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Abstract

This paper addresses the data corruption that oc-
curs due to patient motion during a scan which is par-
ticularly a problem in perfusion weighted MRI due to
long scan times. Motion correction is typically the rate-
limiting step in processing as each volume has to be reg-
istered to a reference volume. This is compounded by
the dynamically varying contrast in the volume series
due to passage of an injected contrast agent. We pro-
pose an efficient two stage motion correction method,
consisting of motion detection and a 2-pass registra-
tion method for aligning the motion-corrupted volumes.
A 2D block-wise phase correlation in central slices is
used for the first stage. Alignment employs a strategy
which is sensitive to the status of the bolus in the vol-
ume and is based on gamma-variate function fitting for
intensity correction to handle dynamic contrast in DSC-
MRI. Evaluation of the approach shows that it is fast
and accurate.

1. Introduction

Perfusion measurements with MRI are widely used
for assessing different pathological processes including
tumour characterization and progression, determining
salvageable tissues post acute ischemic event in brain,
inflammation and infectious diseases. Here, an exoge-
nous paramagnetic contrast agent (bolus) is injected
into the blood stream and tracked over a region of inter-
est by acquiring a time series of MR volumes (4D data)
[3]. Perfusion data are of two types: T2*-weighted
dynamic susceptibility contrast(DSC) imaging and T1-
weighted dynamic contrast enhancement (DCE) imag-
ing. The tracked information is parametrized on voxel-
by-voxel basis by physiological models to derive blood
flow characteristics in different tissues. This informa-
tion forms the basis of disease detection and treatment
planning[3].

Perfusion imaging requires acquiring a time series of
MR volumes and patient motion is often observed in the
final data which can corrupt the measurement of signal
intensity change. This in turn affects the derived per-
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fusion indices. Due to constraints imposed by the data
acquisition method, motion correction is generally done
retrospectively. Therefore, reliable detection and cor-
rection of motion is of interest. The main challenge in
motion correction is the localised variation in signal in-
tensity in the volume time series (4D data) due to wash-
in and wash-out of bolus.

Motion correction of the 4D data can be seen as align-
ment of motion corrupted volumes to stationary” vol-
umes. A technique proposed for DSC-MRI data regis-
ters each volume in the time series to either a single vol-
ume at a specific time or the mean volume of complete
time-series data [4]. Inclusion of a model of dynamic
contrast in an iterative registration process has been pro-
posed for tumour motion tracking [1]. Aligning vol-
umes to correct for motion can be a time-limiting step
(~90% of processing time) in a PWI analysis pipeline
[7]. In this paper we aim to reduce this processing time
by identifying the set of volumes corrupted by motion
and propose a novel and efficient method to correct for
motion in those volumes. Specifically, we propose a
2-pass motion correction approach wherein the time-
series is divided into three sets according to the status of
the bolus. Motion correction is first carried out in each
of these sets independently followed by a final registra-
tion step.

(a) no motion (b) with motion
Figure 1. Slice pairs (top row) and their
flow maps U,, and V,, (bottom row).

2 Method

In perfusion studies, bolus injected into the blood-
stream takes some time to reach the region of inter-
est, pass through and eventually pass out of the region.
Hence, the given 4D data set can be divided into 3 dis-
tinct sets based on the bolus status: volumes belonging
to 1) pre-wash-in, 2) transit and 3) post wash-out sets.
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Figure 2. Block diagram for motion cor-
rection. {.} denotes a set of volumes.

Given a PWI time series, we first identify the volumes
corrupted by motion by analysing pairs of adjacent vol-
umes using a phase correlation-based approach. The
subset of volumes detected to have motion are then cor-
rected using a bolus status-specific approach. We begin
with the description of the motion detection approach.

2.1 Motion Detection

Given a time series, a quick way to detect motion
is to consider only the central slices (/,,, I),41) for ev-
ery pair of adjacent volumes and compute the motion
field (U, V,,) between them. In the absence of any mo-
tion between the volumes, this field will be uniformly
zero. We propose computing this motion field by con-
sidering a block of pixels b(¢, j) around every pixel at
location (i, 7) in the slice pair and performing a phase
correlation. The inter-slice intensity variation that is
characteristic of DSC-MRI is handled by normalising
the blocks first by shifting the mean pixel value of ev-
ery block to zero. Phase correlation is applied to ev-
ery pair of normalised blocks (by,(,5), bp+1(%, 7)) and
the desired flow vector 7(4,5) = (u(i,5),v(i, 7)) is
found from the locations of maxima of the cross power
spectrum Gy ;. The flow maps U, = [u(i, j)| and
V. = [v(i,7)] for motion between I, and I, are
given by:

(u,v) = argmaz(; jyev,; (5_1 {GBan,+1 }) (D

where, F ! _denotes the inverse Fourier transform;
G; & :%andézg{g}
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In our implementation, the given slice of size 128 x128
was down-sampled by a factor of 4 to obtain a 32x32
slice for computational efficiency and the block size was
chosen at 8 x8.
The flow maps U,, and V,, describe flow field relating
two central slices (/,, and I,, 1) of the volumes at time
n and n + 1. Fig.1 show sample slice pairs and the de-
rived flow maps. The slice pair in Fig.1(a) is from a
pair of volumes with no motion. It can be noted that de-
spite changes in the signal intensities, the flow maps are

almost uniform, indicating that proposed approach is
mostly immune to bolus-contrast based signal changes.
The slice pair in Fig.1(b) is an example where motion
was present. This is seen to be reflected clearly in the
flow maps as non-uniform areas (which experience mo-
tion). Motion corrupted volumes are identified using
the total entropy(found by adding entropies in U,, and
V) and passed on to the motion correction module pre-
sented in the next section.
2.2 Motion Correction

Fig.2 shows the complete block diagram for the pro-
posed motion correction technique. The first step in
correction is to divide the given PWI time series into
3 distinct sets based on the status of the bolus in the
brain. These sets are identified using the well known
gamma-variate function [2] which describes the trans-
verse relaxation rate of magnetization with the passage
of the bolus. This function is given as:

AR2*(t) = A(t — to)%e~t10)/B ¢ > ¢4 2)

where, AR2*(t) is the transverse relaxation rate, o is
the wash-in time-point of bolus, and A, o and 3 are pa-
rameters that decide the shape of function. The mean
intensity of each volume is computed to derive a curve
I,,(t). The wash-in time-point(tg) is roughly set at time-
point where mean intensity falls abruptly. The above
gamma-variate function (GVF) is then fit to I,(¢) to
accurately determine the wash-in (1n,,,) and wash-out
time points (1n,0¢). These are the time-points of sud-
den change in signal intensities in the GVF-fit-mean-
intensity curve (G, (¢)). These points help divide the
given 4D dataset into three sets: Set 1 of pre-wash-in,
Set 2 of transit and Set 3 of post-washout stage of the
bolus passage.
The next step in motion correction is to align the
motion-corrupted volumes. A 2-pass process was de-
signed for this purpose with the first pass aimed at intra-
set alignment while the second pass aimed at inter-set
alignment. All pairwise alignments were done with
sum of squared difference (SSD) based rigid registra-
tion using limited memory Broyden-Fletcher-Goldfarb-
Shanno method(I-BFGS) for optimization. In the con-
struction of reference volume for registration, the fact
that the subject motion (during acquisition) is transient
in nature, i.e. stationary for a set of contiguous time-
points followed by a irregular motion for short period
of time can be exploited. Hence, the reference volume
R, for each stage of the bolus (before, during and after
the passage) is constglcted as:

> Sm(n)

Ry = n=nj
(n2 —n1 + 1)
where S, (n) is a stationary volume,(ny — ny) is the

longest time interval of contiguous stationary volumes

; me{l,2,3} 3)
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in the m!" set. Next, the intra-set alignment procedure
is explained.

2.2.1 Intra-set Alignment

As the bolus is not present in the volumes in Sets 1 and
3, hence these volumes do not suffer from the dynamic
change in contrast, which is not the case with the vol-
umes in Set 2. Thus, different alignment methods need
to be employed for these two cases. For Sets 1 and 3, the
procedure is to find the reference volume using eqn.(3)
and then do a pairwise registration of every moving vol-
ume T with this reference volume. For Set 2, an inten-
sity correction step is required prior to the pairwise reg-
istration.
Intensity Correction
In DSC-MRI, there is a signal loss or decrease in the im-
age intensity, only in regions where the bolus is present.
This leads to a non-uniform intensity change within the
volume. We identify the bolus-affected regions using
a Fuzzy c-means clustering method. This aids in seg-
menting the moving volume (T) into normal (7},) and
bolus affected (73) regions. To account for changes in
image intensity across time points, we use the above
gamma-variate function fitting on the mean-intensity
perfusion curve(G,(t)), to obtain the intensity change
across time points. The intensity correction is then ap-
plied to only bolus affected regions. The intensity cor-
rected floating volume 7°¢(n) is generated by:

Ti(n) = 1, S8R e — 1,y UTE) @)

Ga(n)

where npo is the centre of time-points used for con-
structing reference volume Ro.
Fig.3 shows an example of reduction in intensity differ-
ence between images after intensity correction. This re-
sults in a reduction of the contribution of bolus in inten-
sity difference and makes the distance measure in reg-
istration more accurate. Finally, this intensity-corrected
volume T°(n) is registered to the reference Ry. Next,
the inter-set alignment is presented.

2.2.2 Inter-set Alignment

The reference volume R; for the first set is taken to be
the fixed reference for inter-set alignment. Reference
volumes Ry and R3 are aligned to this fixed reference.
Since Set 2 has dynamic contrast change, an intensity
correction step has to precede the pairwise registration
of Ry and R;. This is done similar to the step described

(@) Ry (b)Ry (©)Ri2

Figure 4. Result of registration of two ref-

erence volumes(R; and R,). Only a slice

is shown.
in intra-set alignment. RS is generated by:
Io(nRr1)
Ga(npz2)’
Here, usage of I, (ng; ) instead of G, (n 1) reflects that
GVF fitting is applicable only after bolus has washed-
in. The generated volume R§ is then registered to R;.
At the end of inter-class alignment we have all required
transformations to align the complete time series. Let
X192 and Xj3 be the transformations relating (R1,R2)
and (R1,R3). These can be used to align the corrupted
volumes in Sets 2 and 3 to R as follows:

Rgb = sz 5 = R2a U RSb (5)

Top 212 Trg; T, 2225 Ty (6)
3 Experiments and Results

A DSC-MRI dataset was acquired from a 1.5T GE
MRI scanner with number of volumes = 40(1s/phase),
number of slices = 20, slice thickness = 5 mm, matrix
size = 128x128. For validating the proposed method,
a set of experiments were performed. All the compu-
tations were performed on 64-bit Intel(R) Core(TM)2
Duo processors(2.20 GHz) with 2GB RAM and MAT-
LAB v7.12.0.

In our experiments, known amount of 3D rotation were
added in the volumes to simulate patient motion during
DSC-MRI. Transient nature of motion was reflected by
adding motion to volumes at a random interval of time-
points. The rotation angles were generated randomly
in the range [-20° 20°] in transverse direction(R,) and
[0° 10°] in coronal direction(R;). The randomness in
generation of angles captures the worst case scenario of
motion where the subject is highly agitated. Translation
motion inside the scanner is found absent in most of the
cases. These ranges were chosen on the advise of a neu-
roradiologist as depicting typical patient motion.

We first present qualitative results of registration with
our approach. Fig.4 shows the inter-set registration
(Ro with R1) with our approach. Despite the changes
in contrast, Ry is correctly registered to R; to pro-
duce the final registered output (R;3). The alignment
was quantitatively assessed using the dice coefficient
DC = 2?8—2 for two sets A and B) of segmented
brain masks. A DC value of 1 indicates perfect align-
ment. With R as the reference volume, the DC values
are presented in Table 1 for all the registered volumes
in the time-series. After registration, the degree of over-
lap between the volumes increases which is verified by



Table 1. Dice Coefficient(DC) values

Rotationin | Rotation in DC before DC after
R.(degrees) | R,(degrees) | Registration | Registration

[0 10] [-10 10] 0.88 0.93
[0 10] [-1515] 0.86 0.92
[0 10] [-20 20] 0.87 0.93

Table 2. Evaluation of our approach
Total | No. of |Rotation|Rotation| Registration [No. of CorruptRegn. | Time

no. of |corrupt| inR, | in R, Method Volumes | Error Taken|
IVolumes Volumes(degrees)|(degrees) Detected  |(€,-5)/(min)
S M Rl (SR s e T 31
B |00 S ToaT T
» | 3 |00 00— tosi i

the DC values before and after registration. A second
type of evaluation was done to study the effect of reg-
istration on mean-intensity of a manually selected ROI
before and after registration. The results are shown in
Fig.5. Prior to registration, subject motion causes a shift
in ROI and intensity-time curve does not depict a typical
behaviour of DSC-MRI. After registration, the ROI re-
mains stationary across time-points and a typical DSC-
MRI intensity-time curve is obtained.

The performance of our approach was also compared
with traditional registration techniques reported in lit-
erature where the whole time-series is registered to a
mean volume [4]. The evaluation metric chosen for this
purpose was the RMS difference of the residual differ-
ence (erms)[6] defined as:

x=[z,y,2]7 (7

€rms = Z(U — Uo(x))?;
xeSZ

where, U, is the applied transformation and U, is the
obtained transformation, N is the number of voxels in
object ). Table 2 provides a detailed comparison of
performance of our approach and an MI based registra-
tion method[5] for different degrees of rotation. A num-
ber of points can be noted from the tabulated results.
Firstly, the motion detection step applied prior to mo-
tion correction helps reject the stationary volumes from
the time-series. Thus, only a subset of volumes are
corrected in our approach as compared to traditional ap-
proaches that register all the volumes in the time-series
to a mean volume. The success in detecting motion-
corrupted volumes was generally found to be lower for
small rotation angles. This is primarily due to the block
size chosen in the phase correlation. The randomness in
generation of rotation angles meant that even for large
range of motion([-20° 20°]), the actual angle of rota-
tion added to a volume could be small, thus resulting in
a lower number of correct detection. Second, the regis-
tration error(e,,s) in our approach is consistently lower
than that for the MI based approach. An increase in
amount of rotation in R, direction results in an increase
in error for both methods but the increase is less for our
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method. Lastly, the time taken for correction of entire
time-series with our approach is less. This is both due
to MI based methods being computationally intensive
and that the number of volumes being corrected is also
higher. The time taken (for detection and correction)
can be reduced further by using a multicore architecture
built in C++.
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4 Discussion and Conclusions

We present a novel and efficient two stage motion
correction method, consisting of motion detection and
2-pass registration for alignment of motion-corrupt vol-
umes in brain DSC-MRI. The motion detection step
helps reject the stationary volumes in the time-series,
thus reducing the number of rigid transformations re-
quired to estimate. The 2-pass registration divides the
time-series into different sets depending upon the sta-
tus of bolus and uses gamma-variate function fitting for
intensity correction in both intra-set and inter-set align-
ment of volumes. This makes the motion correction
process accurate. The method assumes that motion is
rigid in nature. The limitations in the approach lie in
motion detection where i) the sensitivity to mild mo-
tions may be compromised and ii) using the central slice
in every volume for motion detection assumes that there
is no intra-volume motion.

5 Acknowledgements

We acknowledge the collaboration between GE
Global Research, Bangalore, India and IIIT-Hyderabad,
India which facilitated development of the work.

References

[1] G. Buonaccorsi et al. Tracer kinetic model-driven reg-
istration for dynamic contrast-enhanced mri time-series
data. MRM, 58(5):1010-1019, 2007.

[2] A. A. Chan and S. Nelson. Simplified gamma-variate
fitting of perfusion curves. ISBI, 2(2):1067-1070, 2004.

[3] C. Grandin. Assessment of brain perfusion with mri:
methodology and application to acute stroke. Neurora-
diology, 45:755-766, 2003.

[4] Jenkinson et al. Improved optimization for the robust and
accurate linear registration and motion correction of brain
images. Neurolmage, 17(2):825-841, 2002.

[5] D. Kroon and C. Slump. Mri modalitiy transformation in
demon registration. ISBI, pages 963-966, 2009.

[6] P. Rogelj et al. Validation of a Non-rigid Registration
Algorithm for Multi-modal Data. SPIE, 2002.

[7] M. Straka et al. Real-time diffusion-perfusion mismatch
analysis in acute stroke. JMRI, 32(5):1024-1037, 2010.



