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Abstract. Labels associated with social images are valuable source of
information for tasks of image annotation, understanding and retrieval.
These labels are often found to be noisy, mainly due to the collabo-
rative tagging activities of users. Existing methods on annotation have
been developed and verified on noise free labels of images. In this paper,
we propose a novel and generic framework that exploits the collective
knowledge embedded in noisy label co-occurrence pairs to derive robust
annotations. We compare our method with a well-known image annota-
tion algorithm and show its superiority in terms of annotation accuracy
on benchmark Corel5K and ESP datasets in presence of noisy labels.
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1 Introduction and Related Work

Over the years, the Internet has become the largest database for multimedia
content and is organized in a rich and complex way through tagging activities.
One such example is collaborative tagging websites, such as Flickr, which collects
millions of photos per month from tens of thousands of users. Consequently, there
is immense research interest in producing efficient image annotation techniques
for labelling social images to cope with the continuously growing amount of
social image data.
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Fig. 1. Figure shows example images and corresponding labels from both Corel5K
datasets and Flickr images.

Existing annotation methods [1–4] consider the labels associated with the im-
ages to be devoid of errors and belonging to a small fixed vocabulary, and hence,
can be directly used for designing annotation schemes. In contrast, the labels
collected by collaborative tagging websites are noisy i.e misspelled, redundant,
irrelevant to content, and unlimited in numbers. Thus, an interesting problem



to address is, on how to use the noisy information available for annotating un-
labelled images reliably.

Figure 1 shows examples of images from both expert-annotated Corel5K
dataset and user tagged Flickr images. Labels of Flickr images like love, life,
emotions, excited etc. are large in number and also irrelevant to the image con-
tent, whereas labels of Corel5K are often small in number and precisely describe
the content of the image. In this paper, we address the problem of image anno-
tation in presence of noisy labels.

Methods like WSABIE [3], which learn a low dimension embedding space for
images and annotations, address this issue in an indirect way. Even Wordnet-
based approach [5] has been used to remove irrelevant labels. In MLFDA [6],
image annotation is posed as a multi-modal multi-class classification problem,
where the noisy data is treated as a special kind of modal of the class and
separating hyperplanes between classes are learned by kernel-based LFDA.

In this paper, we address the task of image annotation on noisy data using
concept-modelling, a very popular notion in Information Retrieval community.
The intuition is that, a specific meaning or aspect of an image can be well
described by a group of highly related labels, referred to as label concept. Ac-
cordingly, each image can be organized into groups, each of which matches one
label concept. This type of image organization not only removes noisy labels
associated with an image, but also predicts additional labels that are actually
depicted in the image but missing in the ground-truth annotations.

To show the utility of concepts over noisy systems, we compare its annotation
performance with a baseline annotation method JEC [1], with noisy labels on
Corel5K and ESP datasets. Our experimental results suggest that the proposed
concept-based method leads to superior image annotation performance compared
to JEC in presence of noisy labels.

2 Image Annotation in Presence of Noisy Labels

2.1 Nearest Neighbour Model for Annotation

K-nearest neighbour (or KNN) based methods [1, 2, 4] have been found to give
some of the best results on the task of image annotation. The intuition behind
them is that similar images share common labels. Most relevant KNN-based
annotation methods are (i) JEC [1], which treats the annotation problem as
retrieval and proposes a greedy algorithm for label transfer from neighbours,
(ii) TagProp [4], a weighted KNN based method that transfers labels by taking
weighted average of labels present among the neighbours, and (iii) 2PKNN [2],
where a class-wise semantic neighbourhood is defined and only samples within
this neighbourhood are used for annotation of unseen image. Since JEC is the
essential backend method for modern successful techniques [2, 4], we compare
our results with JEC [1] and show that our method is robust under noisy labels.

Let I = { I1, . . . , IN } denote the collection of images and V={ v1, . . . , vm }
denote the vocabulary of m labels. The training set T = { (I1,V1) . . . (IN ,VN ) }
consists of pairs of images and their corresponding label sets, with each Vi ⊆ V .
Given an unannotated image J, the task of annotation is to predict a set of
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Fig. 2. Figure illustrates example of the well known K-Nearest Neighbour(K-NN)
model used in image annotation. For each query image, the top 4 visually similar im-
ages are shown, along with the labels associated with them. The labels of the nearest
neighbours are transferred to the query image for annotation.

labels that semantically describe J . In a typical NN-setting, we pick the top K
visually similar images TJ = { (TJ,1,γJ,1) . . . (TJ,K ,γJ,K) }. γJ,K denotes the
visual similarity score of image J with its Kth neighbour, defined as:

γJ,K = V isualSimilarity(IJ , TJ,K) (1)

This score is generated as a function of distance between the images in visual
feature space (SIFT, Color Histograms, GIST). Then, the labels of the nearest
neighbours are ranked on basis of a label scoring function, κJ,vi and the top
L labels are used to annotate the test image J. This label scoring function is
usually based on frequency [1] or distance [4]. Figure 2 shows illustration of KNN
model for image annotation.

2.2 Noisy Labels

In photo sharing websites, such as Flickr and Picasa, it is believed that most of
the labels are correct, although there are many incorrect and redundant labels.
Even from Figure 1, it can be observed that around 40-50% of the labels are
irrelevant and are out-of context of the concept which the image represents.
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Fig. 3. An overview of our approach, which includes label network construction based
on their co-occurrence, semantic concept identification using image labels and a KNN-
based approach for transferring labels of concepts to unannotated image.

Existing KNN-based methods [1, 2, 4] make an inherent assumption that la-
bels present in the training set are reliable and correct, and hence can be directly



used for training. They do not have an implicit mechanism of handling noisy la-
bels and would not be suitable for annotation task in collaborative systems.

In this paper, we first present a graph-based approach for exemplifying the
relationships between labels along with a noise removal algorithm to remove
most of the semantically-unrelated links among the labels. We then make use
of this label network to infer the semantic concepts associated with images.
Finally we illustrate how these concepts could be used for image annotation in
a KNN-based setting. Figure 3 summarizes our approach.

2.3 Label Network Construction and Noise Removal

For label network creation, first the label co-occurrence counts, ψ (α, β) α, β ∈ V ,
are calculated. But, this is not the best measure to quantify label co-occurrence
strength as it may happen that two very frequent but uncorrelated tags might
co-occur a lot compared to two relatively rare but correlated tags. Hence, we use
consistency, φ(α, β), to quantify associativity between labels, which is loosely
defined as how much more likely is it to see the two labels together than random
chance. We start by computing three types of raw statistics from the labels of
training images: (i) Co-occurrence Counts ψ(α, β), (ii) Marginal Counts ψ(α),
and (iii) Total Counts ψ0 (defined in Step 3 of Algorithm 1). Joint probabilities

P (α, β) = ψ(α,β)
ψ0

and marginal probabilities P (α) = ψ(α)
ψ0

are computed from
these counts. These statistics are used for computing pair-wise consistencies
between labels. We use Normalized Point-Wise Mutual Information3, defined as

φ(α, β) =
log

(
P (α,β)
P (α)P (β)

)
− logP (α, β)

∀ψ (α, β) > 0 (2)

to exemplify this consistency between labels, as it is a well-bounded quantity
and suitably satisfies the definition of consistency.

Algorithm 1 Denoise([ψ(α, β)])

1: Iteration t← 0
2: ψ(t)(α, β)← ψ(α, β)

3: ψ(t)(α)←
∑
β∈V ψ(t)(α, β), ψ

(t)
0 ← 1

2

∑
α∈V

∑
β∈V ψ(t)(α, β)

4: while
∑
α∈V

∑
β∈V φ(t)(α, β) converges do

5: φ(t)(α, β)← Consistency
(
ψ(t)(α, β), ψ(t)(α), ψ(t)(β), ψ

(t)
0

)
6: ψ(t+1)(α, β) ← ψ(t)(α, β)δ

(
φ(t)(α, β) > θconsy

)
{δ(bool) = 1 if bool is true else

0.}
7: ψ(t+1)(α)←

∑
β∈V ψ(t+1)(α, β), ψ

(t+1)
0 ← 1

2

∑
α∈V

∑
β∈V ψ(t+1)(α, β)

8: t← t+ 1
9: end while

Iterative Noise Removal: Initially, there is insufficient knowledge to iden-
tify which label-pairs are noise. After computing consistencies, label pairs with
consistencies lower than a threshold θconsy can be declared noise and are re-
moved from the network. The marginal and total counts are then updated and

3 http://en.wikipedia.org/wiki/Pointwise mutual information



consistencies are recomputed in the next iteration. The iterative noise removal
method is described in Algorithm 1.

Table 1 shows effect of noise removal on the pair-wise consistencies of labels
associated with label water in Corel5K data. It can be seen that consistencies
of label water with correlated labels like sea, ocean, beach, lake increases signif-
icantly, whereas with irrelevant labels like hills, grass decreases to zero. By the
end of this phase, we obtain a clean noise-free label network with pair-wise
consistencies between labels as edge weights, which we will call label consistency
network.

Label sea ocean beach lake pool hills grass

Before Denoising 0.3257 0.3720 0.3195 0.1699 0.0148 0.2081 0.1461

After Denoising 0.5750 0.5728 0.5658 0.3629 0.2449 0 0

Table 1. Effect of noise removal on the consistencies of labels associated with label
water in noisy Corel5K dataset, with θconsy = 0.01.

2.4 Label-based Concept Extraction
Here, we use the label consistency network for identifying semantic concepts as-
sociated with training images, using the image labels as seed. We define concepts
as local maximal subgraphs in the label consistency network, based on a novel
measure of concept strength, which is in-turn defined in terms of label strength.

In a systematic way, we first define label strength of a node (label) in a
subgraph as a measure that captures the connectivity of the node with rest of
the nodes in the subgraph. This essentially is the eigenvector centrality [7] of the
subgraph. If x = {x1, x2, ..., xm} be a set of m nodes in a subgraph and W(x) =
[φ(xi, xj)] be the label consistency submatrix associated with this subgraph, then
by eigenvector centrality, the label strengths converge to the first unnormalized
eigenvector of W(x).

If λ1(W(x)) is the first eigenvalue and v1(W(x)) is the first (normalized)
eigenvector of this matrix, then label strengths, ρ(x|W(x)), are defined by:

ρ(x|W(x)) = λ1(W(x))× v1(W(x)) (3)

π(x|Φ) = min
i=1...m

{ρi} (4)

To capture the tightness of an arbitrary subgraph, we define concept strength,
π(x|Φ), to be minimum of the label strengths of all nodes (labels) of the sub-
graph (Equation 4). We now define concepts, as all those subgraphs in the label
network, whose concept strength is higher than all its “neighbours”. Neighbours
of a subgraph, x, is defined as all the subgraphs which can be obtained either
by adding a single node (N+(x)) or removing a single node (N−(x)) from the
given subgraph.

N+(x) = {y = v ⊕ x|∀v ∈ V\x} N−(x) = {y = x\v|∀v ∈ x} (5)

We propose a greedy label-based approach to find such concepts, using the
two atomic operations of grow and shrink. The grow operation tries to ex-
haustively find the best subgraph in N+(x), which will have maximum concept
strength, whereas the shrink operation finds the best subgraph in N−(x).



Algorithm 2 explains how we extract multiple concepts associated with an
image, using their labels as seed. The algorithm iterates over two phases: (i)
Shrink Phase, which reduces labelset into a candidate subset of highly corre-
lated labels, and (ii) Grow Phase, which adds more correlated labels to the
candidate set making it a complete concept. The residue of the shrink phase is
then again used as input over the next iteration to identify more concepts. Over
this recursive process, multiple concepts associated with an image are identified.

Algorithm 2 Label Based Concept Extraction(x0, Φ)

1: x← x0

2: xconc = [ ]
3: while x do
4: [xcand,xrem] = ShrinkPhase(x|Φ)
5: xconc = [ xconc GrowPhase(xcand|Φ) ] {Concepts extracted are concatenated}
6: x← xrem
7: end while
8: A. ShrinkPhase(x|Φ)
9: loop

10: [x−,xrem]← Shrink(x|Φ) {Best possible down-neighbor.}
11: if π(x−) > π(x) then
12: x← x− {Not reached local maxima yet.}
13: else
14: return [x, xrem] {Reached local maxima.}
15: end if
16: end loop
17: B. GrowPhase(x|Φ)
18: x+ ← Grow(x|Φ) {Best possible up-neighbor.}
19: while π(x+) > π(x) do
20: x← x+

21: x+ ← Grow(x|Φ)
22: end while
23: return x+

2.5 Label Transfer for Annotation

Now, we illustrate how concepts can be used for the task of image annotation
algorithm in an NN-setting. As a pre-processing step, we first use the training
image labels to create a label consistency network and concepts associated with
individual training images are extracted.

Given a test image J , we first find the top K-visually similar training images
using features and metrics as suggested in [4]. Then, the labels associated with
the concepts of the nearest training images are ranked based on a label scoring
function, κJ,vi , defined as:

κJ,vi = γJ,K · π(x|Φ) · ρvi(x) (6)

This score is computed as product of visual similarity of the training image
to the test image, concept strength of the concept associated with the training
image and the label strength of the label within the concept. The individual



components of the scoring function are first normalized before computing the
scores. The labels are ranked based on this score and top L unique labels are
assigned to the test image. Please note same label could have multiple scores,
due to presence of same label in multiple concepts or images.

3 Experiments

We present both qualitative and quantitative results, showing comparisons of our
method with a very popular baseline method JEC [1], on benchmark annotation
datasets: Corel5K and ESP [1].
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Fig. 4. Annotation of test images from noisy Corel5K dataset. The second, third and
fourth rows show the ground truth labels, the labels predicted by JEC and the labels
predicted by our method respectively. The labels in red are those, though depicted
in the corresponding images, are missing in the ground-truth annotations and are
predicted by our method.

As the motivation of our work is to show the effectiveness of our method
on data with noisy labels, we create a parameter modulated noisy dataset by
adding noisy labels to the training images of Corel5K and ESP. The noisy la-
bels are taken from a vocabulary which has no overlap with the ground-truth
vocabularies. We perform modulated experiments by regulating the degree of
noise added to training data, using a parameter Q, which denotes the number
of noisy labels added per training image. Annotation models are created using
both, our method and JEC [1]. Evaluations are done using popular metric of
mean F1-score over all the labels in the original vocabulary of the dataset. The
F1-scores reported by our method correspond to label networks with threshold
θconsy = 0.01, which was experimentally observed to be giving best results.

Figure 4 shows some qualitative results obtained using our method and JEC
on noisy Corel5K data. It can be seen that some labels predicted by JEC are
irrelevant and, also some ground truth annotations are missing in the predictions,
whereas our method predicts all ground-truth annotations along with labels,
which are depicted in the image but missing in the ground-truth annotation.

To analyze our method’s performance quantitatively, we compute the F1-
score of each label in the ground-truth. The mean F1 scores using our method
as well as those obtained by JEC [1] are reported in Figure 5. In both Corel5K
and ESP datasets, as noise increases, F1-score of both methods decrease, but
relatively our method performs better than JEC. In Corel5K, when only one
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Fig. 5. Comparison of annotation performance of our method and JEC[1] on noisy
Corel5K and ESP datasets. Q denotes the number of noisy labels per training image.

noisy label is added per training image (Q = 1), there is about 6% improvement
in F1-score. As Q is increased to 4, there is around 150% increase in the F1-score,
which is a very significant improvement. This shows the effectiveness of using
concepts in the task of image annotation, especially when noise is too high.

Experimentally we found that as θconsy increases, the F1 scores also increase
upto to a saturation point, and then start decreasing. This happens because once
θconsy reaches its saturation value, even relevant label-pairs in the network are
considered as noise and discarded in the noise removal step. The pre-processing
step of concept extraction takes considerable time. The label transfer step takes
almost equal amount of time compared to JEC.

4 Conclusions
In this paper, we propose a novel knowledge-based approach for image annota-
tion that exploits the semantic label concepts, derived based on the collective
knowledge embedded in label co-occurrence based consistency network. An im-
portant future work to pursue is to build a hierarchy of Concepts and utilize
them to learn useful insights for the tasks of image annotation and retrieval.
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