
Compacting Large and Loose Communities

Chandrashekar V
IIIT-Hyderabad, India

chandrasekhar.vug08@students.iiit.ac.in

Shailesh Kumar
Google Inc., Hyderabad, India

shkumar@google.com

C V Jawahar
IIIT-Hyderabad, India

jawahar@iiit.ac.in

Abstract—Detecting compact overlapping communities in
large networks is an important pattern recognition problem
with applications in many domains. Most community detection
algorithms trade-off between community sizes, their compactness
and the scalability of finding communities. Clique Percolation
Method (CPM) [1] and Local Fitness Maximization (LFM) [2]
are two prominent and commonly used overlapping community
detection methods that scale with large networks. However,
significant number of communities found by them are large, noisy,
and loose. In this paper, we propose a general algorithm that takes
such large and loose communities generated by any method and
refines them into compact communities in a systematic fashion.
We define a new measure of community-ness based on eigenvector
centrality, identify loose communities using this measure and
propose an algorithm for partitioning such loose communities
into compact communities. We refine the communities found by
CPM and LFM using our method and show their effectiveness
compared to the original communities in a recommendation
engine task.

I. INTRODUCTION

Unsupervised pattern recognition tasks such as clustering,
density estimation, outlier detection, dimensionality reduction,
etc. are used to understand the underlying nature of the data,
find latent structures within the data, and derive useful features
from it. One such important unsupervised learning task on net-
work or graph data is to find compact overlapping communities
i.e. groups of nodes in the graph that are tightly connected to
each other. This has applications in many domains such as
Biology, Social Networking [3], Web Mining [4], etc. Also,
communities in networks often overlap as nodes can belong to
multiple communities at once. For example, researchers might
belong to more than one research community.

Most community detection algorithms strive to strike a
balance between community size and their compactness. Over-
sized communities might contain unnecessary noise while
undersized communities might not generalize the concept well
enough. Another trade-off in community detection is that of
compactness and scalability. Finding large number of compact
communities such as maximal cliques is an NP-hard prob-
lem [5], making them impractical for large networks. Because
of these trade-offs, existing community detection algorithms
find several communities that are large, noisy, and loose, which
pose significant problems in using them in many applications
of communities like recommendation systems [6], semantic
retrieval, semantic user profiling, conceptual browsing [7] etc.

Two popular and commonly used overlapping community
detection algorithms are the Clique Percolation Method (CPM)
and the Local Fitness Maximization (LFM). CPM by Palla et
al. [1], is based on the belief that communities are unions of
adjacent k-cliques (complete graphs with k nodes) and that

 Signal
 Systems

Probability and Random
Processes for Electrical
 Engineering

Telecommunications
 Essentials

The Telecom
Handbook

The New McGraw-Hill
 Telecom Factbook

 Signal
 Systems

 Probability,
Random Variables and
Stochastic Processes

 Probability,
Random Variables and
Stochastic Processes

Probability and Random
Processes for Electrical
 Engineering

Signals, Systems
and Transforms

Telecommunications
 Essentials

The Telecom
Handbook

The New McGraw-Hill
 Telecom Factbook

The Essential Guide to
Telecommunications

Fig. 1. Figure shows example of our LCP algorithm on a CPM community
of books, in Amazon dataset. The CPM community contains sub-communities
of books, of two related electrical engineering topics: (i) One on Signal
Processing and, (ii) Other on Telecommunications. The Shrink Phase of
our LCP algorithm partitions the CPM community into two compact sub-
communities. The Grow Phase enriches the sub-communities by adding related
books to the sub-communities, like Signal, Systems and Transforms and The
Essential Guide to Telecommunications, respectively.

inter-community regions of the network do not possess such
strong edge density. LFM [2] is a well known greedy algorithm
that grows a seed node into a community by maximizing the
modularity [8] of the community.

A problem with communities discovered using CPM [1]
and LFM [2] is that a significant number of them are large
in size and loosely associated. Figure 1 (left part of the
figure) shows example of a community of books discovered
by CPM in Amazon dataset, which is reasonably large and
loose as it contains sub-communities of two highly related
electrical engineering topics. To appreciate the seriousness of
the problem, we show the community frequency distribution
across various community size buckets for the two datasets,
Amazon and Flickr (Figure 2(a)). On average, 23.17% of CPM
communities and 33.66% of LFM communities are of size
>= 13 in both datasets. This shows the scope and significance
of the large community size problem. Figure 2(b) shows the
average community density across various community size
buckets for the two datasets. Edge density of a community
typically is a good metric for measuring the structure within a
community. Low edge density scores indicate loose structure
within the community. As expected, there is a strong inverse
correlation between community size and their densities. The
point to note here is that the average density of the large
size communities (>= 13) is 12.59% for CPM and 9.04%
for LFM, which is almost three times less than the average
densities of smaller communities, illustrating the looseness
in the community structure of large communities. This is
primarily because, in real-world networks, there is a lot of
density variations in different regions of the graph and existing
community detection methods have no mechanism to adapt

(a) Community Frequency Distribu-
tion by size

(b) Average community density by
size

Fig. 2. Community frequency distribution and average community density
based on size using CPM [1] (k = 3) and LFM [2] (α = 1) on Amazon and
Flickr data. Significant number of communities (> 25%), which are typically
large in size (>= 13), have very low edge density(≈ 10%).

their parameters to different regions of the network based on
the network densities. Note that not every large-size com-
munity is loose, only experimentally (Figure 2) it has been
observed that more often than not large-sized communities are
typically loose.

In this paper, we address this problem of compacting
and cleaning such large and loose communities generated
by any method into small and compact communities. We
first propose a novel and natural measure of community-
ness called coherence, defined in terms of nodes weights
of the network. Coherence is used to determine whether a
community is compact and if not, it is greedily partitioned
into smaller communities until each of the sub-communities
are compact. Our greedy algorithm, called hereafter the Loose
Community Partition (LCP) algorithm, iterates over two
phrases: (i) Shrink Phase that removes the most noisy nodes
in the current community and generates a compact candidate
seed community, and (ii) Grow Phase enriches this candidate
seed community by adding the most related nodes (if any) to it.
Note that LCP does not partition every large-size community,
but only loose communities explained in Section II-D.

Extensive evaluations on large real world datasets like
Amazon [9] and Flickr [10], show that the proposed algo-
rithm significantly cleans up these large noisy communities
into compact and high precision communities. We robustly
evaluate LCP using an unsupervised metric that measures the
“average overlapping community modularity” [11]. We also
show application of our method in real world, by building
a community based product/tag recommendation system and
measure the precision and recall as our supervised metric for
evaluation.

The rest of the paper proceeds as follows. In Section II we
introduce the basic notation and explain our algorithm in detail.
The experimental evaluations and conclusions are presented in
Sections III and IV respectively.

II. COMPACTING LARGE AND LOOSE COMMUNITIES

We start by defining three concepts: (i) a notion of how
important a node is within a given community or sub-graph
(Section II-A), (ii) our notion of community-ness called co-
herence (Section II-B), and (iii) the notion of “neighborhood”
of a community or sub-graph (Section II-C). We use these
notions to describe the LCP algorithm in Section II-D.

A. Local Node Centrality

Most community-ness measures are direct aggregates over
edge weights. For example, local density takes the arithmetic

mean of all the edges, whereas intensity [12] takes the geo-
metric mean of all its edges, and modularity simply aggregates
the difference between the actual and expected edge weight
distribution [8]. Coherence, on the other hand, is defined
indirectly. First we use the edge weights to derive node weights
that capture how “important” a node is within a community.
Then we aggregate these node weights into the coherence
of the community. To motivate node weights, consider two
subgraphs A= {rain, storm, cloudy, umbrella, chocolate} and
B = {candy, cocoa, chocolate, kid, milk}. It is pretty obvious
that the node chocolate “belongs” more in subgraph B and
perhaps not at all in subgraph A. In other words, if we were
to assign a weight to each node in the subgraph, we would
assign a low weight to chocolate in A and a high weight in B.
We do this because intuitively the weight of the node should
depend on the other nodes it is present with. This intuition is
captured by our node importance measure called Local Node
Centrality (LNC), according to which a node is central to the
community if it is strongly connected to other central nodes in
the community.

Node centrality [13] is a well known concept in graph
theory for capturing the global importance of a node in the
network. There are a number of measures of centrality to
choose from: degree centrality, closeness centrality, between-
ness centrality, eigenvector centrality [13]. The above recursive
definition of importance of a node in the community is best
captured by the eigenvector centrality as the other measures
capture just a first order property of the node w.r.t. other
nodes within or outside the community. PageRank [14] is a
well known variant of the eigenvector centrality. Instead of
applying eigenvector centrality globally, we apply it locally to
each community or subgraph.

According to eigenvector centrality, the centralities of
nodes within a community correspond to the first eigenvector
of the community adjacency matrix. The L2 normalization of
eigenvectors is undesirable as it introduces community-size
bias in a node’s centrality scores - small communities will
tend to get higher node centrality scores and large communities
will tend to get smaller node centrality scores. To avoid this
bias, we use the first unnormalized eigenvector obtained by
multiplying the first eigenvalue to each element of the first
eigenvector.

More precisely, let x = {x1, x2, ..., xm} be a set of m nodes
in a subgraph and W(x) = [w(xi, xj)] be the adjacency matrix
associated with this sub-graph, where w(xi, xj) is the edge
weight between nodes xi and xj . Let ρt(xi|W(x)) denote the
LNC of node xi w.r.t. the subgraph W(x) in iteration t. Initial-
ize all LNCs to be 1 (i.e. ρ0(xi|W(x)) = 1 ∀i = 1...m). Then,
the LNCs are updated in each iteration using Equation (1), until
convergence:

ρt+1(xi|W(x))←
∑m

j=1 ρt(xj |W(x))× w(xi, xj)√∑m
j=1 (ρt(xj |W(x)))

2
(1)

This converges to the first unnormalized eigenvector of W(x)
i.e. if λ1(W(x)) is the first eigenvalue and v1(W(x)) is the
first (normalized) eigenvector of this matrix then converged
ρ(x|W(x)) = λ1(W(x))× v1(W(x)).

B. Coherence of Community

We propose a new community-ness measure called coher-
ence, π(x), loosely defined as: A community is coherent if each
of its nodes belongs with all other nodes in the community. In
other words, coherence is high if every node in the community
has a high belongingness score. Even if one node is peripheral
to it, the coherence goes down. According to this definition,
all the nodes in a community must have a high LNC score in
order for the community to have a high coherence score. So
the most conservative definition of coherence would be to take
the minimum of all LNC scores (Equation (2)).

π(x) = min
i=1...m

{ρ(xi|W(x))} (2)

This essentially makes sure that even if one of the nodes does
not belong in the community, the community’s coherence score
goes down, no matter how high the LNC scores of other nodes
in the community are.

C. Neighborhood of a Community

Consider a network of four nodes: {a, b, c, d} with
some edges among them. We are interested in knowing which
subgraph(s) of this graph i.e. which subset(s) of these four
nodes are communities. Figure 3 shows a lattice representing
the powerset of the four vertices. Each element in this lattice
is a subgraph comprising of those nodes and is a potential
candidate for a community depending on its coherence score
and the coherence score of all its “neighbors”. We first define
neighborhood of a subgraph as follows.

Neighborhood of a subgraph: A subgraph y is said to
be a neighbor of subgraph x, if y is obtained by either
removing a single node (and the relevant edges) from
x or by adding a single node (and the relevant edges)
to x.

Let V denote the set of all nodes in the network and N (x) =
N+(x)∪N−(x) denote the neighborhood of subgraph x where
N+(x) denotes the up-neighbors obtained by adding a node
(and relevant edges) currently not in x and N−(x) are all the
down-neighbors obtained by removing a node (and relevant
edges) currently in x.

N+(x) = {y = v ⊕ x,∀v ∈ V\x} (3)
N−(x) = {y = x\v,∀v ∈ x} (4)

Note that |N+(x)| = |V| − |x| and |N−(x)| = |x|, therefore,
|N (x)| = |V| for all x ∈ 2V. In the lattice structure shown
in Figure 3, N− ({a, c, d}) = {{a, c}, {a, d}, {c, d}} as each
of these subgraphs are obtained by removing exactly one node
from {a, c, d} and N+ ({a, c, d}) = {{a, b, c, d}} obtained
by adding a node to it.

D. LCP Algorithm for Partitioning Loose Communities

As we have defined our notions of coherence and the
neighborhood of a community, here we discuss our algorithm
for partitioning loose communities into compact communities.
We start by defining two important operations of our greedy
algorithm (i) grow operation and (ii) shrink operation. The
grow operation finds the highest coherence up-neighbor of x
in N+(x), by finding the best node (and relevant edges) from

Fig. 3. Consider a subgraph {a, c, d} with its “up-neighbour” ({a, b, c, d}),
and “down-neighbors” ({a, c}, {a, d}, {c, d}). Subgraph {a, c, d} is shrinked
if its coherence is lower than any of its “down-neighbors” (π({a, c, d}) <
max[π({a, c}), π({a, d}), π({c, d})]) and growed if its coherence is less
than its “up-neighbor” (π({a, c, d}) < π({a, b, c, d})).

V − x, to add to x. The shrink operation finds the highest
coherence down-neighbor of x inN−(x). We do this with O(1)
complexity by picking the node in x with the least LNC, since
removal of this node will maximally increase the coherence
of the resulting down-neighbor. There is no guarantee that the
most optimal node will be removed using this heuristic, but
we found empirically that it is true more than 95% of the
times. Figure 3 illustrates the grow and shrink operation on
the subgraph {a, c, d} in the lattice.

Our algorithm for partitioning communities is iterative and
involves three major phases:

• Shrink Phase, where we iteratively apply the shrink
operation on the input community, until the coherence
of the community keeps increasing. Each shrink op-
eration will result in removal of least important node
from the community. As output, we will have (i) a
set of nodes left in the input community (candidate
set) and, (ii) a set of nodes removed during the shrink
operations on the input community (residue set).

• Grow Phase, where we iteratively apply the grow
operation on the candidate set, until the coherence
of the candidate set keeps increasing. Each grow
operation will result in addition of a correlated node
(if any) to the candidate set. The output of this phase
would be a strong and compact community.

• Final Phase, where we send the residue set as input
to shrink phase, until there is no residue set left or no
further shrink is possible.

Figure 1 shows an example of partition of a loose community
into two compact sub-communities by the shrink phase and
the further enhancement of the sub-communities by the grow
phase. Given a loose community x0 and a network Φ, our
greedy iterative method for partitioning loose communities is
shown in Algorithm 1. The worst-case time-complexity of
the shrink phase and grow phase of the LCP algorithm is
O(|x0|) and O(N2) respectively, where |x| denotes the size
of community x and N the number of nodes in the network.
Given the strong intuition behind the coherence measure and
the dependency of our algorithm on coherence at each step, the
possibility of partition of strong, clean communities reduces by
large extent, even if the community is of large size.

Algorithm 1 Loose Community Partition (x0,Φ)
1: x← x0

2: xcompact = []
3: loop
4: [xcandidate,xresidue] = ShrinkPhase(x,Φ)
5: xcompact = [xcompact GrowPhase(xcandidate,Φ)]
6: x← xresidue

7: end loop
8: return xcompact

9: A. ShrinkPhase(x,Φ)
10: loop
11: xresidue = []
12: [x−,xremoved] ← Shrink(x,Φ) {Best down-

neighbor.}
13: if π(x−) > π(x) then
14: x← x− {Not reached maximum coherence yet.}
15: xresidue = [xresidue xremoved]
16: else
17: return [x, xresidue] {maximum coherence.}
18: end if
19: end loop
20: B. GrowPhase(x,Φ)
21: x+ ← Grow(x,Φ) {Best up-neighbor.}
22: while π(x+) > π(x) do
23: x← x+

24: x+ ← Grow(x,Φ)
25: end while
26: return x

III. EXPERIMENTAL EVALUATION

Here, we compare the communities obtained using CPM
and LFM, with communities obtained after applying the LCP
algorithm on the CPM and LFM communities (LCP-CPM and
LCP-LFM), on different metrics over two real world datasets.

A. Datasets

We use the unweighted Amazon product network and
the weighted Flickr tag network for finding communities.
The Amazon product co-purchasing network [9] is obtained
by crawling Amazon website and contains product metadata
and review information of about 548,552 different products.
Ground-truth communities are available for this network. The
Flickr tag network [10] is created using a random subset of
800,000 images from a collection of 3.5 million social-tagged
images from Flickr. The weighted tag network is created by
computing the statistically significant co-occurrences among
tags. Since, ground truth communities are not available for this
network, we divide the data into training and testing tagsets.
The training tagsets are used to derive the tag network and
communities are detected on this weighted tag network. The
testing tagsets are used in the recommendation task. Table I
shows statistical properties like the number of nodes, edges in
the graph for both Amazon and Flickr networks.

Dataset Nodes Edges
Amazon 548,552 925,872
Flickr 5,000 30,006

TABLE I. STATISTICAL PROPERTIES OF AMAZON AND FLICKR DATA

B. Evaluation Metrics

In this paper, we use two different types of methods for
evaluations: overlapping modularity - a standard, unsuper-
vised metric and product/tag recommendation - an application-
oriented supervised metric for evaluating communities.

Overlapping Modularity [11] extends the classical no-
tion of modularity [8], a standard metric defined for non-
overlapping communities to overlapping communities, by in-
troducing notion of belonging coefficients. Even though mod-
ularity maximization is used as a criteria for evaluating most
community detection methods, it need not always coincide
with the correct or best communities [15]. What we want to
evaluate is not how well a graph measure is maximized, but
how good is our community discovery algorithm in describ-
ing real world knowledge about the entities being grouped.
Therefore we use an application-based measure also to evaluate
communities.

Community based Product/Tag Recommendation: We
build a simple product/tag prediction system built on top of
communities to objectively evaluate their quality. First, we use
the product/tag network and find communities in it using CPM,
LFM and our proposed LCP over both these methods. Second,
we build a recommendation system using these communities,
and finally evaluate the quality of the prediction system on
the ground-truth communities of Amazon and the test set of
Flickr. Our recommendation system, via communities, works
as follows: (i) From each ground-truth community/test tagset,
remove all other products/tags, except 1. The goal is to see how
well we predict the removed (target) products/tags using the
remaining (input) product/tag, via communities. (ii) Find all
the communities that contain the input product/tag. Lets refer
them as recommended communities. (iii) Take the union of
all products/tags in these recommended communities. These
form the predicted products/tags and score each of them
by the number of recommended communities in which they
are present, referred as recommendation scores. (iv) Sort all
predicted products/tags on the basis of this recommendation
score and find the ranks of the target products/tags in this
list. (v) Evaluations are done by calculating precision, recall
and F-measure. Precision is defined as the fraction of correct
predictions relative to the total number of predictions made,
and recall as the fraction of correction predictions relative
to the total number of products/tags in the ground-truth. F-
measure is the harmonic mean of precision and recall.

Datasets CPM LCP-CPM LFM LCP-LFM
Amazon 0.27 0.33 0.38 0.48
Flickr 0.31 0.37 0.43 0.52

TABLE II. OVERLAPPING MODULARITY SCORES OF THE
COMMUNITIES DISCOVERED BY CPM [1] (k = 3), LFM [2] (α = 1), OUR

LCP-CPM AND LCP-LFM.

C. Comparison of LCP communities with CPM and LFM

Table II shows the overlapping modularity [11] of the
communities discovered by CPM, LFM and our LCP-CPM,
LCP-LFM on Amazon and Flickr networks. In the Amazon
network, LCP leads to 22.2% increase in modularity over CPM
communities and 26.31% increase over LFM communities.
Similarly, in Flickr network, there is an 19.35% increase in
modularity over CPM communities and 20.92% increase over
LFM communities. These significant improvements are due to

(a) Amazon
CPM LCP-CPM LFM LCP-LFM

N 28,402 38,040 10,318 18,482
S 10.36 6.54 14.27 6.17

P(%) 34.13 38.74 24.36 27.58
R(%) 8.97 10.91 6.12 8.83
F(%) 14.21 17.02 9.78 13.37

P@1(%) 19.54 20.23 12.58 15.19
P@5(%) 37.91 47.07 25.39 38.21

(b) Flickr
CPM LCP-CPM LFM LCP-LFM

N 1138 1342 712 1023
S 11.81 5.19 13.87 6.37

P(%) 17.72 22.29 13.53 18.12
R(%) 15.48 18.98 9.54 13.13
F(%) 16.53 20.5 11.19 15.22

P@1(%) 13.59 24.61 7.21 15.45
P@5(%) 22.70 36.1 17.17 30.51

TABLE III. PERFORMANCE OF CPM [1](k = 3), LFM [2](α = 1),
LCP-CPM AND LCP-LFM COMMUNITIES IN PRODUCT/TAG

RECOMMENDATION. N, S, P, R, F DENOTES NUMBER OF COMMUNITIES,
AVG. COMMUNITY SIZE, PRECISION, RECALL & F-MEASURE

RESPECTIVELY AND P@1, P@5 DENOTES PRECISION AT ONE & FIVE
PREDICTIONS RESPECTIVELY.

the use of LCP algorithm. Also note that LFM is primarily a
modularity maximization method and even on that, LCP leads
to a significant improvement in the modularity metric.

In Table III, we compare the community based product/tag
recommendation performances of CPM and LFM communities
with its LCP counterparts over Amazon product and Flickr
tag networks. Communities discovered using LCP significantly
outperform CPM and LFM in all aspects of the evaluation.
While the average size of LCP communities (≈ 6.06) are
significantly smaller than the average size of their non-LCP
counterparts (≈ 12.57), the number of communities increases
significantly (25.92% for CPM, 61.39% for LFM). This is
because each large, loose community is partitioned by LCP
into a number of small but compact communities. Significant
improvement is also seen over precision, recall and F-
measure, in task of product/tag recommendations. Compared
to CPM and LFM communities, we observe, on average,
19.65% and 23.57% increase in precision, 22.11% and 40.95%
increase in recall, thus resulting in 21.89% and 36.35% in-
crease in F-measure respectively. This partitioning of loose
communities into compact ones improves their productivity,
which is exemplified by their performances in the task of
recommendation. Improvements could also be seen on the
Precision@1 and Precision@5 scores. The overall precision
and recall is low because communities by themselves are not
enough for recommending products/tags in a recommendation
system. We use the recommendation system only as an evalu-
ation metric for comparing methods.

Figure 4 shows the community frequency distribution and
average community edge density of LCP-CPM and LCP-LFM
communities on Amazon and Flickr networks. Compared to the
corresponding statistics of CPM and LFM-based communities,
shown in Figure 2, we see substantial reduction in the number
of large-sized communities(90.26% for CPM, 82.02% for
LFM) as well as significant increase in the average community
density(17.88% for CPM, 24.14% for LFM).

Hence, from compactness to recommendation perfor-
mances, it can be seen that LCP improves the quality of the
communities discovered by CPM and LFM by partitioning

(a) Community Frequency Distribu-
tion by size

(b) Average community density by
size

Fig. 4. Community frequency distribution and the average community edge
density, after applying LCP algorithm on the communities obtained using CPM
and LFM on both Amazon and Flickr.

them into compact and semantically strong communities.

IV. CONCLUSIONS

In this paper, we present a new algorithm for partitioning
large and loose communities discovered by any method into
compact and meaningful communities. We also introduce a
new notion of community-ness called coherence based on the
notion of local node centrality, derived from standard node
centrality [13] in graph theory. Our algorithm is parameter-
free, fast and efficient. An important future work to pursue is
to extend this approach to build a hierarchy of communities
instead of just a flat set of communities, which can evolve into
identification of beautiful semantic concepts.

REFERENCES

[1] G. Palla, I. Derenyi, I. Farkas, and T. Vicsek, “Uncovering the overlap-
ping community structure of complex networks in nature and society,”
Nature, vol. 435, no. 7043, pp. 814–818, 2005.

[2] A. Lancichinetti, S. Fortunato, and J. Kertsz, “Detecting the overlap-
ping and hierarchical community structure in complex networks,” New
Journal of Physics, vol. 11, 2009.

[3] M. Girvan and M. E. J. Newman, “Community structure in social and
biological networks,” PNAS, vol. 99, no. 12, pp. 7821–7826, 2002.

[4] G. W. Flake, S. Lawrence, and C. L. Giles, “Efficient identification of
web communities,” SIGKDD, pp. 150–160, 2000.

[5] S. E. Schaeffer, “Graph clustering,” Computer Science Review, no. 1,
pp. 27–64, 2007.

[6] R. Schifanella, A. Barrat, C. Cattuto, B. Markines, and F. Menczer,
“Folks in folksonomies:social link prediction from shared metadata,”
WSDM, pp. 271–280, 2010.

[7] J. Gemmell, A. Shepitsen, B. Mobasher, and R. Burke, “Personalizing
navigation in folksonomies using hierarchical tag clustering,” DaWaK,
pp. 196–205, 2008.

[8] M. E. Newman, “Modularity and community structure in networks,”
PNAS, vol. 103, no. 23, pp. 8577–8582, 2006.

[9] J. Yang and J. Leskovec, “Defining and evaluating network communities
based on ground-truth,” ICDM, pp. 745–754, 2012.

[10] X. Li, C. G. M. Snoek, and M. Worring, “Unsupervised multi-feature
tag relevance learning for social image retrieval,” CIVR, pp. 10–17,
2010.

[11] V. Nicosia, G. Mangioni, V. Carchiolo, and M. Malgeri, “Extending the
definition of modularity to directed graphs with overlapping communi-
ties,” Journal of Stat. Mech., 2009.

[12] J. P. Onnela, J. Saramki, J. Kertsz, and K. Kaski, “Intensity and
coherence of motifs in weighted complex networks,” Physical Review
E, vol. 71, 2005.

[13] T. Opsahl, F. Agneessens, and J. Skvoretz, “Node centrality in weighted
networks: Generalizing degree and shortest paths,” Social Networks,
vol. 32, no. 3, pp. 245–251, 2010.

[14] S. Brin and L. Page, “The anatomy of a large-scale hypertextual web
search engine,” Computer Networks, vol. 30, no. 1-7, pp. 107–117,
1998.

[15] S. Gregory, “Local betweenness for finding communities in networks,”
University of Bristol, Tech. Rep., 2008.

