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Abstract—We aim to learn local orientation field patterns in
fingerprints and correct distorted field patterns in noisy fin-
gerprint images. This is formulated as a learning problem and
achieved using two continuous restricted Boltzmann machines.
The learnt orientation fields are then used in conjunction with
traditional Gabor based algorithms for fingerprint enhance-
ment. Orientation fields extracted by gradient-based methods
are local, and do not consider neighboring orientations. If
some amount of noise is present in a fingerprint, then these
methods perform poorly when enhancing the image, affecting
fingerprint matching. This paper presents a method to correct
the resulting noisy regions over patches of the fingerprint by
training two continuous restricted Boltzmann machines. The
continuous RBMs are trained with clean fingerprint images
and applied to overlapping patches of the input fingerprint.
Experimental results show that one can successfully restore
patches of noisy fingerprint images.
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I. INTRODUCTION

Enhancement of fingerprint images plays an important
part in fingerprint based authentication systems. This step
plays a vital role as the noise in fingerprint images can
be removed before feature extraction or matching, reducing
the probability of a false match. Noise in fingerprints can
appear because of several reasons including, but not limited
to, sensor noise, finger dampness or dryness, bruises and
cuts in fingers, and non-uniform finger pressure [1]. Several
approaches to fingerprint enhancement have been proposed
in the past. Some of these approaches, like median filtering,
contrast limited adaptive histogram equalization, and Wiener
filtering, try to model the noise in the fingerprint image and
remove it. However, they are not very successful in modeling
the kind of noise present in the fingerprint image for it can
be a mixture of several kinds of noise.

Neural networks started gaining popularity again in the
mid-2000s as new methods to train them, much better than
existing ones, surfaced [8]. The use of many-layered neural
networks to learn patterns gave rise to the term “deep
learning”. One model for this is the deep belief net, built
by stacking several restricted Boltzmann machines (RBMs)
over each other. The RBMs, as independent models, have
been used as generative models for several years [10], [12],
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[13], [11] with the problems addressed by them [9] spanning
from bag-of-words for document representation [13] to user
ratings of movies [12] and modeling video [10] and speech
[11]. Traditionally, RBMs work only on binary inputs. Chen
and Murray [2] proposed a model, the continuous RBM or
CRBM, which is a variant of the RBM, and can work on
continuous inputs. We shall use this model in this work to
encode and learn orientation fields of fingerprint images.

Gradient

Figure 1. Performance of the proposed algorithm with respect to local
correction of orientation field compared to gradient-only orientation field
extraction

II. RELATED WORK

Several techniques currently used in fingerprint enhance-
ment involve contextual filtering - a primary filter used
being the Gabor filter. The use of Gabor filter for fingerprint
enhancement was proposed by Hong, et al. [3]. Parameters
for the filters used on the image are determined by local
ridge orientation, local ridge frequency and reliability of
ridge orientation. Unlike these, methods that operate in
the frequency domain [4] have also been attempted. The
algorithm proposed Hong et al. involves a bank of Gabor
filters that have optimal joint resolution in both spatial
and frequency domains. This method has undergone several
changes ([5], [6]).

In this work, we attempt to learn various types of local ori-
entation field patterns observed in fingerprints by training a
neural network instead of specifying them in the model. We
used two continuous restricted Boltzmann machines for this
task. They were trained in an unsupervised manner initially,
and then a pass of backpropagation learning was introduced
to further correct the weight matrices. As the network is
trained on clean fingerprint images, the application of the
network to noisy orientation fields results in them being
approximated by a cleaner one. Figure 1 shows a comparison
between results of gradient-based methods and the proposed
approach.



III. PROPOSED APPROACH

The proposed approach is divided into three stages: gen-
erating orientation fields of query images using a gradient-
based method; training two continuous restricted Boltzmann
machines (CRBMs) on a database of noiseless orientation
field images; and feeding the orientation fields of query
images to these RBMs, and using the outputs for Gabor
filtering. We’ll describe each stage here.

A. Gradient-based approach to estimate orientation field

We use the algorithm given by Hong er al. in [3] for
an initial estimate of the orientation field. This algorithm
performs very well in noiseless images, but doesn’t give
robust estimates of the orientation field for noisy images as
it considers a small region during estimation. The process
of obtaining this orientation field is summarized here:

1) Divide the given image into blocks of sizes W x W.
Consider a block centered at a pixel (¢,7). Compute
the horizontal and vertical gradients using Sobel op-
erators to obtain 0, (4, j) and 0, (3, j), respectively.

2) Obtain an estimate of the orientation field, 6(4, j) using
the following equations:
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where G is a Gaussian low-pass filter of size wg X wg.

The orientation field is now obtained as:
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The orientation field calculated using this approach is used
as input in the next step. It is important to note that the

®)

orientation field values generated by this algorithm lie in the
range [0, 7], as an orientation of « and 7 + « is essentially
the same.

B. Training the CRBMs

The focus of our approach is training of the continuous
restricted Boltzmann machines. The RBMs are trained using
noiseless orientation fields so that they learn fingerprint ridge
patterns. The training images used in this step were obtained
by orientation field estimation of fingerprint patches taken
from enhanced images. It was ensured that these enhanced
images did not have noise, so that the training samples were
noiseless.

The Model: The classical RBM takes only binary inputs,
so we used a variant of the same - the continuous restricted
Boltzmann machine (CRBM) [2] - as our model. The CRBM
inputs are normalized to [0, 1]. We train two CRBMs, hence
the significance of 0 and 1 for both of them is different.
To ensure that we get continuity in our output, we don’t
use the orientation value directly for training. To emphasize
this, consider the orientation field values near the apex of
an upward-curved ridge. Approaching the apex from left,
the orientation tends to 7, whereas approaching it from the
right, it tends to 0. It is due to this inconsistency that we
do not use orientation values for training. Training a CRBM
using the orientation field, 6, gives rise to anomalies in the
resulting image when the orientation has to jump from 7
to 0. This gives rise to inconsistent outputs of the CRBM,
wherein it doesn’t jump directly from 7 to 0. To counter
this, we break down 6 into two components, by applying
the functions s(#) and ¢(0).
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Parameters and training: As described in [2], a CRBM
is different from the traditional RBM. The CRBM has two
layers - visible (or input) and hidden - wherein every neuron
in the visible layer is connected to every neuron in the
hidden layer. These are undirected, weighted edges, hence
the hidden layer can feed inputs to the visible layer as
well. A neuron in either layer emulates a sigmoid function.
This sigmoid is applied on the total input received at that
neuron plus a zero-mean Gaussian noise. Let j be a neuron
in the hidden layer, and let v = [vy,vs,...,vy]T be the
vector denoting the values at neurons at the visible layer.
Let w; = [wj1,wjz,...,wjv]T be the set of weights
corresponding to the j-th neuron in the hidden layer. An
additional parameter is introduced for every neuron in a layer
for the CRBM. This parameter, called the “noise-control”



parameter and denoted by a;, controls the nature of the
neuron’s stochastic behavior. The output of the j-th neuron
in the hidden layer is then given by

1
sj = ¢(0;) 1+exp(—9j)’w ere 0; = ajz;  (11)
and z; denotes the total input at neuron j:
v
vy =Y wjivi +b; +oN(0,1) (12)
i=1

o and N(0,1) make up the noise component, where o is a
constant for the whole network, and N (0, 1) is a Gaussian
random variable with zero mean and unit variance. Both w;
and a; are updated for every neuron j after each epoch. The
quantity b; is the bias added to every unit. The update rules
are given by

Awji = nw ((vis;) — (0:8;)) (13)
Aa; = 25 ((s7) = (33)) (14)
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where ¥;, 5; denote the one-step sampled state of neurons
1 and j, respectively; 7, and 7, are learning rates; and
() denotes the expected value over all training samples.
The learning rates for the c-RBM used in training were
Nw = 5 and 1, = 0.5, while those used for the s-RBM were
Nnw = 4 and 1, = 0.5. The set of weights used to calculate
activations of hidden neurons from the visible neurons is
the transpose of the set of weights used to calculate the
activations of the visible neurons from the hidden neurons.

In this work, we focused on training with fingerprint
patches of sizes 60 pixels x 60 pixels. However, exploiting
the similarity in orientation field observed in pixels which
are neighbors, we used only 100 neurons in the visible layer
of CRBMs. This was done by first resizing the training
patches to 10 x 10, and then assigning each pixel in the
resulting patch a unique neuron in the visible layer. In the
hidden layer, we used 90 neurons. Training was performed
using 4580 training samples, with 25000 epochs per CRBM.

The CRBMs were trained in an unsupervised manner
according to these training rules, and were then subject to
a pass of backpropagation learning to fine tune the weights.
Before this pass, the CRBMs are “opened” up to get an
output layer independent of an input layer. In this process,
the symmetric nature of weights in the pretraining phase is
removed, and both set of weights become independent of
one another. The backpropagation algorithm for the CRBM
is different from the one for an RBM because of parameters
not included in the RBM. The updates for backpropagation
learning hence needed to be deduced. These have been laid
out here. Call the number of layers in the opened up network,
L (starting from 0). Here, L. = 2 for the CRBMs. Let y;
denote the expected/ideal value of the output at neuron ¢ in
the output layer. Let X! denote the output of the i-th neuron
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Figure 2.  The model, training and testing processes. top (training):

A representation of the continuous RBM used in this work. The first
two steps of the proposed approach are summarized. bottom (testing): A
representation of the third step in the proposed approach.

in layer [, w! ; denote the weight between i-th neuron in layer
[ and j-th neuron in layer [ — 1; n; denote the number of
neurons in layer /; and a! denote the noise-control parameter
at the ¢-th neuron in layer [. The backward pass equation for
layer L is as follows:

§F = (yi — X)) -al - ¢/'(6]) (15)

where ¢'(z) = ¢(z)(1 — ¢(x)) is the derivative of the
sigmoid function, and 6% is the product of the noise-

control parameter and the total input at neuron ¢ given
nr—1

by 0F =af | Y wEXF'+b; +0N(0,1) |. Backward
j=1
pass in the remaining layers is given by:
Ni4+1

0t =¢'(6}) - ai- > oM wp i where 0 <1< L (16)
t=1

Equations 15 and 16 lead to the following update rules for
w; and a;:

Awl; =y - 6) - X! (17)
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where z! = Zwﬁijl»_leriJraN(O,l) is the total
j=1

input received at the i-th neuron in layer [, and v, and
v, are learning rates for the weights and the noise-control



parameter, respectively. In our experiments, we set the
learning rates for the weights and the noise control parameter
to be equal. The values used were v,, = v, = 1 for the c-
RBM, and v,, = v, = 0.9 for the s-RBM.

Both CRBMs are trained with backpropagation learning
according to these update rules for 50000 epochs.

C. Gabor filtering using outputs of the CRBM

Once the CRBMs have been trained, they are fed inputs
from a database. We have used the FVC 2002 Db3_a (http:
//bias.csr.unibo.it/fvc2002/databases.asp) database in this pa-
per. Before feeding these images to the CRBMs, their ori-
entation fields are calculated using the algorithm mentioned
in section III-A. Then two images are generated for every
image in the database by applying the functions s(z) and
¢(x) on the orientation fields. These images are then fed
to the respective CRBMs and their outputs recorded. Now,
using the two output images for every image in the database,
we can generate the orientation field for that image. Let cIm
and sIm denote, respectively, the outputs for the c-CRBM
and the s-CRBM for an image Im. We’ll use them to get
the required orientation field. Let oIm be an image, the
same size as cIm and sIm. For all pixels in sIm whose
value is greater than or equal to 0.5, let a value of § (1 — c)
be assigned to the corresponding pixels in oIm, where c
denotes the values at corresponding pixels in cIm. We do
the same for pixels with value less than 0.5, except that a
value of 7 (3 + ¢) is assigned instead. The matrix oIm now
has the required orientation field.

The above sequence of steps generates an orientation field
from the s- and c-CRBM outputs, which can directly be used
for Gabor filtering. Instead of orientation generated using our
gradient-based method (section III-A), we use the orientation
field generated by the CRBMs. The frequency image can
directly be obtained from the original image. The frequency
and orientation images together dictate the natures of the
Gabor filters, which are then used appropriately to filter and
enhance images from the database.
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Figure 3. Correction performed in the orientation field by the Continuous
RBMs. Orientation fields in the center of the fingerprint patch were distorted
by creases. These have been corrected by the CRBMs.

IV. EXPERIMENTAL RESULTS

We show, on the basis of results of experiments conducted
using the above set-up, that this model can correct orienta-

tion fields in fingerprints where noise is present in small-
sized, local regions.

A. Experimental Setup

The Continuous RBM required for this task was pro-
grammed in Python 2.6.5 [GCC 4.4.3]. The program was
setup to work on an Nvidia CUDA GeForce GTX 580
graphics processing unit with 512 cores and 1 GB of
memory. The cudamat [7] library for python was used to
call GPU operations. Unsupervised pre-training for 25000
epochs took 88 minutes per CRBM and backpropagation
training for 50000 epochs took 83 minutes. It took an
additional 6 minutes for the CRBMs to work on the complete
FVC2002 Db3_a database. This gives, approximately, an
additional 0.45 seconds per image to the traditional Gabor
enhancement.

B. Qualitative Analysis

We perform a qualitative analysis with the gradient-
based orientation field enhancement algorithm. We used the
code provided by Peter Kovesi [14] to test the gradient-
based algorithm against ours. We have tested our algorithm
on all fingerprints from the Db3_a database of the FVC
2002 set of databases. It was observed that this algorithm
improves on this orientation field generated by the gradient-
based algorithm in images where noise is present in small
regions and which causes small, local discontinuities in the
ridge structure. Further, it was observed that regions where
the gradient method performed well weren’t distorted by
the outputs of the CRBMs. The proposed approach also
performs better than gradient-only coupled with Gabor in
removing creases from fingerprints. Figure 4 illustrates an
example.

CRBMs

Original

Gradient-only

Figure 4. A comparison between Gradient-only orientation field estimation
and the proposed approach. The proposed approach is more successful
in removing creases, and doesn’t distort the rest of the orientation field
estimated by the gradient-based method.

C. Quantitative Analysis

Quantitative analysis was performed on this algorithm by
plotting the false accept and genuine accept rates output
by the NIST matcher, bozorth3 [15], when fingerprints en-
hanced with the proposed approach were given as input. For
minutiae extraction, we used the software FingerJetFXOSE,
developed by Digital Persona Inc. For comparison, we have
also shown the plot of false accept and genuine accept rates
corresponding to the gradient-based Gabor enhancement of



fingerprints and STFT-analysis. Figure 5 displays these ROC
curves. The database of fingerprints used was again Db3_a
of the FVC 2002 set of databases. ROC curves have been
plotted after performing 2800 genuine comparisons, and
4950 impostor comparisons.

It can be seen from the ROC cruves that the proposed
algorithm performs better than just gradient-based Gabor
enhancement.
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Figure 5. ROC Curves: Genuine Accept Rate plotted vs False Accept Rate.
It is seen that the proposed approach is an improvement over gradient-only.
As we are only interested in the relative performance, we have used the
default parameters of the bozorth3 matcher. The ROC curves shown here
can be improved using a better matcher.

We also calculated the number of spurious and missing
minutiae generated by our algorithm on the FVC2002 Db3_a
database, comparing it with hand-marked minutiae data. We
observed that CRBMs reduce the number of spurious and
missing minutiae detected by the gradient-only method by
9%. The proposed approach also works better than STFT-
analysis [4] in reducing the number of spurious minutiae.
The total number of detected minutiae is also reduced. We
report in table I, the spurious and missing minutiae count:

Method Detected Spurious Missing
Gradient-only 53389 38415(71.95%)  4058(21.32%)
STFT-analysis 48963 33096(67.59%)  3165(16.63%)

CRBMs 41764 26259(62.87%)  3592(18.87%)

Table I
A COMPARISON OF THE NUMBER OF SPURIOUS AND MISSING MINUTIAE
DETECTED BY THREE ALGORITHMS: GRADIENT-ONLY [3],
STFT-ANALYSIS [4], AND THE PROPOSED METHOD. THE TOTAL
NUMBER OF MINUTIAE AS INDICATED BY GROUND TRUTH WAS 19032.

V. CONCLUSION

We have demonstrated the use of continuous restricted
Boltzmann machines in correcting orientation fields that
have been estimated by a gradient method. We have moved
a bit further in the direction of developing deep learning
methods for orientation field estimation. In the future, we

would like to perform this task using deep networks, and
without initial estimates of orientation fields. With the huge
database of fingerprints at our disposal, this would prove to
be an area worth exploring.
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