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Abstract—This paper describes a novel tortuosity measure,
based on the premise that tortuosity is a measure of deviation
from an ideal non-tortuous vessel. Hence, we propose to model
the overall shape of an ideal vessel as a quadratic polynomial
at a larger scale while the deviations are modeled as quadratic
polynomials at smaller scales. Thus, a given vessel center-line
is decomposed as a sum of quadratic polynomials of decreasing
scale. This Quadratic Polynomial Decomposition is used as a
framework for defining a quantitative measure of tortuosity.
As opposed to the existing proposed measures, our method can
distinguish between the relative size, shapes and orientations of
the vessel bends. The measure is position and scale invariant
and satisfies two key desired properties: it varies directly with
frequency of twists at fixed amplitude and it varies directly with
amplitude of twists when their frequency is fixed. The proposed
method has been tested on a standard data set containing 30
artery and 30 vein vessel segments, and shown to be among the
best measures as compared to the results of existing methods.

I. INTRODUCTION

Healthy Retinal Vessels are either straight or gently curved.
In some diseases, vessels develop a number of twists and
take on a serpentine path. Such vessels are termed as tortuous
vessels. Tortuosity is one of the earliest changes in vessel
morphology that occurs at the onset of many retinal and
systemic deseases. The cause of tortuosity is attributed to
stretching of the blood vessels due to increase in blood
pressure or weak vessel walls [1]. Some of the common
diseases, that may result in tortuous vessels are cardiovascular
diseases such as hypertension [3] ,familial retinal arteriolar
tortuosity [2], occlusion of retinal arteries and veins and
diabetic Retinopathy [7]. It is the primary symptom used
for tracking plus disease in Retinopathy of Prematurity [6].
Figures 1 and 2 illustrates the visual difference between a
healthy and a tortuous vasculature network in retinal Color
Fundus Images.
Tortuosity of vessels is graded by ophthalmologists
qualitatively on a scale varying from 2 to 5 [1] based
on their clinical judgment. The absence of any gold standard
for grading vessel tortuosity makes it highly susceptible
to intra and inter observer variability in grading. A robust
tortuosity measure, is highly desirable in CAD systems as an
aid in early detection and tracking the progress of diseases.

Fig. 1. Fundus Image of a healthy Eye

Fig. 2. Fundus Image having tortuous blood vessels

One of the earliest measures proposed was the Arc to Length
Ratio [4], which used the ratio of actual length of the vessel to
its chord length as a tortuosity measure. It was error prone as
it failed to differentiate between vessels with gentle arc over
large chord length and vessels with large number of twists.
Dougherty and Varro [10], represented vessels as a 1D signal
and proposed a measure based on the absolute sum of second
derivatives of the signal normalized by the sampling interval.
Six variants of curvature based measures were compared by
Hart et al. [1] and two were identified to correlate well with
clinical perception of tortuosity: the sum of squared curvature
without normalization and the sum of curvature normalized by



arc length. The main disadvantage of curvature based methods
is that the results are highly dependent on the technique used
in computation of curvature. Direct computation using finite
differences do not give desirable results. Spline representation
[5] or arbitrary smoothing [1] is required. A recursive formu-
lation calls for bisection of chord lengths at each step and
measuring the rate of increase of bisected chord lengths to
the original chord length [6]. Another approach quantizes the
vessels into discrete points and computes for each point, the
average angle of line segments joining the previous and the
next points [11]. This method is highly sensitive to noise and
is dependent on the quantisation process. A recent approach
divides the vessels into turn curves (vessel segments with
constant sign of curvature) and defines tortuosity as a product
of the sum of arc-chord ratio of each turn curve [5]. Included
in the measure is a term to account for number of twists,
normalized by chord length. Starting with the notion of an
osculating circle at a point as the largest circle touching it and
having maximum contact length with the centerline, a measure
is proposed in [8] based on the average of the reciprocal of the
radii of osculating circles over each vessel centerline pixel.
Thus, a common strategy is to divide the vessel centerline
into constituent bends, quantify the tortuosity measure for each
bend and take an average or sum of the tortuosity values of
all the segments [4], [1], [5], [8]. Using measures such as
the arc-chord ratio for quantifying curvature of each bend,
the information related to the relative size of the bends is
lost. Also, the orientation among the vessel bends is not given
any consideration. However, both size and orientation have
important effect on the shape of the vessel and neglecting them
will lead to a loss of discrimination among a wide variety of
vessels which are perceptually very different.
In this work, we propose an intuitive model for multi-scale
representation of vessel segments. We refer to it as Quadratic
Polynomial Decomposition (QPD). This permits comparison
of tortuosity of vessels at multiple scales and takes into
account the scale and relative orientation of the vessel bends.
We also propose a quantitative measure of tortuosity based on
the QPD framework. QPD is inspired from the observation
that to determine tortuosity, experts have a mental reference
of an ideal non-tortuous vessel for the given vessel and they
measure significant deviations from it often in the form of
sharp U shaped bends to define tortuosity [7]. A multi-scale
QPD framework provides an effective way of representing
both the underlying ideal non-tortuous shape of vessel at a
large scale as well as the local bends at smaller scales.
The rest of the paper is organised as follows: Section II
presents a method for converting a vessel centerline to a
1D signal. Section III presents the details of the proposed
QPD based on which a tortuosity measure is defined in
Section IV. Section V verifies the basic abstract properties
of the proposed tortuosity measure. Section VI, presents the
details of assessment of the proposed measure on a publicly
available dataset RET-TORT [5], followed by a discussion and
conclusion.

II. CONVERTING VESSEL CENTERLINE TO A 1D SIGNAL

Similar to [5] we start with a set of vessel segments as input
on which a set of points are marked by an expert on the vessel
centerline. These points are interpolated first, using bicubic
spline interpolation, to obtain the vessel centerlines. For ro-
tation invariance, Principal Component Analysis is computed
on the vessel centreline points following which each vessel
centerline pixel is projected to their principal components. The
direction of the first principle component is along the length
of the vessel as the centerline pixels show maximum variance
in this direction, while the second principle component lies
perpendicular to it.It ensures that irrespective of the initial
orientation of vessels, all centerline points are transformed to
a coordinate system where x-axis corresponds to the direction
of length of the vessel and y-axis is perpendicular to it. Next
we quantize the projected points along the principal axis and
obtain the corresponding second principal component values
as a 1D signal. Figure 3 illustrates a vessel segment, the
interpolated centreline and the derived 1D signal.

Fig. 3. a. An artery vessel segment from the RET-TORT dataset [5]; b.
Centerline mask obtained by bicubic spline interpolation of points manually
marked by an expert and c. Corresponding 1D signal

III. QUADRATIC POLYNOMIAL DECOMPOSITION

A. Motivation
We consider tortuosity of a given vessel as a measure which

signifies the degree to which it deviates from an ideal non-
tortuous vessel. Since retinal images are projections of the
spherical retinal surface on a 2D plane, even normal vessels
appear to be gently curved in the image rather than following
a straight path. Thus the reference is not a straight line but
a curve with no twists (as twists contribute to tortuosity).
Tortuosity is characterised by abnormal spring-like windings
in vessels in 3 dimensions which project to ′U ′ or ′S′ shaped
bends in retinal images of varying shapes and sizes. Quadratic
polynomials can offer a good approximation of such bends
as polynomial fitting with a larger chord length (scale) can
capture the underlying reference non-tortuous shape, while
that of smaller scale fitted on deviation of the vessels from
the reference smooth curve can be used to model the local



bends. Thus quadratic polynomials offer a good model for
representation of vessels at multiple scales.
B. Methodology

A 1D sequence representing a vessel segment centreline
V ,can be represented as a sum of localized quadratic polyno-
mials, P1,P2,....Pn defined at different scales. Each quadratic
polynomial Pi : y = aix

2 + bix + ci is defined by a 5-tuple
(ai,bi,ci,si,li), where si, li represent the starting position and
chord length of Pi respectively. Given a vessel segment V
{v1, v2, ...vn}, the steps in its quadratic polynomial decompo-
sition (QPD) are as follows :

1) Find second order polynomial P{p1, p2, ...pn} that fits
the vessel V with least squared error. P is the quadratic
polynomial approximation of V at current level.

2) Evaluate the Error signal,
E = (p1 − v1), (p2 − v2), ..., (pn − vn).
E quantifies the deviation of the vessel V from the
reference polynomial P.

3) Compute the Error per unit length, ε =

n∑
i=1

E(i)

l , where
l represents the length of chord from p1 to pn.

4) Divide E into sub-segments E1,E2...En demarcated by
zero crossings of E.

5) If ε < δ then terminate the recursion. δ is a small
tolerance, such that when ε of a segment goes below
it, the segment is assumed to be well represented.
Otherwise, recursively apply steps 1 to 4 on each of
the error signal segments E1,E2...En independently to
obtain the decomposition at the next level.

Figure 4, shows the result of QPD of a vessel segment using
the above method. The sample corresponds to the vessel seg-
ment ”14 Arteria.jpg” from the RET-TORT dataset. Figure
4b-d represent the decomposition of the vessel at levels 1-3
respectively. The QPD allows perfect reconstruction implying
that no information of the vessel shape is lost during this
process. Figure 4 e, shows the result of reconstruction by
addition of all the localized quadratic polynomials extracted
at the different scales. Ideally, there should be zero error in
reconstruction, however due to the use of an error tolerance
δ = 3, we can observe some artifacts in the reconstruction.

IV. TORTUOSITY MEASURE

We next show how the QPD framework can be used to
derive a measure for tortuosity. Let the QPD of a vessel
segment V be P1,P2,..Pn at different levels. We model the
tortuosity measure τ(V ) as a sum of contributions of each of
these polynomials Pi to the overall tortuosity. Let us denote
these contributions by ψ(Pi).

τ(v) =

n∑
i=1

ψ(Pi) (1)

Our aim is now to find the required characteristics of the
function ψ(P ). Consider the four sample vessel segments A,
B, C, D (in cyan) in figure 5 along with their quadratic polyno-
mial decomposition (shown in red,magneta and green). Vessels
A and B are decomposed into single quadratic polynomials
Pa; Pb respectively at the first level of Quadratic Polynomial

Fig. 4. Quadratic Polynomial Decomposition vessel: a. Sample vessel
sequence, b. Quadratic polynomial obtained at scale 1, c. Set of Quadratic
polynomials obtained at Scale 2, d. Set of quadratic polynomials obtained
at scale 3 and e. Reconstructed image by addition of all the polynomials
extracted at different scales.

Decomposition, while the vessels C is decomposed into 3
polynomials at 2 levels and Vessel D is decomposed into 7
polynomials at three levels.
Let us compare the trivial cases of vessels A and B. Both of
them are approximated by single quadratic polynomials Pa and
Pb; Pb appears to be more curved than Pa. Nevertheless, both
vessel segments are normal and must be assigned a tortuosity
measure close to 0. However, as we have to assign a relative
quantitative measure to both the vessel segments, the measure
must be slightly higher for Pb than Pa. Thus, ψ(Pb) > ψ(Pa),
while both ψ(Pa), ψ(Pb) are close to zero.
Comparing vessels A and C, both have identical polynomial
decomposition Pa and Pc at level 1, but C requires more
polynomials Pc2 and Pc3 at successive level for proper repre-
sentation as compared to A. Clearly C is more tortuous than
vessel A. This justifies the criterion ψ(Pi) > 0 ∀i.
Comparing vessels B and C leads to an important observa-



Fig. 5. Four sample vessel segments and their corresponding levels of
Quadratic Polynomial Decomposition

tion. At level 1, the vessels are represented by Pb and Pc1

respectively, with the former being more curved than the latter.
Thus, ψ(Pc1) < ψ(Pb), and both ψ(Pc1), ψ(Pb) must be close
to zero. However, since vessel C has bends at the successive
higher levels of QPD, the overall tortuosity of vessel C should
be greater.If ψ(Pc2),ψ(Pc3), is greater than ψ(Pb), then this
condition is satisfied. This leads us to the conclusion that
(i) for 2 segments of similar chord length, the segment with
higher curvature is more tortuous and (ii) for 2 segments of
different chord length, the segment with smaller chord length
must be given a higher weight. Thus, ψ(P ) must be directly
proportional to the curvature of the polynomial and inversely
proportional to the underlying chord length.
It is worth noting that since the polynomials are based on
fitting the error sequence rather than the original sequence, the
curvature actually relates to the deviation from the underlying
quadratic polynomial rather than a straight line.
Now, consider the vessels C and D. At the first level, Pc1

is more curved than Pd1; at level 2 also Pc2 and Pc3 are
more curved than Pd2 and Pd3. Considering the contributions
of the polynomials only upto second level of decomposition,
C is more tortuous than D. However,their relative tortuosity
depends on the the contribution of polynomials at third level
of decomposition Pd4−Pd7 for vessel D. If bends Pd4−Pd7 are
perceptually significant, then vessel D will be more tortuous,
however, if Pd4−Pd7 contributes insignificantly to the shape of
the underlying polynomials at level 2, they must be neglected.
This is handled in the following two ways.Firstly,ψ(P ) being
proportional to curvature of polynomial, Pd4 to Pd7 will
have low contribution in tortuosity if they are perceptually
insignificant. Secondly, Instead of exact decomposition, we
have incorporated a tolerance δ while computing QPD on the
amount of error that is allowed in the decomposition process.
When error becomes below δ, we consider the error to be

perceptually insignificant and choose to ignore it. The vessel
segments being made up of discrete pixels is not smooth
but zigzag in nature.The threshld negates the impact of such
aliasing effects and also improves the computational efficiency
as number of levels of decomposition is reduced. An additional
constraint on ψ(P ) is that it should be normalized by the
overall length of the vessel, so that though we can use ψ to
compare the relative size of the bends in the same vessel, the
measure should be invariant to differences in the overall size
of vessel segments.
Proposed Tortuosity Measure : We define ψ(P )) = Area(P )

l2×L
as the desired toruosity measure. Area(P )

l which is defined
below, provides a measure of curvature of the vessel bend; L
represents the chord length of the entire vessel segment and
helps normalize by the scale of the entire vessel segment and
allow comparison of tortuosity of vessel segments of different
scale; an additional term l serves to normalize the measure by
its chord length to give higher weightage to local bends. The
numerator of ψ is computed as follows:

Area(Pi(ai, bi, ci, si, li)) =

l∫
1

(aix
2 + bix+ ci)dx

=
ai
3
× (l3 − 1) +

bi
2
× (l2 − 1) + ci × (l − 1)

(2)

To summarize, given a 1D sequence representing a vessel
segment centerline, with A being the Area of the least square
quadratic polynomial P fit to the error segment of length l on
V, L the chord length of V, the tortuosity τ(V ) is defined as

τ(V ) =

 { A
L×l2 } if Error ≤ δ

{ A
L×l2 }+

n∑
i=1

τ(Ei) Otherwise
(3)

In the above equation, l = L at the first level of recursion.
At successive levels, L denotes the length of the entire vessel
segment V while l denotes the length of the error segments Ei

which are computed using QDP. Instead of computing QDP
separartely and then applying equation 3, we can combine the
two steps into a simple recursive algorithm as described in
algorithm 1. Steps 6−8 in Algorithm 1 correspond to the base
condition of equation 3; steps 11− 14 computes the recursive
definition, while remaining steps implements QPD.

V. ABSTRACT PROPERTIES

Since, tortuosity of vessels is graded qualitatively by opthal-
mologists based on their clinical judgement,it is not possible to
come up with a set of sufficient conditions for a good tortuosity
measure. However, related works such as [1], [5], and [9] have
discussed some intuitive features that may act as necessary
conditions for any clinically meaningful tortuosity measure.

1) Invariance to Translation and Rotation: The measure
is translation invariant as the Area, chord length of the
quadratic polynomials, and the overall length of the vessel
segment are translation invariant measures. Rotation invariance
is achieved during the the process of converting the vessel
centerline pixels to a 1D signal as discussed in section II.
Since vessel centerline points are projected in the direction



Algorithm 1 Algorithm to compute tortuosity
1: procedure Compute tortuosity(V )
2: P ← Quadratic PolyF it(V )
3: L← length(P )
4: E ← V − P
5: ε←

∑
i
abs(Ei)

L
6: if ε ≤ δ then
7: τ = A

L×l2
8: return
9: else

10: n← find ZeroCrossings(E)
11: for each turn curveE(ni, ni + 1) do
12: S ← S+Compute tortuosity(E(ni, ni+1))
13: end for
14: τ ← S + A

L×l2 ;
15: end if
16: end procedure

of their Principal Components,identical vessels with different
orientation always map to the same 1D signal and hence would
compute to having identical tortuosity measure.

2) Frequency Modulation: Given two vessels with identical
amplitude but with different number of twists, tortuosity is
directly proportional to the frequency of the twists [5]. Our
measure conforms to this principle and we illustrate this
property using vessel segments modeled as sinusoids of 3
increasing frequencies in figure 6. The computed tortuosity
value increases correspondingly.

Fig. 6. Tortuosity dependency on frequency modulation. Vessel segments
modeled as a. sin(3 × t) b. sin(4 × t) and c. sin(5 × t). The computed
tortuosity values are τ = 0.0012, 0.0022 and 0.0035 for a,b,c respectively.

3) Amplitude Modulation: Given 2 vessels having equal
number of twists but different amplitudes, tortuosity is directly
proportional to the amplitude of the twists [5]. Our measure
conforms to this principle and we illustrate this property
using vessel segments modeled as sinusoids of 3 increasing
amplitudes in figure 7. The computed tortuosity values can be
seen to increase correspondingly.

4) Scale Invariance: For tortuosity measure to be scale
invariant, it must be normalized by the total chord length
of the entire vessel resulting in a dimensionality of L−1.
The proposed measure satisfies this condition. For any vessel
segment, the proposed tortuosity measure (eq.3) will be of
form:

τ(v) =

n∑
i=1

Ai

L× l2i
=

1

L
×

n∑
i=1

Ai

l2i
(4)

Fig. 7. Tortuosity dependency on amplitude modulation. Vessel segments
modeled as a. 3× sin(4× t),b. 5× sin(4× t) and c. 7× sin(4× t). The
computed tortuosity values are τ = 0.0022, 0.0036 and 0.0072 for a,b,c
respectively.

where n is the total number of polynomials extracted at all
scales. 1L can be taken out as a common factor from all the
summation terms, while the remaining summation terms of
form: Ai

l2i
is a dimensionless quantity since both the numerator

and denominaor are of same dimension(L2). Thus the overall
dimension of the measure is L−1.

VI. EXPERIMENTAL RESULTS
We have evaluated our proposed method on a publicly

available dataset RET-TORT [5]. RET-TORT dataset consists
of 30 artery and 30 vessel segments of patients suffering from
hypertension, manually marked and rank ordered by increasing
degree of tortuosity, by an expert. Table I compares the
Spearman rank correlations of the existing methods reported
in literature by Grisan et al. [5], and our proposed method.
Spearmann Rank coefficient gives a measure of how close

TABLE I
COMPARATIVE RESULTS ON RET-TORT DATASET: PERFORMANCE OF

OTHER METHODS FROM [5]

Method Arteries Veins
Lc/Lx .792 .656
tc .922 .837
tsc .925 .826
tc/Lc .919 .814
tsc/Lc .917 .773
tc/Lx .939 .842
tsc/Lx .928 .804
MAC .920 .814
TN .838 .695
ICM .684 .575
DCI .787 .589
Grisan et al. [5] .949 .853
Proposed
Method

.944 .828

the tortuosity measure agrees to the relative ordering of the
vessel segments by the expert. The first seven methods in this
Table define tortuosity as Arc-Chord Ratio (Lc/Lx), Integral
of Absolute Curvature (tc), Integral of squared Curvature
(tsc), Integral of Absolute Curvature normalized by chord
length (tc/Lc), Integral of squared curvature normalized by
chord length (tsc/Lc), Integral of Absolute Curvature Nor-
malized by Arc length (tc/Lx), Integral of squared curvature
normalized by chord length ( tsc/Lx), respectively. The re-
maining measures are Mean Direction Angle Change (MAC)
[11], Absolute Direction Angle Change(TN ) [13], Inflection
Count Metrics( ICM ) [14] and Absolute Direction Angle



Change(DCI) [12].The penultimate entry in the table is the
result from [5]. They propose a measure T that is dependent
on 3 parameters: the chord length of the entire vessel segment
Lc, number of turn curves in the vessel segment n and the
Arc-chord ratio of individual turn curves (vessel sub-segments
with the same sign of curvature). Tortuosity T is defined [5]
as

T (s) =
n− 1

n
× 1

Lc

∑ Lcsi

Lxsi
− 1 (5)

VII. DISCUSSION
From the tabulated results it can be seen that our proposed

measure gives a Spearman rank correlation coefficient of 0.944
in the case of arteries and 0.828 for veins with respect to
the expert ordering. The proposed method correlates well to
the clinical perception of tortuosity and outperforms most of
the existing methods. In comparison, with the best performing
method [5] our results are identical up to second degree of dec-
imal (0.944 vs 0.949), while our performance is slightly below
their performance for veins (0.828 vs 0.853) [5]. However, the
proposed method has a key advantage. We illustrate this with
the help of an example. Figure 8 represents 3 synthetic vessel

Fig. 8. Importance of scale: a,b,c are synthetic vessel segments where
corresponding turn curves have same arc-chord ratio but varying scale

segments with identical chord length over the entire vessel
segment and 3 twists (turns).The arc to chord ratio of the 3
corresponding twists across all the 3 cases are same though
the magnitude of arc and chord lengths vary greatly. The
existing tortuosity metrics will yield identical values for these
3 cases though they are perceptually different. In contrast, the
proposed measure will be able to distinguish between them
since it takes into account the relative size of each turn curve
and their relative orientation into account while computing
tortuosity.

VIII. CONCLUSION AND FUTURE WORK

In this paper, we have proposed a novel tortuosity measure,
which works on the underlying principle of QPD which helps
decompose any curve into a set of quadratic polynomials at
decreasing scales. The approach is based on the observation
that experts quantify tortuosity based on a vessel’s deviation
from a reference normal vessel that best fits it. In practise,
the deviations from the model vessel that leads to tortuosity
is in the form of ’U’ shaped bends which can be described by
quadratic polynomials at a smaller scale.
We have shown that the proposed method conforms to the
existing set of guidelines for a clinically meaningful tortuosity
measure and additionally, takes into account the relative shape
and to some extent the relative orientation of the vessel bends
which have been neglected in the existing methods.

Though the underlying assumptions of our work have been
intuitive and considers vessel bends at different relative scales
and orientations, further investigation on a larger dataset with
grading from multiple experts is necessary. Another important
direction is to extend the model to take into account the vessel
caliber as it also plays an important role in computation of
tortuosity. Wide vessels in general have thicker walls, and
hence even a small bend in a thick vessel may characterize
an abnormal tortuous vessel, while more bend should be
necessary to characterise tortuosity of thin vessels.
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