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Abstract

Diffusion Weighted MR Imaging (DWI) is routinely
used for early detection of cerebral ischemic stroke.
DWI with higher b-values (b=2000) provide improved
sensitivity, higher conspicuity and reduced artifacts
and thus improve the detectability of smallest infarcts
than conventional DWI (b=1000). We propose a novel
framework for accurately detecting stroke regions by
combining information from multiple sources:b2000,
b1000 data and the apparent diffusion coefficient map.
The detected lesions are finally segmented using an ac-
tive contour approach. The proposed method was tested
on 41 datasets acquired with different protocols. A com-
parison of our method with a leading method [3] vali-
dates the effectiveness of our approach. The median
dice coefficient, sensitivity and specificity for stroke seg-
mentation were 0.84, 87.07% and 99.90% respectively.
The strength of the proposed method is its ability to cap-
ture (and accurately segment) the small (and large) le-
sions in the data which are often missed by segmenta-
tion methods operating on a single b-value data.

1. Introduction
The use of Diffusion Weighted Magnetic Resonance

Images (DWI) for identifying major ischemic change is
popular due to their fast acquisition and increased sen-
sitivity to acute ischemic stroke, relative to any other
modality [2]. The contrast of the DWI scan at every
voxel depends on the degree of diffusion of the water
molecules in the voxel. Stroke lesions appear hyper-
intense on DWI and are inhomogeneous, with com-
plex shapes and ambiguous boundaries with observed
intensity variation [5] which makes manual segmenta-
tion difficult and time consuming. Early detection of
regions of ischemic stroke (regardless of size and loca-
tion) is critical for treatment. Automatic and accurate
detection and segmentation of such ischemic stroke re-
gions from DWI is the focus of the paper.

Prior methods for segmenting ischemic lesions in

DWI are of three types - manual, semi-automated and
automated. Manual methods for segmentation may pro-
vide accurate results for further analysis but are labour
intensive and operator-dependant [5]. Semi-automated
methods rely on operator intervention in tuning the al-
gorithm parameters or to initialize the algorithm. An
example is the method in [8]. The proposed hybrid
method combines the intensity-based information ob-
tained statistically and the shape-based information ob-
tained using the deformable active contour model to
segment and measure the infarct volume. The snake
contours are manually initialized.

Automated methods have received more attention re-
cently. An artificial neural network is trained in [1] with
multiple MRI sequences to predict the outcome of the
ischemic stroke. A non-parametric density estimation
technique is used in [6] for cerebral infarct segmenta-
tion followed by a refinement of the class boundaries
using an edge confidence map. Identification of stroke
slices, hemisphere and segmentation of stroke regions is
achieved in [3] with a divergence measure based on the
ratio of intensity probability density functions. Existing
methods generally fail on low resolution and noisy data,
particularly for the small-sized lesions.

The measured signal strength at a voxel in a DWI
scan is quantified by the diffusion sensitivity b. The
b-value is a control parameter which is fixed for ev-
ery scan. The apparent diffusion coefficients (ADC)
are derived using DWI from multiple b-values. ADC
quantifies the diffusion process regardless of the shine-
through artifacts. Imaging with higher b-value in a
1.5 Tesla scanner has been shown to improve the con-
spicuity, particularly for small-sized lesions and reduce
number of shine-through artifacts, however, at the cost
of SNR degradation and accompanied by accentuated
anisotropic effects in regions where white matter tracts
are prominent [5]. However, the automated methods
for stroke detection to date, have been assessed only
on b1000 data. We argue that a better strategy for ac-
curate stroke detection and segmentation would be to



Figure 1. Regions shown on histogram of
a DWI brain volume with background sup-
pressed. Knee-point shown in red.

use information from scans acquired with low and high
b-values. We have investigated this idea and propose
a novel framework for combining information from
b1000, b2000 scans for stroke detection and segmen-
tation. The ADC map is generated using the Stejskal-
Tanner equations: ADC= −1

b ln( SS0
), where S0 is the

signal intensity obtained with b=0 s/mm2 and S is the
signal intensity with b 6= 0 [7]. We utilise the ADC map
to refine the detection and the segmentation results.

2. Proposed Method

Our objective is to accurately detect and segment
the stroke lesions. The b2000 data with high sensitiv-
ity for stroke is suitable for finding candidate locations,
however, will have high number of false positive loca-
tions (FP) due to reduced SNR. The b1000 (with low
anisotropy effects) and the ADC (impervious to shine-
through artifacts) are appropriate to help reject these
FPs. An automatic windowing approach is proposed for
pre-processing the b2000 data to suppress the noise and
improve the local contrast and definition of the lesions.
An extended version of the Chan-Vese [4] formulation
of active contours is proposed for final segmentation.

2.1 Candidate Selection

At an early stage, stroke volume is much smaller
than the brain volume and the infarct appears brighter
than the brain tissue. Thus, in a DWI volume histogram
(Hv), obtained after suppressing the non-brain-tissue
region, the pixels belonging to lesion and shine-through
artifacts will give rise to short peaks at the higher end
as shown in Fig 1. Hence, a simple threshold set at the
knee-point after the global maximum in Hv can help
select the desired candidates. It is possible to employ a
non-linear transformation to find this knee-point accu-
rately, however, a rough method will suffice.

Candidate Refinement: In order to reject false candi-
dates we first rely on the fact that the anisotropy effects
increase with the b-value. Thus, while a true lesion ap-
pears bright and has a high local contrast (LC) on both
b1000 and b2000 data, the false ones will have different

(a) (b) (c) (d)
Figure 2. Results of windowing: (a) origi-
nal b1000 (b) windowed b1000 (c) original
b2000 (d) windowed b2000.

LC in these data. Hence, the ratio of the LC in these two
data can serve as a good metric to detect false positives.

In order to compute the LC, a bounding box with a
3 pixel margin around every lesion is defined and the
LC of the lesion is computed as LC = |µc−µb|

|µc+µb| where,
µc is mean of the lesion and µb is the mean of its local
background. The normal background pixels are found
by imposing a constraint on the ADC values. ADC of
normal tissue pixels are expected to be within [0.6 −
1.15]× 10−3mm2/s) according to [7]. The ratio of the
LCs (b1000:b2000) was thresholded to reject the FPs.
This threshold was empirically determined to be 0.6.

The above LC ratio-based rejection will not be able
to reject FPs that arise due to shine-through artifacts.
Hence, a second stage of rejection is needed. The
ADC data is a good choice for this as mentioned ear-
lier. The expected range for ADC values for stroke pix-
els is [0.14− 0.6]× 10−3mm2/s [7]. Hence, the ADC
value of every candidate is checked and all outliers are
rejected. After this refinement stage we have a set of
potential lesion locations which is passed on to the next
stage for lesion segmentation.

2.2 Lesion Segmentation

Stroke lesions appear bright in DWI but are inho-
mogenous (within and across lesions) with complex
shapes. Hence, detection of candidate pixels is a rel-
atively easy task compared to accurate segmentation.
An enhancement of the local contrast of the lesions is
therefore a solution to improving the lesion definition.
We propose an automatic windowing-based enhance-
ment which is described next.

Automatic Windowing: The goal is to find the win-
dow setting that maximizes the local contrast for the le-
sions in a given dataset. For every given candidate, the
LC is measured for a set of window parameters. The
desired best window is the one which yields maximum
LC for the lesions. Sample results of windowing are as
shown in Fig 2. The lesions after applying the window-
ing operation are passed on to the segmentation stage.

Level Set Based Segmentation: Since the shape and
size of the lesions vary widely an active contour based
approach is appropriate for segmentation. We chose the



Figure 3. ROC plot for detection of small-
sized lesions on b1000 vs b2000.

Chan-Vese model for active contours [4] which is an en-
ergy minimization framework based on the Mumford-
Shah functional, solved using the level-set method. The
objective of the Chan-Vese algorithm is to minimize the
energy functional F (c1, c2, C), defined by,

F (c1, c2, C) = µ · Length(C) + ν ·Area(ω)

+ λ1

∫
ω
|u0(x, y)− c1|2dxdy + λ2

∫
Ω\ω̄
|u0(x, y)− c2|2dxdy

where, µ ≥ 0, ν ≥ 0, λ1, λ2 > 0 are tuning pa-
rameters, Ω is a bounded set in R2, C is an evolving
curve in Ω, u0 : Ω̄ → R is given image and ω ⊂ Ω.
The constants c1, c2 dependent on C are the averages
of u0 inside C and outside C respectively. The first
two (curvature) terms on the right hand side, enforce a
smoothing constraint on the curve C while the next two
(fitting) terms influence the evolution of the curve.

The above model was applied in our problem with a
key difference. The pixel value, instead of being a scalar
u0, is a vector with the b2000 and ADC values being
the vector elements. Accordingly, the above equation is
modified as

F̂ (c1, c2, c3, c4, C) = µ · Length(C) + ν ·Area(ω)

+ λ1

∫
ω
|ud(x, y)− c1|2dxdy + λ2

∫
Ω\ω̄
|ud(x, y)− c2|2dxdy

+ λ3

∫
ω
|ua(x, y)− c3|2dxdy + λ4

∫
Ω\ω̄
|ua(x, y)− c4|2dxdy

where, µ, ν, λ1, λ2, ω,Ω, C are as defined in equa-
tion (1), λ3, λ4 > 0 are tuning parameters, ud : Ω̄→ R
is the b2000 DWI image and ua : Ω̄ → R is the cor-
responding ADC map. The constants (c1, c3) and (c2,
c4) dependent on C are the averages of (ud, ua) inside
C and outside C respectively. We fix λ1 = λ2 = λ3 =
λ4 = 1 and ν = 0 and the segmentation is the mini-
mization of the energy functional F̂ (c1, c2, c3, c4, C).

Since the active contour based approach can lead to
erroneous boundaries for small-sized lesions (< 1%
of image size), an ADC-based post-processing of the
small-sized segmented results is done as described in
Section 2.1.

Figure 4. Colour Coded Segmentation
Results shown overlaid on b2000 data,
Blue:TP, Red:FP and Green:FN.

3. Experiments and Results
Data: 41 DWI volumes of confirmed stroke patients

were collected from two local hospitals which had dif-
ferent types of scanners and used different methods of
data acquisition. The different b-value data were ac-
quired sequentially in Scanner-1 and simultaneously in
Scanner-2. The ADC maps from Scanner-1 were inde-
pendently generated for both the b1000 and b2000 data
using the Stejskal-Tanner equations [7]. Expert mark-
ings of lesions were also collected for all the 41 volumes
to serve as ground truth (GT). The full data description
is provided in Table 1.

Table 1. Data Description.
Scanner Data Acquired Voxel Matrix Size (MS)

Sets Data Size Pixel Depth (PD)

Scanner-1
b=0, b=1000, 0.98×0.98 MS =

29 b=2000,(Sequential), ×6.32mm 256×256×22
ADC=Post Acquisition PD = 16 bits

Scanner-2
b=0, b=1000, 1.95×1.95 MS =

12 b=2000,(Simultaneous),×7.28mm 128×128×20
ADC = In Acquisition PD = 12 bits

The first experiment is aimed at determining the ef-
fectiveness of the b2000 data in the detection stage. De-
tection of smallest early ischemic changes are proven to
be better in b2000 over b1000 [5]. The sensitivity vs.
specificity curves were generated for detection of small
lesions (< 1% image size) by varying the knee-point
described in Section 2.1. The obtained plot is shown in
Fig 3 which agrees with [5].

Next, the segmentation performance was assessed
and compared with a leading method [3]. For the seg-
mented results, true-positives (TP), false-positives (FP),
false-negatives (FN) and true-negatives (TN) were de-
termined. Sample colour coded segmented results are
shown in Fig 4. The colour code is as follows: blue,
red and green pixels indicate TP, FP and FN pixels, re-
spectively. Dominant blue pixels indicate the robustness
of the algorithm in accurately capturing different-sized
lesions in the data. The Dice coefficient (DC) [9] mea-
sures the spatial overlap between the GT and the results
of segmentation. A value of zero indicates no overlap,



Table 2. Descriptive Statistics & Evalua-
tion Metrics.
Statistics MaximumMinimumMeanMedian Std CV

Sensitivity (%) 97.30 43.75 83.68 87.07 10.580.1264
Specificity (%) 99.99 99.01 99.79 99.90 0.25 0.0025

DC 0.96 0.41 0.81 0.84 0.12 0.1530

DC = 2 ∗ A∩GA∪GSN = TP
TP+FN SP = TN

FP+TN

while a value of one represents a perfect overlap. The
sensitivity (SN) and specificity (SP) figures were also
calculated. The statistics of DC, SN and SP are pre-
sented in Table 2. In DC calculation,A is the segmented
volume by the algorithm and G is the ground truth. The
coefficient of variation (CV) reported here is the ratio of
the standard deviation (Std) and the mean values. Ideal
value of CV is 0 and DC is 1. These are reported to
observe the trend in the results.

Our dataset contained 324 large-sized lesions and
286 small-sized lesions. In light of this fact, the high
median values of SN, SP and DC with corresponding
low CV values indicate that the segmentation algorithm
is robust to size and shape variations in lesions. The
datasets were acquired from two different scanners with
different acquisition protocols and the algorithm ap-
pears to be robust to these factors.

An experiment was also done to study the degree
of improvement in the segmentation accuracy (at the
boundaries) due to b2000 data. The segmentation was
performed on b1000 and b2000 data separately, for only
true lesion locations (found from GT), for all the vol-
umes. The median DC values for the segmentation re-
sults were 0.68 and 0.83 for b1000 and b2000 data re-
spectively. Thus, an improvement of 22.06% in the seg-
mentation accuracy was observed on b2000 data.

While the experiment results indicate the merit in us-
ing b2000 data for accurate segmentation it does not
indicate the role, b1000 and ADC can play, in detect-
ing the lesion locations in the first place. Hence, a fi-
nal experiment studied the effectiveness of the complete
pipeline by comparing the proposed algorithm with a
leading method [3]. The results are presented in table 3.

The method in [3] captured significant sized lesions,
but completely failed in capturing the small sized le-
sions. This results in a lowered DC value. While both
the methods have high SP, our method has significantly
improved SN. This indicates that inclusion of b1000 and
ADC is aiding the improvement in performance.

4 Discussion & Conclusions
A novel technique for segmentation of stroke lesions

in brain DWI data using multiple b-values (b1000 &
b2000) and the ADC maps is presented. The method is
robust to data acquired on multiple scanners with dif-

ferent acquisition processes. The qualitative and quan-
titative results reported in the study show superiority of
the method in accurately detecting and segmenting the
stroke lesions over the conventional methods operating
only on the b1000 data. The median DC, sensitivity and
specificity for stroke segmentation were 0.84, 87.07%
and 99.90% respectively. The method is automated and
therefore could assist the clinicians in diagnosis.

Table 3. Comparison with [3] method.
Method Median SN (%)Median SP (%)Median DC

Our Method 87.07 99.90 0.84
[3] method 56.40 99.30 0.60

The improvement in performance of the proposed
method comes at the expense of computational cost due
to the need to process additional data. However, in
stroke cases where there are only small-sized lesions,
the gain to be obtained in correctly detecting (and seg-
menting) the presence of the lesion can outweigh the
additional computational burden.
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