory requirements low.
We use Newton iteration on the generated list of ray patch intersec-
tions in parallel. Our method can exploit the cores of the CPU and
the GPU with OpenMP on the CPU and CUDA on the GPU by
sharing work between them according to their relative speeds. A
data parallel framework is used throughout starting with a list of
rays, which is transformed to a list of ray-patch intersections by
traversal and then to intersections and a list of secondary rays by
root finding. Shadow and reflection rays can be handled exactly in
the same manner as a result. We also show how our method ex-
tends easily to generate soft shadows using area light sources and
path tracing by tracing a large number of rays per pixel. We render
a million pixel image of the Teapot model at 125 fps on a system
with an Intel i7 920 and a Nvidia GTX580 for primary rays only
and at about 65 fps with one pass of shadow and refection rays.
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1. INTRODUCTION
Parametric surfaces are used widely in Computer Aided Design

(CAD) and other fields. They provide a compact and effective rep-
resentation of geometrical shapes for engineering, graphics, etc.
The most powerful feature of parametric surfaces is their ability
to stay curved and smooth even when viewed at close distances.
Parametric bicubic patches of the Bezier form is the most popular
among the many possibilities and is popular in many engineering
and scientific applications. Direct ray tracing of parametric patches
has natural advantages over rendering their tessellations. First, it
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provides smooth appearances and silhouettes over a range of view-
points. Second, it produces exact secondary rays as the coordi-
nates and normals are available at the intersections. Ray tracing can
also require less memory than tessellation. Ray tracing of paramet-
ric surfaces is complex and slow. The massive compute power of
modern CPUs and GPUs has made ray tracing possible on ordinary
workstations, but has not been applied to parametric surfaces. Ray
tracing primary rays at 4-5 fps has been reported recently [7, 1, 19],
but interactive multi-bounce ray tracing or advanced methods like
path tracing have not been reported in the literature.

In this paper, we present a scheme for interactive ray tracing of
scenes represented using bicubic Bezier patches with multiple ob-
jects, bounces, soft shadows, etc. We use a mixed hierarchy repre-
sentation involving a bounding volume hierarchy (BVH) above the
given patches and a uniform subdivision tree below them as the ac-
celeration structure. This representation leads to fewer potential ray
patch intersections and better initial estimates. It also fits the GPU
architecture better. Rays traverse the boundary independently in
parallel, generating patches for potential intersections. A bivariate
Newton iteration method computes ray-patch intersections, using
the subpatch bounding box intersection as the initial value. The
computations are modeled in a data-parallel manner, starting with
a number of independent rays, which are mapped by traversal to
a number of independent ray-patch intersections. These are trans-
lated to intersections and secondary rays after root finding. The
secondary rays can start with traversal for the next bounce. The
data-parallel approach enables us to include area light sources by
increasing the shadow rays. We also perform path tracing involv-
ing parametrics by increasing the primary rays and the number of
bounces. Each of our steps can be performed on the GPU, multiple
cores of the CPU, or on both. We achieve a frame rate of about 76
fps on the Bigguy model to trace 1024 × 1024 primary rays and
about 28 fps with shadows and reflection. We generate soft shad-
ows using area light sources as well as reflections in a box scene at
18 fps on a Bigguy model for 512× 512 resolution.

2. PREVIOUS WORK
Several numerical techniques have been developed to compute

the exact point of intersection to render Bezier bicubic patches.
Kajiya solved the ray-patch intersection problem without using any
subdivision [12] by representing a ray using two orthogonal planes.
He used Laguerre’s method to solve the resulting 18-degree poly-
nomial equation. Toth used the multivariate Newton iteration using
interval arithmetic to solve for ray-patch intersection [25]. Manocha
and Krishnan used an eigenvalue-based method to solve for the in-
tersections [15]. Nishita et al. presented Bezier Clipping [18] that
exploits the convex hull property of the Bezier surfaces. By itera-
tively cutting down on parts of the surface which are known to not



have an intersection with the ray, they were able to isolate it to a
small region where intersection occurs. This was later improved by
Campagna et al. 1997 [3] and Wang et al. [26]. A hardware based
design of a pipelined architecture for this was proposed by Lewis
et al. [14].

Interactive ray tracing was investigated by Muss et al. [17]. Parker
et al. [23] demonstrated it using specially designed hardware to
perform the task for almost all kinds of geometry. Ray Tracing of
Parametric Surfaces was demonstrated by Geimer and Abert [7, 1].
They used Newton iteration with patch subdivision for good initial
guesses. Each patch is subdivided into subpatches based on flatness
criteria. They construct BVH on top of these subdivided patches,
with subpatches lying in the leaf nodes. They were able to render
teapot model at about 6 fps on the PowerMac G5 2GHz processor
with 5122 image resolution for Bezier patches. GPU based Tessel-
lation of parametric surfaces was proposed by [10]. Ray Casting of
trimmed NURBS Surfaces using a combination of Newton iteration
and bezier clipping on the GPU was done by [19].

Recursive subdivision of the patch in the parameter space fol-
lowed by tessellation has been used for fast rendering of bicu-
bic patches. Benthin et al. [2] achieved about 5 fps using such a
method on a high-end processor. Real-time rendering using view-
dependent, GPU-assisted tessellation was achieved recently. Pat-
ney and Owens used a Reyes-style adaptive surface subdivision ex-
ploiting the data-parallelism of the GPU [20]. Eisenacher et al.
use a view dependent adaptive subdivision and proposed error es-
timates for quality rendering [6]. These methods are the fastest to
render Bezier surfaces but cannot produce exact surface normals or
accurate secondary rays.

The solution to Global Illumination has been approximated using
various methods. Distributed ray tracing[5], radiosity[8], photon
mapping[11] and path tracing[13] are the some of the well known
methods which try to solve the rendering equation[13] approxi-
mately. Ray Tracing traverses rays sampled at regular intervals.
Thus, it ignores all the information which lies in between these re-
gions. Cook[4] used Monte Carlo based Stochastic Sampling to
sample the image at appropriate non-uniformly spaced points. This
leads to a noise which looks much more photo-realistic than anti-
aliased images. We use this idea to incorporate in our framework
for producing Global Illumination.

3. RAY-PATCH INTERSECTIONS
A Bezier bicubic patch can be described in the matrix form as

Q(u, v) = [U ][M ][P ][M ]T [V ]T , (1)

where [U ] = [u3u2u1], [V ] = [v3v2v1] with u, v being the pa-
rameters in the range [0, 1]. [M] is the Bezier Basis Matrix and [P]
contains the 16 control points that define a patch. Any point on
the patch can be evaluated from the above equation by substituting
their u, v values. The normal at that point can be obtained as the
cross product of the parametric derivatives ∂Q/∂u× ∂Q/∂v.

A ray is represented as the intersection of two planes (n̂1, d1)
and (n̂2, d2), with normals n̂1 and n̂2 and distances from origin
d1, d2. The ray patch intersection equation then becomes

R(u, v) =

[

n̂1 ·Q(u, v) + d1
n̂2 ·Q(u, v) + d2

]

(2)

The algorithm to solve the above equation needs to suit the archi-
tecture of the GPU, which has a large number of simple cores with
a high SIMD width. We use the newton iteration method, which is
highly parallel and simple. We start with the initial guesses (u0, v0)
for the parameters. Each step of the newton iteration can then be

Figure 1: Overview of our hybrid ray tracing system

written as :
[

un+1

vn+1

]

=

[

un

vn

]

− J−1R(un, vn), (3)

where J is the Jacobian matrix of R, given by

J =

[

n̂1 ·Qu(u, v) n̂1 ·Qv(u, v)
n̂2 ·Qu(u, v) n̂2 ·Qv(u, v),

]

(4)

where Qu and Qv denote the partial derivative with respect to the
respective parameters. We terminate the iterations when the value
of R falls below a threshold ǫ or if it starts to diverge. Experimen-
tally, we also found that a maximum iteration count of 16 com-
bined with our initialization gives high quality and fast results. The
method can be extended to NURBS surfaces and other of paramet-
ric surfaces easily, as we follow very generic methods.

4. COMPUTATIONAL MODEL AND PLAT-

FORM
The CPU and the GPU architectures have improved significantly

in the past years. In this paper, we explore the best way to to exploit
this computational power for ray tracing parametric surfaces. The
GPU is our primary computation platform due to its higher total
computation power. Adapting ray tracing to the restricted architec-
ture of the GPU involves optimizing the data layout and using effi-
cient operations. The relatively large SIMD width of 32 of today’s
Nvidia GPUs places high premium on thread divergence in opera-
tion and memory access. The CPU has also become more capable.
We must get best performance for the algorithm by exploiting the
CPU also, which otherwise would stay mostly idle. Since both the
CPU and GPU architecture function differently, we try to optimize
both the parts to gain maximum benefits from each of them.

Algorithm 1 describes our overall approach. We generate the
ray lists for each frame at the start. These are processed in a data-
parallel manner using a thread per ray in the traversal phase. This
generates potential ray-patch intersections list by traversing the BVH
in parallel for each ray (Step 5). This list is further refined by
traversing through the subpatch tree, generating initial parameter
values as well. The refined potential (ray, patch) intersections list
is processed in parallel using Newton’s method using the initial
values found in the previous step. Lists for shadow rays, secondary
rays, and intersection points are generated by this process. These
lists can further be used for traversal for further bounces. The shad-



ing information is accumulated and applied in the reverse direction.
Implementation of each step on the CPU and the GPU are available.
These are combined by dividing the work between them to get the
best overall performance.

The data structure is maintained in a GPU friendly fashion to
improve the performance. The main acceleration structure used in
the algorithm is Bounding Volume Hierarchy. BVH is most com-
monly represented as binary tree model on the CPU. The BVH tree
is stored in a depth first layout by making use of the skip offsets
[24], which stores the index of the next node to traverse in case
of a miss. Thus every ray in the ray list traverses through the tree
to generate a list of potential Ray-patch intersections. In order to
achieve coherency, we traverse a bundle of rays together leading to
further speed up. The list of generated (ray, patch) intersections is
then processed strictly in a data parallel manner to retrieve the final
hit point for each ray. We use a work-division approach to com-
bine CPU and GPU for processing, with a fraction of rays handled
by the CPU based on its relative compute-power. We use OpenMP
to spawn threads for rays. We infer that the hybrid model benefits
most when the CPU performance is competitive to the GPU overall.

5. HYBRID RAY TRACING ALGORITHM
Figure 1 describes the overall hybrid algorithm. We begin with

a list of rays which potentially intersects the objects. The list is di-
vided between the CPU and the GPU based of the relative compute
capabilities. Our algorithm has two stages: traversal of the mixed
hierarchy structure and Newton iteration. Each stage is posed as
a manipulation of the input data structures to generate the output
structures. The GPU performs these stages using three kernels in
parallel: traverse, recheck and newton. The CPU performs this in
a single step for each ray using a core, with early ray termination.
Ray coherence affects only the mixed hierarchy traversal step on
the GPU as a bundle of rays may follow similar paths down the
BVH. Newton iteration treats each potential intersection indepen-
dently and hence ray coherence is not essential for performance.
Coherence at the data structure level is obtained using memory
layout that is efficient for GPU threads. We obtain similar trac-
ing performance for primary and secondary rays. Newton itera-
tion is performed using double precision numbers to avoid artifacts,
which doubles the memory requirements and computation time on
the GPU. We describe the individual components in detail in the
following subsections.

5.1 Mixed Hierarchy Representation
We use a mixed hierarchy as the acceleration structure. It has

two parts: a conventional bounding volume hierarchy above indi-
vidual patches of the model and a sub-patch tree for each patch
below it, as shown in Figure 2. We create a BVH of axis-aligned
bounding boxes of the patches in the object space first using the ap-
proach by Gunther et al. that approximates the surface area heuris-
tic (SAH) using streamed binning of centroids [9]. The BVH is
stored in memory in the depth first layout with skip offsets [24].
A BVH node is represented using 56 bytes: 6 double values for
the axis aligned bounding box, 1 integer for the patch id (with -1
for non-leaf nodes), and 1 integer to store the skip pointer. This
representation of the BVH fits the SIMD model of the GPU. Each
ray can be traversed independently down the BVH to identify the
patches it potentially intersects.

Typical objects built using Bezier patches use large patches whose
bounding boxes are not very tight. The above process will gener-
ate a large number of potential ray-patch intersections for them.
We can reduce this number by subdividing the patches to smaller
subpatches, possibly based on a flatness criterion [16]. The BVH

Algorithm 1 Overview of hybrid ray tracing

Preprocessing on the CPU:

1: Create a BVH of the patches using surface area heuristic. Store
patches in depth first order with skip pointers.

2: Create subpatch tree of AABB for all patches.

Repeat every frame for each ray in parallel ( GPU or CPU )

3: Mark back-facing patches in parallel
4: Form the Ray List, initially one for each window pixel
5: Compute two planes in the world space for each ray in the list
6: Traverse the BVH for each ray in parallel
7: Traverse the subpatch tree to reduce the number of potential

intersections and to get the initial guess
8: Generate the (ray,patch) intersection list
9: Solve for (u, v) using the Newton Iteration in the range [0, 1]

for each (ray,patch) pair in the list in parallel

For each ray in parallel (GPU or CPU) :

10: Find the intersection point. Find normal n.
11: Generate secondary ray lists for shadow, reflection and refrac-

tion. Repeat steps 5 to 10 for the new ray lists generated.
12: Compute the final color by combining information returned by

all secondary rays with shading information at the point.

Figure 2: Mixed hierarchy structure combines a BVH with a

subpatch tree

gets deeper but the bounding boxes are tighter. This will, however,
result in excessive memory usage as each subpatch needs to have
independent control points. This can be a limiting factor on the
GPU due to their limited memory space.

We create a tree of subpatches for each patch to reduce memory
requirement while maintaining tight bounding boxes. A binary tree
is created for each patch by alternately subdividing it along the u
and v axes using De Castelajau’s algorithm. Axis-aligned bound-
ing boxes are formed for each using the convex hull property of the
Bezier surfaces. The control points are discarded after the tree is
constructed as they are needed only to form the bounding box. Each
ray is checked for intersection with these bounding boxes. When
a potential intersection is identified, we add the entry to the poten-
tial (rayID,patchID) intersection list. Thus, the actual intersection
algorithm works on the original patches. This keeps the memory
requirements low while increasing efficiency. A subdivision depth
of 6 was empirically found sufficient for our scenes. A lower depth
lead to bad initial values while a higher depth leads to considerable



amount of time spent on finding these values. A fixed depth makes
it possible to use the GPU’s shared memory to store the skip point-
ers and the subpatch numbers for the subtree traversal. Intersection
with the bounding box of the leaf subpatches are used to find an
initial guess for the iterative step.

The mixed hierarchy simultaneously reduces the number of ray-
patch intersections to be checked and keeps the memory require-
ments reasonable. The average number of patches per ray reduces
to 1.2-1.5 when using the subpatch tree compared to about 3.4
when only the patch BVH is used. For the subpatch hierarchy, we
tried using a varied depth based on the flatness of the generated
subpatches [7]. This requires additional memory to keep track of
sub-tree starting index, total number of nodes, and floating point
memory to retrieve and store initial values, compared to just 1 in-
teger required to store subpatch number in our method. We cannot
also use the shared memory under this arrangement. Thus, flatness-
based subdivision performs about 30% slower than the fixed-depth
subdivision that we use.

5.2 Generating Rays
Ray Tracing of a frame starts with ray generation. We calculate

a projection of the top level BVH box and calculate a bound on
the pixels to be ray traced. We generate a ray list for these pix-
els. Newton Iteration requires each ray to be represented as the
intersection of two planes. We use the twin-plane representation
for each ray [12]. This is computed in parallel on the GPU alone
for each ray. We use M planes for each of the M rows and N
planes for each of the N columns. The ray for pixel (i, j) uses
the corresponding planes. These planes are evaluated in the world
space and are constructed on the GPU using a small kernel of M
+ N threads. For the secondary rays, we form a new vector with
value 1 for the dimension whose value is the least in the reflection
or shadow ray direction while keeping rest of the values 0. We take
the cross product of this vector with the ray direction vector to get
the plane normal vector. Another cross product with the normal at
the point of intersection gives the other plane.

We adapt the method used by Eisenacher [6] to reduce the num-
ber of patches to be checked for primary intersections by eliminat-
ing those that face backwards. This is performed by computing the
dot product of the direction vector from the origin to the corner
control points for each patch with the respective normals at these
points. If all four dot products are positive, the patch can be dis-
carded as it is backfacing. We perform this for each subpatch dur-
ing the BVH traversal step, flagging each subpatch as cullable or
not. If all the subpatches of a patch are backfacing, then the patch
is marked as culled. The flags of the subpatches are propagated
up using an AND operation at each parent node. This results in
a culling bit for all the nodes of the BVH. This step saves about
33% of the total time for Bigguy/Killeroo scenes. This is the only
view dependent step in our ray tracing process. The removal of
back facing patches reduces the overall patches to be considered
in traversal stage considerably, bringing the overall potential ray-
patch intersections down.

5.3 GPU Ray Tracing
Ray Tracing algorithm on the GPU has two phases, the traversal

phase and the Newton iteration phase. The GPU traversal com-
prises of two stages. Stage 1 identifies the ray intersections with
the bounding boxes of all nodes of the BVH. This results in a list
of potential patches to be marked for intersection with the ray. In
Stage 2, the subpatch tree is traversed to remove more patches and
to get the initial value. The BVH is traversed using a packet of 4×4
rays to increase coherency. The complete traversal step generates

the potential (ray,patch) intersection list, along with the initial val-
ues which are used in the Newton iteration step.

5.3.1 BVH Traversal

A traverse kernel performs the Stage 1 calculations with each
thread processing a ray. Intersections are recorded by storing the
patch ID in a queue for each ray. Node position either gets incre-
mented on intersection or gets updated to the skip pointer value in
case of a miss. The number of intersections are saved for each ray.
No stack is needed as the BVH is stored in depth first order [21].
Since each ray can have a variable number of intersections, a scan
operation identifies the starting index for each ray. These intersec-
tions are compacted to a linear array of potential intersections.

The traversal step can be performed in two ways. In the first,
we assume a maximum depth complexity for the rays and assign
a fixed-size blocks to each ray to store the intersections. While
this method works a bit faster, it is not scalable to situations when
the depth complexity is not known beforehand. We implemented a
method to dynamically allocate global memory to handle this prob-
lem. Each ray is allocated a small block initially. When the current
allocation is used up, the ray is given another such block from a
pool of global memory. Such allocation requires atomic operations
on an index to the global memory pool to maintain consistency
across multiple rays that may ask for a new block simultaneously.
The number of ray-patch intersections and the list of blocks for
each ray are kept track of. These are used in a compaction step to
create a single ray-patch intersection list. Atomic operations are
fast on latest GPUs and do not result in significant performance
degradation, as the probability of atomic clashes is low in practice.
In practice, the performance penalty of the dynamic allocation of
space is less than one percent.

5.3.2 Subpatch Tree traversal

A recheck kernel performs Stage 2 by processing each ray-patch
intersection in parallel. This leads to more parallelism and better
performance. The traversal starts at the root of the subpatch tree.
Upon intersection, the node value gets incremented to reach the
next node in the traversal step or is updated to the value of its skip
pointer. The minimum t value for distance along the ray also gets
updated for a hit. Each node intersection test also returns a min-t

value for that node. The t value, updated earlier, is used at later
stages as a bound to prevent traversing nodes with greater min-t

values, thus also avoiding its child nodes. The early termination
done this way leads to an overall speedup of about 10% for this
stage. The output of this stage is a list of potential ray-patch inter-
sections and the initial values of u and v, which is the centroid of
the bounding box. The list is compacted using a scan operation to
yield the (ray,patch) intersections list actually evaluated.

Another advantage of using a subpatch tree for each patch is the
ability to use the t value along the ray for early termination. The
t values of an intersection with a bounding box at the leaf of the
subpatch tree can be used as a bound to not process subtree nodes
farther than it. This early termination is only for the subtree stage
and a false positive here leads to a slightly worse initial guess. This
saves about 15-20 intersection tests per subpatch tree. The fixed
depth of tree enables it to be stored in the shared memory for the
rays to process it using multiple threads. This leads to faster per-
formance on the GPU. Figure 3 shows the complete traversal step
performed in our algorithm. The Prefix_Sum provides the starting
index in the new compressed array for each rays.

5.3.3 Newton Iteration

Newton Iteration is performed in parallel for all potential ray-



Figure 3: Each thread traverses the BVH and records the patch

id of potential intersections and the number of intersections for

each ray are in arrays. These are rearranged into a (ray, patch)

list using scan. The recheck kernel re-evaluates these patches

and finds the subpatch number and a quick rearrange gives the

final list used in Newton Iteration

patch intersections with input as the ray and patch IDs, the initial
(u, v) values and the plane equations. Each thread is assigned one
(ray,patchid) pair to solve using newton iteration. This leads to sig-
nificant improvements over the traditional one ray per thread ap-
proach. Graphics Hardware benefit much more from having large-
scale data to work on parallely than to have lesser data with some
form of early termination. The key step in Newton iteration is the
evaluation of Q(u, v), Qu(u, v) and Qv(u, v). They are evaluated
together since global memory accesses are expensive on GPU. Our
data layout and operation sequence ensures completely coherent
memory access and high performance. We use the fused multiply
add (FMA) operations to evaluate of Q,Qu and Qv to improve the
GPU performance. Since the values generated from the intersec-
tions are used to perform secondary effects, with multiple bounces,
we use double precision for better accuracy.

5.4 CPU Ray Tracing
The CPU algorithm can use early termination at the BVH traver-

sal step. The allocated rays are split across 2c threads using OpenMP,
where c is the number of CPU cores to yield best experimental
performance. The rays assigned to a thread are then traversed se-
quentially. All stages are combined into a single step on the CPU.
For each ray, first BVH traversal is performed. If it gets a hit in the
traversal step, the recheck step is performed. If the intersection sur-
vives the recheck step, Newton iteration is performed in the same

Figure 4: 3 Teapots with shadows and (a) 1 bounce (b) 3

bounces. The marked region shows 3 levels of reflection.

thread to generate the intersections and secondary rays. We also
store the distance t along the ray from origin to the hit point. This
value is used when the BVH traversal resumes so that any bound-
ing box with a t higher than the min-t encountered so far can be
terminated. We observe maximum benefit from early ray termina-
tion in the shadow pass, as rays can be terminated at the first hit,
regardless of the distance. Early termination at this step saves many
unnecessary computations, typically leading to about 15% increase
in performance in the CPU algorithm.

5.5 Hybrid Ray Tracing
For the hybrid system, we only need to split the data once at the

beginning of the algorithm. The ray list is split between the CPU
and the GPU based on their relative performance. The traversal
of rays is then done on both GPU as well as CPU cores simulta-
neously. The final shading information is returned back from the
GPU to the CPU. Since the data divided in the beginning is just the
ray origin and direction, there is almost no overhead incurring from
data transfers.

5.6 Handling Secondary Rays
Shadow, reflection, or refraction rays can be generated for each

intersection point of the primary ray, based on the material prop-
erties. We record the secondary rays in separate lists indexed by
the primary ray. The planes to represent each are also computed
and recorded similarly. These produce new ray-lists that can be
processed in the same manner starting with Step 5 of Algorithm 1.
Our scheme is equally efficient on secondary rays as a result.

Shadow rays are traced after primary rays, followed by reflec-
tion rays. The shadow, reflection, and refraction rays are indepen-
dent of each other and can be traced together. This can be done
on multiple GPUs or on a multi-GPU system. It can also be done
on a single GPU by tracing all rays together. The massively multi-
threaded model of the top-end GPUs can handle a large number of
threads. Joint tracing of shadow and reflection rays gives the same
performance as separate processing. This process can be repeated
for further bounces. True recursion is difficult to support on the
GPU. Fixed-bounce ray tracing has been implemented, with data
for previous bounce present. Figure 4 shows a comparison of re-
sults for 1 bounce and 3 bounce image. The figure shows 3 levels
of reflection in the marked region.

We can also simulate area light sources easily by treating them
as 8×8 or more point light sources and sending a ray to each. This
increases the number of shadow rays. Our data-parallel approach
can easily absorb the additional rays with small change in perfor-
mance. This generates soft shadows to scenes as each point is lit
by the fraction of the light sources as can be seen in Figure 5.

5.7 Shading the Point
The illumination equation [13] is evaluated at each pixel. The

shadowing status and the color returned by the secondary rays are
combined to obtain the final color. This process is continued in the



Figure 5: Bigguy in a box scene with soft shadows and reflec-

tions rendered at 18 fps at 512× 512 resolution on the GPU

reverse order from the last bounce to the primary ray. Exact nor-
mals are used to compute the diffuse color as well as the secondary
rays. The final color and depth information of each ray is stored in
the color and depth buffer respectively.

6. RESULTS AND ANALYSIS
We report ray tracing performance for primary and secondary

rays for rendering 1024 × 1024 images of the following models:
Teapot (32 patches), Bigguy (3570 patches), and Killeroo (11532
patches). The BVH of the mixed hierarchy is built on the CPU us-
ing the streamed binning algorithm [9]. The leaf patches are recur-
sively subdivided 6 times. The experiments used an Intel 2.67GHz
Intel Core i7 920 processor with 4 cores. The GPU used is and
Nvidia GTX580 with 512 cores, on CUDA4.0. Single Precision is
used in the traversal step while double precision is used during the
Newton Iteration step. We used a threshold of 10−15 for conver-
gence of root finding and a maximum iteration count of 16, taken
from previous publications. This accuracy level is required so as to
correctly perform multiple levels of secondary rays. All the figures
are rendered at 1024× 1024 resolution unless stated otherwise.

Ray Tracing Performance. Table 1 gives the performance on
different models and compares it with the timings for different plat-
forms. The measurements are averaged over 10 runs. The rendered
images for the models are shown in Figure 7. The total time in-
cludes the time to construct the planes. The scenes had about 20%
shaded pixels. 9 Bigguy has 28% screen coverage. The total traver-
sal times comprising of all stages are reported in the table for CPU,
GPU and Hybrid algorithms. We also mention the individual time
for traversal and newton stage on the GPU. The time taken for the
BVH traversal is about 50% of the total traversal step. We achieve
125 fps for the Teapot model for primary rays alone and 65 fps with
1 level of shadow and reflection for screen resolution 1024×1024.
Number of patches influence the mixed hierarchy traversal phase
alone. Reducing the number using the additional subpatch tree has
a big impact on the overall performance, as a result. The number
of ray-patch intersections is about 1.5 for rays and less for other
bounces (Table 1).

We are able to achieve about 415 fps on the GPU, about 53 fps
for the multi-core mode on an intel i7 920 2.67 GHz and about 15.4
fps on an Intel Core 2 duo 2.20 Ghz system for teapot scene with
512 × 512 resolution. In Comparison, [7] got 6.1 fps on a dual
processor PowerMac G5 2GHz processor and hence our method is
doing better, even after accounting for the technology difference.

From the table, we can see that our GPU-only tracer is about 7-9
times faster and hybrid is about 9-10 times faster than the optimized
multicore version for majority of the cases. An average overall
speedup of 5-15% is achieved by the hybrid version over the GPU-
only version. The performance of the GPU kernels is limited by
the number of registers available as the computation resources of
the GPU are kept busy.

In some cases, where either the amount of rays to trace are huge
or when there are too many patches to be check for intersection,
the GPU memory becomes a bottleneck. In order to overcome this
limitation, we modify our algorithm to render the complete screen
in parts. Thus, the ray list generated at the beginning is divided
equally and each part can either be solved parallely on multiple
GPUs or sequentially on a single GPU system. Figure 7 (f) shows
the image generated of 24 bigguys, rendered at 12 fps. The com-
plete list was divided into 4 parts to be solved iteratively on the
GPU.

7. PATH TRACING
Our data parallel approach for ray tracing parametrics extends

easily to global illumination effects like path tracing. Path tracing
generates a large number of rays for each pixel and integrates their
color values to generate the final image. At the basic level, path
tracing involves tracing a very large number of rays. Path Tracing
of parametric patches has not been shown in the past. We extend
our method to path tracing to establish its scalability and effective-
ness.

We implement unbiased Monte Carlo path tracer to render the
images. Our implementation is mostly derived from Realistic Ray
Tracing by Peter Shirley [22]. In our path tracing implementation,
each pixel is sampled using a user defined number of samples s.
We perform stratified sampling by dividing each pixel into 4 quad-

Figure 6: Path Tracing Bigguy in a box scene with 10000 spp

rendered at 512×512 resolution rendered in about 28.5 minutes



# of ray-patch Computation time on GPU Total frame time
Model Pass intersections in milliseconds in milliseconds

(# patch) Total Per ray Traversal Newton CPU GPU Hyb

Teapot P 126589 1.6 5.53 3.18 74 8.71 8.01
(32) S 51670 0.74 2.59 1.27 29 3.86 3.6

Fig 7(a) R 71528 1.02 3.09 1.39 34 4.48 4.0

Bigguy P 142779 1.49 11.8 2.79 110 14.59 13.18
(3570) S 110732 1.19 11.24 3.02 64 14.26 12.62

Fig 7(b) R 59505 0.64 8.47 2.13 58 10.6 9.12

Killeroo P 147116 1.55 19.08 3.3 193 22.38 20.43
(11532) S 136960 1.46 16.62 4.83 90 21.45 19.12
Fig 7(c) R 48637 0.52 11.92 2.55 68 14.47 12.64

2 Killeroos P 317494 1.65 35.15 7.14 356 42.29 38.58
(23064) S 231183 1.22 21.52 6.23 196 27.75 24.88
Fig 7(d) R 138562 0.73 28.54 7.45 180 35.99 31.09

9 Bigguys P 570136 2.09 64.69 12.36 2092 77.05 75.9
(32130) S 435832 1.63 38.33 10.04 954 48.37 46.2
Fig 7(e) R 297427 1.11 57.2 14.17 621 71.37 69.71

Table 1: Rendering times on an Intel i7 920 + Nvidia GTX580 for different models and passes at 1024 × 1024 screen resolution:

primary (P), shadow (S) and reflection (R). Third column gives the total and the fourth column the average number of ray-patch

intersections computed. CPU is our implementation for multicore system, GPU refers to GTX 580 timings and Hyb refers to the

hybrid timings.

rants and spawning s rays in random directions going through their
respective quadrant. This leads to a uniform sampling for better
convergence. In our approach, this results in increasing the number
of primary rays. The ray list now has s times the number of rays.
The data parallel approach easily extends to this and we continue
from step 5 of Algorithm 1 using a large ray list. A ray is made
to intersect with the scene, consisting of an open box with 5 walls
and a parametric object at the center of the box (Figure 6). For
demonstration purpose, the walls are made purely diffusive while
the patches are purely reflective. Thus, on intersection with the
wall, a new ray is spawned in a random direction to continue with
the path tracing. On intersection with a patch, the reflected ray is
generated from the incident ray. A more detailed model, includ-
ing materials BRDF, can also be applied in a similar way. The ray
generation stops when either one of the three conditions are met:
(a) Ray hits a light source (b) Ray does not hit anything (c) Max-
imum depth is reached. We used a maximum depth of 10 for the
test scenes.

For case (a), we store the color calculated throughout the path
at the original ray index. For case (b), no color gets stored since
the ray does not hit any light sources. For case (c), we perform
direct illumination. For each ray unfinished after maximum depth,
a new ray is spawned towards a random point on the area light
source. This is done for both diffusive as well as reflective surface.
If the point does not appear to be shadowed, its color is stored into
the color array. Figure 6 shows a path traced image using 10000
samples per pixel. More results can be seen in the accompanying
video.

After finding out the color values for all the rays, the mean is cal-
culated by applying a simple addition reduction operation for all the
rays. Since GPU has a limited amount of memory, we perform the
above procedure iteratively for a fixed block of pixels depending
upon the value of samples per pixel. We apply a gamma correction
of 2.2 on the color values generated. Apart from this, no other form
of post-processing is done on the final image. We are able to render
bigguy in a box image at 512× 512 resolution for 300 samples per
pixel at about 60 secs, for 1000 samples at about 165 secs and for
10000 samples at about 28.5 minutes.

8. CONCLUSIONS
We presented a method to ray trace bicubic parametric patches

at interactive frame rates using hybrid computing in this paper. We
implemented the Newton iteration method effectively on the CPU
and the GPU. Our method can handle primary rays and secondary
rays of multiple bounces easily. A mixed hierarchy keeps the num-
ber of ray-patch intersections down. The computations scale easily
to handle area light sources. The method would be worth inves-
tigating for global illumination applications involving parametric
patches. Our method will extend to NURBS surfaces and other
parametric forms. The performance could be higher on a GPU
if more registers are available on it. Faster performance can be
achieved using multiple GPUs simultaneously.

Strength and Limitations. The strength of our method is the
exploitation of all computing power available on a system. All
heavy operations are shared by both the CPU and the GPU, re-
sulting in high speed. The data parallel formulation also enables its
extension to area light sources, path tracing, etc. The traversal step
is the critical step of our approach. The limited memory available
on the GPU restricts our approach in the number of rays handled
and the number of bounces traced.
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