Shape Reconstruction from Single Relief Image
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Abstract—Reconstructing geometric models of relief carv-
ings are of great importance in preserving cultural heritages
digitally. In case of reliefs, using laser scanners and structured
lighting techniques is not always feasible or are very expensive
given the uncontrolled environment. Single image shape from
shading is an under-constrained problem that tries to solve for
the surface normals given the intensity image. Various con-
straints are used to make the problem tractable. To avoid the
uncontrolled lighting, we use a pair of images with and without
the flash and compute an image under a known illumination.
This image is used as an input to the shape reconstruction
algorithms. We present techniques that try to reconstruct the
shape from relief images using the prior information learned
from examples. We learn the variations in geometric shape
corresponding to image appearances under different lighting
conditions using sparse representations. Given a new image,
we estimate the most appropriate shape that will result in the
given appearance under the specified lighting conditions. We
integrate the prior with the normals computed from reflectance
equation in a MAP framework. We test our approach on relief
images and compare them with the state-of-the-art shape from
shading algorithms.
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I. INTRODUCTION

Relief carvings have been a popular way of decorating
buildings and depicting stories since the ancient times. They
were used to enhance the ambiance of places of worship,
palaces, public buildings and parks. With time many of these
structures have weathered down and hence, it is of great
importance to preserve these heritage symbols. Convention-
ally, relief surfaces are constructed by carving out stones to
give an impression of a 3D shape coming out of the relief
plane. The particular way of construction of reliefs provides
us with useful cues that can be exploited to reconstruct the
shape from a single image, which is the primary focus of
this work.

Various simplifying assumptions and regularization con-
straints are used to solve the ill-posed problem of single view
reconstruction. Still it needs strong prior knowledge about
the object under consideration. An effective prior arises from
the fact that surface normals at occluding contours lie in
the image plane [8], [19]. However, it is very difficult to
correctly detect the occluding contours in a relief, making
it ineffective. We note that humans perceive shape from
a single image by not only estimating the properties of
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Figure 1. Shape Reconstruction from single relief image (Depth maps are
shown with psuedo-color visualization, red is near and blue is far). (a)
Complete exemplar dataset consists of only 7 relief images, (b) Original
Relief Image, (c) Depth Map obtained by SfS of Tsai et al. [20], (d) Depth
Map obtained by Barron and Malik [19], (e) Depth Map obtained by our
approach. The depth map obtained from (c) is noisy. We learn shape priors
for reliefs to improve the shape reconstruction. Note that we recover overall
geometry as well as details of face, legs and the left part of relief that is
not recovered in (d). Results of [19] were poor for color images, so we
used gray scale image to obtain (d).

the environment but also by a higher level recognition. In
other words, prior knowledge from previously seen instances
improves the reconstruction for us. In our approach, we
encode the prior knowledge in a non-parametric way using
a training database of reliefs. Shape reconstruction using
exemplar database has been shown to work well in many
highly similar class specific objects or shapes [2], [3] and
in photometric stereo [4].

Techniques used for 3D reconstruction have their own
limitations, especially for large scale usage. Highly accurate
systems such as laser scanners are extremely expensive for
use by common man, whereas multi-view stereo methods
require large number of images. Other methods also make
similar tradeoffs between cost, ease of use and accuracy. Our
goal is to come up with an easy to use and least expensive
method that improves the accuracy of relief reconstruction.

The most effective approach to recover surface normals
from a single image of an object with very limited depth
variation is to use the classical shape from shading (or SfS)



with appropriate constraints. However, the approach assumes
that we know the lighting direction or, in some cases, that
it has a single frontal light source at infinity. These assump-
tions do not hold for images of reliefs acquired in real world
as they are illuminated by a complex illumination from the
environment and is rarely frontal. As described later, we
overcome this challenge by using a simple modification to
the imaging process using consumer cameras without the
need of any additional hardware. We assume Lambertian
surface reflectance model and orthographic image projection.
These assumptions are valid for reliefs as the surface of re-
liefs are very rough and also the shape variation is very small
as compared to the distance between the camera position
and reliefs. The albedo, however, is not constant across the
images, but is considerably uniform as the relief is made up
of a single stone. We test our approach on both synthetic
and real datasets. Our approach shows improvements over
the shape from shading methods and is able to capture both
overall shape and finer details.

Even with mostly uniform albedo of the carved reliefs,
the SfS results in highly noisy depth map (see Fig. 1).
We use a relief specific prior that significantly improves
the results and are learned from sparse coding of sample
relief images. Sparse representations of image patches are
widely used for many computer vision applications like color
image denoising , demosaicing and image inpainting [21].
Reliefs provide two important priors: i) the height variation
across a relief is small and continuous especially in low
reliefs and, ii) the overall shape of the relief is a flat plane
with surface variation above the plane (see Fig. 1). Learning
the relationship between the image appearance and the
corresponding shape patches inherently reduces ambiguities
caused by looking at an individual pixel. By using sparse
representations of image patches, we are able to capture the
correlation between the image appearance and local shape
variations.

A vast variety of work has been done on single view shape
reconstruction. Thorough and complete surveys of early
work can be found in [5]. Durou et al. [6] surveyed recent
works on numerical methods for SfS. Most of the works
have popular assumptions such as Lambertian reflectance,
single distant point light source, orthographic projection,
and constant uniform albedo. Recent works have relaxed a
few of these assumptions. Oxholm and Nishino [8] present
a framework to jointly estimate the shape and reflectance
of an object from single image under a known natural
illumination. Similar works on shape recovery under natural
illumination are Huang and Smith [9] and Jhonson and
Adelson [7].

Apart from SfS approaches, researchers have examined
the relationship between the shading or appearance and the
shape variations in local neighborhoods [10]. Freeman et
al. [11] presented a graphical model framework incorporat-
ing patch-based priors. In [3], database consisting of objects

of highly similar class like faces, body poses etc., were
used to recover the shape for a new query image of the
same class. Apart from matching image appearances, they
have given higher probability to patches lying in similar
regions of the example images, which is possible due to
the class specific database. Huang et al. [12] presented a
generalized patch-based approach where they learn the prior
probabilities for a given image patch using a database of
spherical geometric primitives and their appearances. These
priors are then incorporated in a variational shape from
shading formulation.

II. THE PROPOSED APPROACH

The core of the proposed approach involves two inde-
pendent processes for estimating the shape from a relief
image. The first one is based on recovery of normals using
the lambertian reflection laws. Independently, we use the
prior distribution of image patches from other relief images
to estimate local geometric shapes. This is computed using
a sparse coded representation over a relief dictionary, and
serves as our relief prior for the normals. We convert
surface normals to surface gradients. A MAP framework is
introduced to integrate the results of the two estimates.

We also present results on a synthetic dataset of body
poses, in addition to a real dataset of relief images collected
from ancient heritage sites. As we see from the results,
our algorithm is able to capture the overall shape and local
geometric shapes, and the approach can be extended to work
with objects other than reliefs.

A. Shape From Shading

Tsai and Shah [20] proposed a SfS algorithm with lin-
ear approximations that was one of the better performing
algorithms in the survey by Zhang et al. [5]. It is a local
approach where they apply discrete approximation of the
gradients first, and then linearize the reflectance function in
terms of the depth directly, instead of the gradients. Their
approach performed well for real images, but is sensitive to
noise in the intensity image. We combine their approach on
the relief images along with a modified imaging process, and
then improve the results by using the relief priors learned
from sparse representation of query image patches.

Imaging under Known Illumination

The complex natural illumination can be simplified if we
can capture two images of the same relief from approx-
imately the same point of view, one with and the other
without a flash. Flash photography is popularly used for
various vision tasks such as ambient image denoising, detail
transfer from flash to ambient, white balancing, red-eye
correction, etc. [17]. We acquire two images of the object
using a tripod to ensure the pixel alignment and to avoid
image registration problem.

Let A be the ambient light image and F the image using
flash. We apply gamma correction on A and F to bring both
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Figure 2. Example of Pure Flash image computation. (a) Flash+Ambient
Image F (b) Ambient Image A (c) Pure Flash Image PF

the images in the same linear space. Focus, aperture and
ISO settings are kept same for both the images. If At4 and
Atp are the exposure times for A and F respectively, then
we compute the pure flash image PF as shown below
AN
PF=F—-A At (1)

Fig. 2 shows an example of computing pure flash image.
Given a pair of flash and non-flash images, complex natural
illumination can be simplified in the above manner to
improve the accuracy and robustness of the SfS process.

In spite of the illumination correction, the SfS results
are often noisy due to violations of the pure lambertian
reflectance and uniform albedo assumptions of the object.
We now look into the process of computing the shape prior
for the image to overcome some of these problems.

B. Learning the priors for relief image

Our approach is similar in principle to the recent work
from Panagopoulos et al. [13]. They proposed a data-driven
approach that learns a dictionary of geometric primitives
and their appearances. The dictionary is used to learn a
small set of hypotheses about the local 3D structure for the
given image to get an initial guess that is then regularized
by an MRF optimization layer. In our approach, we learn
the relief priors using an overcomplete dictionary with a
composite signal of image appearance, surface gradients,
and light source direction. To reconstruct the geometry of
a given image, we sample the image densely at each pixel
and for a patch around this pixel, we reconstruct a signal
from the learned dictionary using a sparse linear combination
of the basis signals. We use the sparse representations in
learning the correlation between the image appearances and
the corresponding shape variation.

Dictionary Learning: For each instance in the exemplar
set, we know the gray scale image appearance [y, surface
gradients P and Q); in = and y directions respectively,
and the light source direction Si. A signal w € R? in the
dictionary encodes the correlation between the appearance,
surface gradients and light source direction. We represent
the intensity in image appearance by a square patch p (7x7
pixels) densely sampled at each pixel of I and surface
gradients at that pixel by z, and z,. Each signal w is
then constructed by concatenating p, Sk, 2z, and z,. Given
the densely sampled signals in each instance, we learn the

overcomplete dictionary as follows:

{D,a;} = argmin ||lw; — Da;lla st |lallo < L (2)

where D is the dictionary, w; are the signals, «; are the
sparse representation of signals, and the constant L (L = 3)
defines the required sparsity level.

For basis learning, we use the K-SVD algorithm presented
in [14]. We learn the basis dictionary D € RYX™ where n (n
= 500) is number of basis signals, such that each signal is
represented by a few basis element.

Sparse Coding: Once the basis is learnt, any query signal
q € R? can be decomposed sparsely over the basis i.e,

q~ Da st ol <L, 3)

where « is the sparse representation of the signal and ||.||o is
lp pseudo-norm, which gives a measure of number of non-
zero entries in a vector.

For any given image, the surface gradients are unknown.
We form query signals q € R? sampled densely at each
pixel, with their gradient values set to zero. To represent
this incomplete signal from the learned overcomplete basis,
we mask the dictionary D such that the surface gradients
signals are set to zero. We use the Orthogonal Matching
Pursuit(OMP) technique to learn the « such that the query
signal q is sparsely reconstructed from the basis signals. The
learned « is then used to recover the corresponding surface
gradient values for each pixel in the image.

C. Shape Recovery using relief priors

Given an image of a relief carving, we have now computed
a shape prior and a noisy normal field from SfS. We pose
the integration as a maximum-a-posteriori (MAP) estimation
problem from these quantities. To achieve this, we convert
normals to surface gradients and compute the most likely
surface gradients G at each pixel of the image, given the
observation G, the gradients computed from SfS. This may
be written as:

G = argmax p(G|Gy) = argmax p(G;|G)p(G|G,)
el el

where G, is the learned surface gradient priors. Note that
the denominator in the Bayes formulation is not relevant
for computation of argmax. The two densities, p(G|G),
and p(G|G,) models the error probabilities in the SfS and
prior computations respectively. The two are estimated from
ground truths of the training samples. Assuming normal
distributions, the minimization has a closed form solution of
the form: G = aGp+(1—a)Gy. a is given by ol/(02+a2),
where o? and o} are the variances of the SfS and prior
depth error distributions. The surface gradients thus obtained
are integrated by affine transformation of gradients using
diffusion tensors [16].



Figure 3. Comparison between two variants of signal construction
discussed in Sec. III. (a) Original Image, (b) Depth map using Pixel-wise
Signal Construction, (¢) Depth map using Patch-wise Signal Construction.
Note that, (b) captures finer details where as (c) is more smoothened shape.

III. EXPERIMENTS AND RESULTS

We test our approach on relief images and synthetic
datasets of Human body poses [3]. The exemplar set of
relief images consists of 7 images with different lighting
directions (see Fig. 1). The albedo is mostly uniform across
the images with minor variations. Human body poses dataset
consists of 12 images and their depth maps. For exemplar
reliefs, pixel wise depth maps were computed by MVS
technique. We used bundler [18] followed by dense recon-
struction using PMVS [1]. The dense 3D point cloud is back
projected and gaussian interpolation is used to achieve pixel
wise depth correspondence.

We also test our approach with a modified signal repre-
sentation. We learn the relationship between appearance and
gradient patches. So, each query signal at a pixel estimates
the surface gradients for a patch centered at that pixel.
We refer this as patch-wise approach, and the former as
pixel-wise approach. The patch-wise signal will have the
following effects on prior learning. (i) Query signals are
more incomplete in patch-wise, so the sparse representation
may be less accurate. (ii) As each pixel will find surface
gradients for a patch, the overall shape will become more
smoothened and it may remove the finer geometric details.
Fig. 3 shows the comparison between the two methods of
signal construction.

A. Quantitative Evaluation

We use exemplar dataset to evaluate and compare our
algorithms quantitatively. We learn the dictionary by leaving
out the test image. Here, comparing absolute depth values
is not an appropriate way of evaluating the approaches. We
choose our shape evaluation metric as :

. 1 o
N — MSE(N,N*) = - Z:aurccos(N%y-N;Z,y)2 (€]
zy

This is the mean squared error between the angle of the
normal fields N (our estimated shape) and N* (ground-truth
shape). This error metric is invariant to shifts in depth Z.
Table I shows the quantitative results as average N-MSE
for both the datasets. Our approach significantly improves
upon the SfS results of Tsai ef al. [20]. All the results were
computed using a very small exemplar set with different
lighting directions and we believe that our performance
should improve by using a larger representative exemplar
dataset or by using the modified imaging process.

Reliefs =~ Human Body Poses
Tsai et al. [20] 0.03422 0.02817
Barron and Malik [19] 0.01868 0.01811
Our approach (Patch wise) | 0.02278 0.01337
Our approach (Pixel wise) | 0.02212 0.01412
Table I

QUANTITATIVE RESULTS AS AVERAGE MEAN SQUARED ERROR FOR
RELIEFS AND HUMAN BODY POSES DATASET.

B. Qualitative Evaluation

In Fig. 4, we show results of our pixel-wise and patch-
wise approaches on a variety of relief images captured in
uncontrolled environment by consumer camera. Our pixel-
wise approach performs better in 4(a), 4(c) and 4(f). We are
able to recover the overall shape of the relief and also local
shape variations 4(b), 4(d) and 4(e). Note that, our technique
performs well in case of different lighting directions and
the results can further be improved by modified imaging
as discussed in Sec. II-A. Fig. 5 shows our result on body
poses dataset. We correctly recovers the difference in hand
positions in 5(d) and legs positions in 5(a), 5(b).

Failure Cases: Our performance is hampered in certain
uncontrolled conditions. Reconstruction fails in case of cast
shadows and harsh lighting conditions. We can incorporate
the illumination problem with a pair of flash and non-flash
images, as discussed in sec. II-A. Also our approach does not
output correct shape in presence of large albedo variations.
Fig. 6 shows examples for these cases.

IV. CONCLUSION AND FUTURE WORKS

We solve the shape recovery problem using a single image
of relief surfaces. Reconstructing shape from relief images is
a challenging task because of the uncontrolled illumination
environment, so, using laser scanners or structured lighting
is not always feasible. We solve the problem in two inde-
pendent steps. We estimate the surface gradients using the
SfS technique. The obtained gradients are noisy given the
strong assumptions of SfS. We use a set of exemplar images
with their corresponding shapes to learn relief specific priors.
The correlation between the local image appearance and
the geometric shape is learned using sparse representation
technique. We remove the unnecessary complex illumination
using a pair images with and without the flash. It gives us
the relief image under a known illumination. After learning
the relief priors, we recover the most appropriate shape
by integrating the relief priors using a MAP framework.
Our approach is tested on both synthetic and real datasets
and result shows that our approach is able to recover both
overall geometric model and local shape variations. In future,
we would like to explore the modeling of non-lambertian
surface reflectance to solve the shape recovery problem using
sparse representations of appearance patches.
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Figure 4. Qualitative results of our approach on relief images collected from various sources. In each instance, three images are the original image, our
pixel-wise and patch-wise results, respectively. All these results are computed using the same dictionary learned on the exemplar relief images. The results
shows robustness of our approach in presence of ambient illumination along with point light sources.
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Figure 5. Depth Maps obtained from our approach on Human body poses dataset [3]. Each instance is shown as original image, results of pixel-wise and
patch-wise approaches as depth map respectively. The dictionary was learned using a set of 12 exemplar images. The depth variation of both the legs are

correctly estimated in (a) and (b), and the depths of head in (c) and (d). Note that pixel-wise method is able to recover the depth variation of feet.
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