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ABSTRACT
Constructing global image representations from local fea-
ture descriptors is a common step in most visual classifica-
tion tasks. Traditionally, the Bag of Features (BoF) rep-
resentations involving hard vector quantization have been
used ubiquitously for such tasks. Recent works have demon-
strated superior performance of soft assignments over hard
assignments. Fisher vector representations have been shown
to outperform other global representations on most bench-
mark datasets. Fisher vectors (i) use soft assignments, and
(ii) reduce information loss due to quantization by captur-
ing the deviations from the mean. However, the Fisher vec-
tor representations are huge and the representation size in-
creases linearly with the vocabulary size. Recent findings
report that the classification performance of Fisher vectors
is proportional to the vocabulary size. Computational and
storage requirements, however, discourage the use of arbi-
trarily large vocabularies. Also, Fisher vectors are not in-
herently discriminative. In this paper, we devise a novel
strategy to compute sparse Fisher representations. This al-
lows us to increase the vocabulary size with little computa-
tion and storage overhead and still attain the performance of
a larger vocabulary. Further, we describe an approach to en-
code class-discriminative information in the Fisher vectors.
We evaluate our method on four popular datasets. Empir-
ical results show that our representations consistently out-
perform the traditional Fisher Vector representations and
are comparable to the state of art approaches.
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1. INTRODUCTION
Recognition of visual artefacts is one of the most popu-

lar problems in the Computer Vision community. Common
tasks such as visual object recognition, image retrieval and
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scene classification, all involve assigning class labels to im-
ages, either implicitly or explicitly. Researchers generally
agree on a three fold approach (Figure 1) to tackle such
problems [3]: (a) computing low level feature descriptors
over small image parts, (b) pooling these local descriptors
to arrive at a global image representation of some sort, and
(c) using a classification method that learns the underlying
distribution of the seen examples from their global represen-
tations and uses this knowledge to predict the class labels
of the unseen examples. Over the years, much research has
gone into improving the individual stages of the pipeline.

Feature learning methods have evolved steadily over the
past few decades and is perhaps the most stable compo-
nent of the pipeline. Dense SIFT has emerged as a popu-
lar local descriptor for most classification tasks [10]. Mean-
while, majority of the efforts in this field have been focused
on improving the feature pooling stage [2, 3]. The Bag of
Features approach, where local features in each image are
vector quantized (using K-Means on the training set fea-
tures) and counted to arrive at a histogram image repre-
sentation has enjoyed reasonable success for years. Some
recent approaches have used soft assignments, as opposed
to the traditional hard quantization in K-Means by express-
ing features as linear combinations of visual words [7]. Other
approaches have aimed at minimizing loss of information by
encoding the quantization errors in the representation [14,
27]. Finally, classification methods have seen their share of
innovations too [20].

Fisher Kernels, which were introduced in 1998 [8], have
achieved huge success after their introduction to the image
classification domain [14]. Fisher encoding assumes the data
distribution is a Gaussian Mixture Model (GMM) and cap-
tures the deviations in the fit. GMM can be understood as
a soft visual vocabulary. Most state of the art approaches
on various datasets employ Fisher encodings [3]. However,
this performance comes at a huge computational and storage
price. A fisher vector for K Gaussian components has a final
representation size of K(2D+ 1), where D is the dimension
of the local features, and requires computations of the same
order. Remedies that involve compressing Fisher vectors [15]
and methods such as Product Quantization [9, 18] have been
suggested to cope up with the high memory requirements.
While most of these methods compress Fisher vectors to
reduce storage requirements and uncompress these on the
fly during classification, [22] demonstrates that the Product
Quantization code itself can be used for classification. Re-
cent advances into this field have involved fine tuning the
model parameters to incorporate class-discriminative infor-



Figure 1: The Fisher vector computation pipeline.
The loopy arrows mark our contributions.

mation [5].
Some of the recent literature [2, 6, 24] has emphasized the

success of sparse representations in classification. Sparse
representations are said to be more discriminative, better
representative and since the introduction of certain data
structures, come at little computational and storage price.

In this paper, we devise a simple approach to introduce
sparseness in the Fisher vector representation. This was mo-
tivated by two objectives (a) to reap the performance advan-
tages of the sparse representation in classification, and (b)
to reduce the representation size and computational cost of
the feature encoding procedure. In Section 3.2, we describe
an implementation trick that helps us achieve objective (b).
Our approach was inspired by [23], where locality constraints
were enforced to compute a sparse image representation. We
however use a different scheme to introduce sparsity in our
representation. Another difference is that while [23] com-
putes the best describing visual words for each low level
feature of an image, we find the best representative visual
words for an image or class. We also devise a novel strategy
for class-discriminative encoding of Fisher vectors that iden-
tifies the Gaussian components most representative of each
class and weights them appropriately to arrive at a discrim-
inative representation. We demonstrate the superior per-
formance of our approach over the traditional Fisher vector
representations on several datasets. On all these datasets,
we either outperform the state of the art or produce results
that are comparable to the corresponding state of the art ap-
proaches. Figure 1 describes a block diagram of the Fisher
vector computation procedure. The loopy arrows mark the
modifications we have made to the pipeline. These modifi-
cations have been elaborated in section 3.

2. FISHER KERNEL
Pattern classification models can be broadly divided into

“Generative Models” and “Discriminative Models”. While
generative models randomly generate input data using given
hidden variables, discriminative models predict models for
the unseen samples based on the distribution learnt from the
training examples. Fisher Kernel [8] combines the advan-
tages of generative statistical models (like GMM) and those

of discriminative methods (like SVM). Recently Fisher ker-
nels have been extensively used for various computer vision
and machine learning tasks like retrieval and classification
[14]. We now describe the Fisher kernel formulation.

Let P (xn|θ) denote the generative probability distribu-
tion model, θ being the model parameters. X = {xn, n =
1, . . . , N} represents the data item set and xn is a data
item. Let ∇θ be the gradient function with respect to θ
and log p(xn|θ) be the log-likelihood of xn with respect to
the model given the set of model parameters θ. Now for
each data item we can define the Fisher score, Fxn as the
gradient of the log likelihood of xn with respect to model
paramters θ which is given by

Fxn = ∇θ log p(xn|θ) (1)

The Fisher score gives us the direction in which parameters
should be modified to best fit the data. It transforms the
variable length data into a N-dimensional feature space RN .
Fisher kernel is defined by

K(xi, xj) = FTxiI
−1Fxj (2)

where I is the Fisher information matrix, which is used for
normalizing the gradient vectors. Because of its cost of com-
putation and inversion, various approximations of I have
been proposed in literature. We discuss some of these in
section 2.1. Comparison of two data items is done by di-
rectly comparing their Fisher scores. If their Fisher scores
are similar it implies that they would require similar adap-
tations to the model parameters and hence they are similar.
Thus, we can directly classify these gradient vectors in place
of the data items using any discriminative classifier such as
SVM.

2.1 Fisher Vector Image Representation
Computing the gradient vector for each image involves

computing a Gaussian Mixture model learnt over the low
level features (eg. SIFT). θ = {wi, µi,Σi, i = 1, . . . ,K} de-
notes the model parameters of GMM with K components,
where wi, µi, and Σi represents the weight, mean and covari-
ance matrix respectively, corresponding to the ith Gaussian
component. The mixture weights capture the relative fre-
quency of each component of the Gaussian, thus,

∑
wi = 1.

Various types of covariance matrices can be used in this for-
mulation. We use the diagonal covariance matrix for sim-
plicity.

Let X = {xn, n = 1, . . . , N} denote the set of low level
features for an image, each of dimension D, and L(X|θ) =
log p(X|θ), where L is the log likelihood of the features with
respect to the model. Since the features in the feature set
X, are independent of each other, we can rewrite L(X|θ) as:

L(X|θ) =

N∑
n=1

log p(xn|θ) (3)

The likelihood that a feature xn is generated by GMM is
given by:

p(xn|θ) =

K∑
i=1

wip(xn|θi) (4)

where,

p(xn|θi) =
exp{− 1

2
(xn − µi)′Σ−1

i (xn − µi)}
(2π

D
2 )|Σi|

1
2

(5)



Also let, qni be the probability that feature xn is generated
by ith Gaussian component, which will be given by

qni =
wip(xn|θi)∑K
j=1 wjp(xn|θj)

(6)

For computing the Fisher vector representation for an image

we calculate the gradient ∂L(X|θ)
∂θi

for each parameter sepa-

rately and then concatenate them to get the final gradient
vector. Since the number of low level features can vary from
image to image, to achieve invariance with respect to the
number of features in the image, the final Fisher vector rep-
resentation of an image is divided by the number of features.
This is also referred to as average pooling in literature.

FImage =
1

N

∂L(X|θ)
∂θi

=
1

N

N∑
n=1

∂L(xn|θ)
∂θi

(7)

∂L

∂wi
=

N∑
n=1

[
qni
wi
− qn1

w1
], i ≥ 2 (8)

∂L

∂µdi
=

N∑
n=1

qni[
xdn − udi

Σdi
] (9)

∂L

∂Σdi
=

N∑
n=1

qni[
(xdn − udi )2

(Σdi )
3/2

− 1

(Σdi )
1/2

] (10)

∂L(xn|θ)
∂θi

= [
∂L

∂wi
,
∂L

∂µi
,
∂L

∂Σi
] (11)

∂L
∂wi

is a K-dimensional vector of the 0th order statistics, ∂L
∂µi

is a KD-dimensional vector of 1st order statistics, and ∂L
∂Σi

is a KD-dimensional vector of the 2nd order statistics of the
gradient for each xn. Exact derivations of ∂L(xn|θ)

∂θi
can be

found in the appendix section of [14].
Implementation Details: Essentially we used the same

Fisher vector computation pipeline as described in [11]. We
start by computing SIFT features at multiple scales, from
which GMM components are computed using the yael li-
brary 1. Fisher vectors representations are then computed
for all the images as described above. We use the Fisher vec-
tor representations to compute the kernel matrix for SVM
learning using Eq. 2. As described in [8], the information
matrix I can be safely ignored, thus we replace I in Eq.
2, with an identity matrix. An empirical approximation
to Fisher information matrix is shown in [11], that uses a
diagonal approximation for I. It is shown that performing
whitening normalization on the Fisher vectors approximates
the effect of I well. Whitening normalization ensures that
the final gradient vectors have zero-mean and unit-variance.
As described in [16], we performed three kinds of normaliza-
tions, (a) whitening normalization, (b) power normalization,
(c) L2-normalization in the same order to arrive at the final
image representation.

Discussion: Computing the Fisher representation of an
image involves computing K 0th order terms, K ×D 1st or-
der terms, and K ×D 2nd order terms which are calculated
using Eqns. 8, 9, 10 respectively. This gives us a final rep-
resentation of size K(2D + 1), where D is the size of each
feature. For SIFT features of size D = 128 and K = 50

1https://gforge.inria.fr/projects/yael

Gaussian components, the final image representation size is
12850. The representation size increases linearly with the
number of Gaussian components. In such high dimensional
spaces, SVM classifier training is nearly intractable. Hence
precomputing the kernel matrix (using Eq. 2) is indispens-
able. Computing the kernel matrix requires O(n2) dot prod-
ucts and O(n2 × (K(2D + 1)) computations. Recent works
[3], further use 8 spatial regions which increases the repre-
sentation size and computations 8 fold. In section 4.3, we
demonstrate this is unnecessary; we achieve comparable per-
formance without using spatial pyramids, which reduces our
computational and storage requirements.

3. ENHANCING FISHER VECTOR REPRE-
SENTATIONS

Computing the Fisher vector representation of images in-
volves several independent steps. The various steps in this
pipeline can be enumerated as (i) computing low level fea-
tures (SIFT) for images, (ii) building a generative pdf model
(GMM), (iii) building Fisher vector representation for im-
ages using GMMs and low level features for respective im-
ages, (iv) SVM Classification. We intend to introduce changes
to the traditional methods of implementing these steps. Im-
proving any one or more of these results in better perfor-
mance of the complete system.

Baseline: In this paper, we treat the traditional Fisher
vector representation (as described in [11, 16]) as our base-
line representation and describe several ways to improve it.
Our baseline representation is described in section 2.1. The
classification scheme described in section 4 remains unaf-
fected. In the rest of this section, we describe modifications
or additional steps that we introduce in the feature encod-
ing procedure. Each of these supplements the classification
performance of the baseline representation. We back this
claim by producing superior results on four datasets in sec-
tion 4. We argue that our final representations are both
more compact and more discriminative, and come at lit-
tle computational and storage price. Results on the Pascal
VOC 2007 dataset using the baseline Fisher vector repre-
sentations are shown in Fig. 2. We also show results using
our improved Fisher representations (with compatible repre-
sentation sizes) alongside. Our representations significantly
outperform the traditional representations.

3.1 Root Sift
Recent works on classification [22] have endeavoured to

find better distance metrics in the feature space. Inspired
by [1], we experimented with various kernels in the SIFT
feature space and found that the Intersection and Hellinger
Kernels enhance the classification performance. This is in
line with the findings of [1, 19, 22]. Table 1 shows the effect
of variation of the distance metric/kernel on the classifica-
tion performance. The dataset here is Scene 15 and the
number of Gaussian components are 25 and 50 in columns
2 and 3 respectively. This result motivated us to use a dif-
ferent distance metric in the SIFT feature space. Both the
Intersection and Hellinger kernels can be approximated by
computing corresponding explicit feature maps on the SIFT
features. However, while the intersection kernel feature map
increases the feature dimension 3 folds, the Hellinger kernel
preserves the size of the input features. We therefore choose
to map our SIFT features using the Hellinger feature map.



Figure 2: Baseline Results showing mAP on PAS-
CAL VOC 2007 dataset based on our implementa-
tion of [11]

As described in [22], this mapping enables us to use linear
kernel to approximate the Hellinger kernel.

Table 1: Effects of different distance measures for
SIFT Features on classification performance (Scene
15)

Distance Measure mAP (K = 25) mAP (K = 50)
Euclidean (Baseline) 85.03 86.30
χ2 85.62 87.00
Jensen-Shannon 85.40 87.63
Intersection 86.04 87.51
Hellinger 85.96 88.18

As described in [1], this mapping consists of two sim-
ple steps: (i) L1 normalizing each SIFT feature, and (ii)
Square rooting the individual values of 128 dimensional vec-
tor. Once this transformation is done, we can simply use
this transformed SIFT feature namely “RootSIFT” [1] as
it is in our pipeline.

3.2 Sparse Fisher Vector
We denote the N SIFT features in an image by the set

X = {xn, n = 1, . . . , N} and the GMM model parameters by
θ = {wi, µi,Σi, i = 1, . . . ,K}. Using Eq. 6, we compute a K
dimensional feature assignment vector for each feature xn.

~qn = {qn1, qn2, . . . , qnK} (12)

The kth entry in ~qn (qnk) represents the soft assignment
value of feature xn to the kth Gaussian component. We de-
fine the image assignment vector ~Q as the sum of all feature
assignment vectors in the image.

~Q =

N∑
n=1

~qn (13)

The kth value in ~Q represents the sum of assignment values
of all the SIFT features in that image to the kth Gaussian
component. Having obtained ~Q, computing the sparse im-
age representation involves picking k′ out of the K Gaussian
components. In this paper, the k′ components we pick are
the ones with the most population. This model assumes that

the Gaussian components that occur the most in an image
are the most representative of the image. This is imple-
mented as picking the k′ components that have the highest
values in ~Q. The sparseness is introduced by ignoring K−k′
components. In other words, we compute the Fisher vector
representation for the chosen k′ Gaussian components only
and values corresponding to rest K − k′ Gaussians are ig-
nored (set to zero). Our final Fisher vector representation
has a size of k′(2D + 1).

Let G′ be the set of these top k′ Gaussians. Note that we
have to update our Gaussian weights wi to ensure they add
up to 1 after this modification (as described in section 2.1).∑
i∈G′

wi = 1. This is achieved using Eq. 14

wi =
Qi∑

j∈G′

Qj
(14)

In the next section, we describe an alternate strategy to
pick the k′ Gaussian components out of K. The alternate
strategy allows us to encode class-discriminative information
in the Fisher vectors and hence is more useful.

Implementation Details: We now describe an imple-
mentation trick that enables us to reduce the storage re-
quirements and computations for our sparse representation.
Having computed the G′, we compute the Fisher vector rep-
resentations using Eq. 11. From Eqns. 9 and 10, it is clear
that if qni = 0, the gradient value for that particular Gaus-
sian is also zero. Since all but the values corresponding to
the top k′ Gaussians are zero, we do not have to explicitly
compute all of them. Instead, for each image we save the
indices of Gaussians for which qni 6= 0. Now we compute the
Fisher vectors for G′. Our final image representation is thus
of size 2k′[D+1] (the k′[2D+1] values for Fisher vector rep-
resentation corresponding to k′ Gaussian components and
an additional k′ for storing indices of non-zero qni). How-
ever, implicitly our representation is that corresponding to
K. By removing these least representative Gaussians for an
image we gain two advantages:

1. Since our implicit representation for an image is sparse
with only k′(2D+1) non-zero values, while computing
kernel k(Fi, Fj), we will have to make lesser computa-
tions (only for non-zero values). This can be achieved
with a little implementation trick, where we first com-
pute the intersection of the non-zero indices of Fi, Fj
and then compute the dot products of the intersecting
components since the other products all result in zeros.

2. Though our computations are done only on the non-
zero values, the implicit length of Fisher vector still
corresponds to the original K. By choosing appro-
priate the value of k′ judiciously, we can achieve per-
formance comparable to K by using only k′ Gaussian
components.

3.3 Discriminative Fisher Vectors
In this subsection, we describe a simple approach that

encodes class-discriminative information in the Fisher Vec-
tor representation of images. Our approach involves com-



puting pointwise mutual information (P.M.I.) 2 between the
class labels and the Gaussian components. Given C classes,
we define the class assignment vector (φc, c = 1, . . . , C) as
the distribution of the gaussian components in images cor-
responding to the class. Let ~Qt, t = 1, . . . , T be the image
assignment vector (computed using Eq. 13) corresponding
to an image t. Let tc be indices t of images belonging to
class c. φc is computed as

φc =
∑
t∈tc

~Qt (15)

Computing P.M.I. between class labels and the Gaussian
components involves computing all φc, c = 1, . . . , C. Let
φck denote the entry in φc corresponding to the kth Gaussian
component. The P.M.I. Ick between class c and the Gaussian
component k is computed as:

Ick = φck log

(
φck∑C

c=1 φck
∑K
k=1 φck

)
(16)

We use the P.M.I. values as multiplicative coefficients to
the weights of Gaussian components. More precisely, we up-
date each wk by multiplying it with the corresponding Ick
to build the GMM for class c. This class specific GMM is
used for computing Fisher Vectors for all images. Thus, in-
tuitively, by computing Ick, we are trying to gauge which
Gaussian components are most representative of a class.
Multiplying Ick with the weights of the Gaussian compo-
nents ensures that we use more information from the most
representative components. This gives us class specific Fisher
vector representation of all images without having to com-
pute class specific vocabularies.

Discriminative Sparse Fisher Vectors: This strat-
egy can further be used to improve our method of picking
the most representative k′ Gaussian components per image
(section 3.2). Instead of choosing the most populated k′

Gaussian components in each image, we use the P.M.I. val-
ues to decide which components are most representative of
a class. More specifically, we pick the k′ Gaussian compo-
nents per class which share most mutual information with
the class. The sparcity induced using this method promotes
class level discrimination as opposed to image level discrim-
ination. Note that while we picked the most representative
Gaussian components for each image in section 3.2, here
we pick the most representative Gaussian components cor-
responding to each class. Intuitively, this strategy makes
more sense in a classification problem setting. We back this
claim with results in section 4.1. In table 2 , we study the
effects of introducing sparsity and discriminative informa-
tion in isolation. The dataset used in these experiments is
Scene 15. We show the effects on mAP for four vocabu-
lary sizes (number of Gaussian components). In this set of
experiments, we chose k′ = K/2 and for sparse represen-
tations, the values of k′ are those in column 1. It can be
observed that both sparseness and discriminative informa-
tion enhance classification performance in isolation. These
gains are more marked at lower vocabularies.

2Pointwise Mutual Information between two random vari-
ables X (e.g. cluster labels from a clustering method) and
Y (e.g. actual class labels) is defined as: pmi(x, y) =

log
(

P (x,y)
P (x)P (y)

)
where P (x, y) is the joint probability of x

and y and P (x) and P (y) are the marginal probability dis-
tributions of X and Y respectively.

Table 2: Effects of introducing sparseness and dis-
criminative information in Fisher vector representa-
tions on mAP (Scene 15).

Vocabulary Baseline Discriminative Sparseness Both
20 84.89 86.84 87.48 88.04
50 86.30 88.64 88.43 88.91
100 86.80 88.81 89.46 89.31
250 87.19 89.40 89.47 89.59
500 87.50 89.60 89.53 89.60

3.4 Discussion
We now discuss the implications of the three improve-

ments we have introduced to the baseline approach. Root
SIFT is a preprocessing step in our algorithm and does not
affect the rest of the pipeline. Computing root sift involves
little computational overhead, precisely O(1) for each SIFT
feature.

Introducing sparsity in Fisher vectors enables us to en-
joy performance comparable to more Gaussian components
while adhering to the storage and computational require-
ments of a smaller number of Gaussian components. The
implementation strategy described in section 3.2 enables us
to achieve this objective. Empirical results in section 4 indi-
cate that we can achieve performance worth K components
by choosing as less as k′ = K/2 components. This is a sig-
nificant improvement and reduces the memory requirements
and computations by half.

Computing discriminative Fisher vectors involves comput-
ing the multiplicative coefficients. Computing Ick involves
n′ × K × D computations where n′ is the total number of
training features. We compute a different Fisher vector rep-
resentation per class which are used to train a classifier for
this class.

It should be noted that all these modifications affect only
the Fisher vector computation process. The other stages like
GMM learning and classification remain unaffected.

4. EXPERIMENTS AND RESULTS
In this section, we evaluate our method on some standard

visual classification datasets and provide empirical evidence
to demonstrate the superior performance of our method over
the traditional Fisher representation. Further, we also com-
pare our performance with the state of the art classification
approaches. We show results on 4 popular datasets (Fig-
ure 3): (a) two scene classification datasets namely Scene15
and Scene67 and (b) two object recognition datasets namely
Pascal VOC 2007 and Calech 101. Table 3, describes the
datasets we use in our evaluations.

Experimental Setup: All our SIFT features on Pas-
cal VOC 2007 and Caltech 101 were computed on multiple
scales of [4, 6, 8, 10] and a step size 3, as in [3]. For datasets
Scene 15 and Scene 67, we computed SIFT on a single scale
of 12 and a step size of 6. We used the vl feat library [21]
for SIFT computation. The number of Gaussian Compo-
nents for building the Fisher Vectors were different and have
been described in the following subsections. We used the
yael library for GMM computation. For all the datasets, we
trained a one-vs-rest svm [4] for each class. For Caltech101
and Scene 67, the test sample was assigned the label of the



Figure 3: Random Images sampled from the four datasets: (a) Scene 15, (b) Scene 67, (c) Caltech 101 and
(d) PASCAL 2007

Table 3: Specifications of the datasets we used.
Dataset #Classes #Images (Train/Test) Evaluation
Scene15 15 4485 (1500/2985) mAP
Scene67 67 6700 (5360/1340) Accuracy
Caltech-101 101 5975 (3030/2945) Accuracy
PASCAL VOC 2007 20 9963 (5011/4952) mAP

Table 4: Comparison with state of the art ap-
proaches on the 4 Datasets

Dataset State of the art Our
Scene 15 88.18 [26] 89.60
Scene 67 43.1 [13] 49.87
Caltech101 77.78[3] 76.16
PASCAL VOC 2007 61.69 [3] 61.09

classifier that gave the maximum score and we report the
classification accuracy while for the other datasets, we re-
port the mean Average Precision of the retrieval task.

Experimental Details: Our baseline Fisher representa-
tion has been described in section 3. We use this baseline
in all empiricial comparisions with our enhanced represen-
tations. In some of these experiments, we empirically com-
pare the effect of varying k′. As described in section 3.2,
by choosing the k′ judiciously, we can achieve performance
comparable to K with the storage and time complexity cor-
responding to k′. Since our final Fisher vector representation
sizes depend linearly on K, this reduction in time and space
complexity is also directly proportional to the difference be-
tween K and k′. For comparision with the state of the art
approaches, we selected K and k′ after extensive experimen-
tation using a validation set.

4.1 Scene 15

Table 5: Comparison with the state of the art ap-
proaches on Scene 15

Method mAP
SPM[19] 81.40
DSSIC [20] 85.50
Sun [26] 88.18
Sparse Discriminative FV 89.60

The Scene 15 dataset consists of 4485 images split over 15
different scene categories. As in [19], we randomly choose
100 images per category for training and the rest for testing.
We repeated the experiments 5 times and report the mean
Average Precision of the retrieval task.

Figure 4 demonstrates the effect of varying k′ on the mAP.
In these experiments we gradually increase k′ from 20− 100

Figure 4: Effect of varying k′ on the mAP on the
Scene 15 dataset. K=100.

using a step size of 10 by fixing K = 100. It can be seen that
our sparse representation with comparable explicit implicit
dimension almost always beats the baseline representation.
Another observation is, at implicit size k = 60, our method
even outperforms that of K = 100. This indicates that
choosing the implicit representation size wisely can produce
results better than those obtained using a higher represen-
tation size. Table 5 compares our method with the recent
state of the art approaches. We beat all published results
on this dataset. The previous best state of the art approach
described in [26] uses 14 low level features. Our best perfor-
mance was achieved at K = 750, k′ = 400.

4.2 Scene 67
The Scene 67 dataset [17] has 67 Indoor categories, and a

total of 15620 images. However, as in [17], we choose a fixed
set of 80 images per class for training and 20 for testing.



Figure 5: Effect of varying k′ on the mAP on the
Scene 15 dataset. K=100.

Figure 5, shows the effect of increasing k′ on scene67
dataset. As compared to Scene15, the effect of varying
k′ is more significant on this dataset. The performance
at k′ = 25, is lower than that of the baseline representa-
tion. The gain in performance happens as we move be-
yond k′ = 50. Further increasing k′ beyond 100 (note
that at this poing, k′ = K/2), gives significant improve-
ment in accuracy and as we approach k′ = K = 200, the
accuracies begin to converge to the one corresponding to
K = 200. After extensive experimentation on Scene 67
and other datasets, our findings indicate that in general,
we should choose k′ >= K/2.

Table 6: Comparison with the state of the art ap-
proaches on Scene 67

Method Accuracy
ROI+GIST [17] 26.5
Pandeyet.al [13] 43.1
CENTRIST [25] 36.9
Object Bank [12] 37.6
Sparse Discriminative FV 49.87

Table 6 compares our method with the state of the art
approaches. The parameters k′ = 650 and K = 1000 give
us our best performance quoted in the table.

4.3 Caltech 101
The Caltech 101 dataset has 9146 images coming from

101 distinct object categories. In our experiments, we ran-
domly sample 30 images for training from each of the 101
categories, getting a total of 3030 training images; we test
our method on the remaining images. We however limit the
number of testing images per category to 50, as in [19]. We
repeated the experiments on Caltech 101 with 5 such random
subsamplings and report the mean classification accuracies
over the five experiments.

Table 7 compares our method with the state of the art
approaches. We achieve classification accuracy comparable
to [3]. They have used the traditional Fisher kernel represen-
tation with 256 Gaussian components and spatial pyramids
on top of the Fisher representation. It should be noted that
while they used 8 spatial regions, we did not use spatial
pyramids. Our best results were achieved at k′ = 200 and

Table 7: Comparison with the state of the art ap-
proaches on Caltech 101

Method Accuracy
SPM [19] 64.60
LLC [23] 73.44
DD-FV [3] 77.78
Sparse Discriminative FV 76.16

K = 250. Hence the representation size used in [3] is more
than 8 times that of ours.

4.4 Pascal VOC 2007
PASCAL VOC 2007 data has 5011 training images and

4952 testing images in 20 classes. This is one of the hardest
datasets used for visual classification as the objects in these
images vary significantly in scale and orientation and some
of the images have multiple objects present in them.

Table 8: Comparison with the state of the art ap-
proaches on Pascal

Method mAP
KCB [7] 56.26
SV [27] 58.16
LLC [23] 59.74
DD-FV [3] 61.69
Sparse Discriminative FV 61.09

Table 8 reports the mAP achieved by the state of the art
approaches on Pascal 2007. Our performance with k′ =
175 and K = 250 is comparable to [3]. The results in [3]
were achieved by using Fisher vectors with 256 Gaussian
components and spatial pyramid with 8 spatial regions on
top, which is around 12 times of our representation size.

4.5 Discussion
Empirical evaluations on 4 datasets indicate the utility of

our approach. We outperform all previously published re-
sults on the scene classification datasets. On Caltech 101
and Pascal 2007, not only do we manage to match the state
of the art classification rates (which they report were achieved
using the traditional Fisher vector representations with spa-
tial pyramids), our explicit representation sizes are much
less. These results are highlighted in table 4.

Our experiments on all the datasets revealed a common
observation: if we desire a representation that uses k Gaus-
sian components, it is always better to pick these k compo-
nents from a larger vocabulary than compute a vocabulary
of k Gaussian components; the former always outperforms
the latter. This gain in performance can be attributed to
the implicit representation size which is always bigger than
the explicit representation size. Like most sparse represen-
tations, the zero entries in our representation have as much
useful information as that contained in the non zero terms.

Our primary motivation behind introducing sparseness in
Fisher vectors was to counter the huge representation size.
Product Quantization [9, 18] has been described in litera-
ture to reduce the storage requirements. These approaches
generally encode the high dimensional features and store



the compressed code on the disk. However, these codes are
decoded on the fly when the original features are for classi-
fication. A recent work [22] describes a strategy that uses
the Product Quantization codes itself in classification.

5. CONCLUSIONS
Most practical solutions require us to understand and re-

solve the tradeoff between performance and resources. Fisher
vectors demonstrate this concept well. The representative
power of Fisher vectors comes at a storage and computa-
tional cost. While most recent works in this direction have
attempted to compress Fisher representations to save disk
space, we have tried to address another important issue: re-
ducing the representation size of Fisher vectors. We devised
a novel sparse representation for Fisher vectors. Our sparse
solution is desirable because it combines two elements: (a)
the power of sparse representation, and (b) reduction in the
explicit representation size. Further, we introduced a novel
strategy for the discriminative computation of Fisher vec-
tors. This further boosts our classification performance. In
this paper, we described two approaches of picking the most
representative / discriminative Gaussian components from a
pool of Gaussian components to introduce sparcity. Devel-
oping better schemes for picking these Gaussian components
is a research problem in its own right. We evaluated our
method on four popular visual classification datasets and
our method consistently outperformed the baseline Fisher
representation. The performance of our model is at par with
the state of the art approaches on these datasets.

Acknowledgments
We thank Dr. Josip Krapac for discussions and useful sug-
gestions in the implementations of baseline Fisher Vectors.

6. REFERENCES
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