
Error Detection in Highly Inflectional Languages

Naveen Sankaran and C. V. Jawahar
International Institute of Information Technology, Hyderabad, INDIA

Abstract—Error detection in OCR output using dictionaries
and statistical language models (SLMs) have become common
practice for some time now, while designing post-processors. Mul-
tiple strategies have been used successfully in English to achieve
this. However, this has not yet translated towards improving error
detection performance in many inflectional languages, specially
Indian languages. Challenges such as large unique word list, lack
of linguistic resources, lack of reliable language models, etc. are
some of the reasons for this. In this paper, we investigate the ma-
jor challenges in developing error detection techniques for highly
inflectional Indian languages. We compare and contrast several
attributes of English with inflectional languages such as Telugu
and Malayalam. We make observations by analyzing statistics
computed from popular corpora and relate these observations
to the error detection schemes. We propose a method which
can detect errors for Telugu and Malayalam, with an F-Score
comparable to some of the less inflectional languages like Hindi.
Our method learns from the error patterns and SLMs.

I. INTRODUCTION

The ability to automatically detect and correct errors in
OCR output has been an age old problem. Traditional methods
favour using dictionary based models for error detection and
correction. For example, Kukich [1] contains several meth-
ods in tackling this problem. Such methods tag a word as
valid/invalid based on its presence/absence in a dictionary.
The effectiveness of such methods largely depends on the size
of the dictionary and the size of text corpus from which the
dictionary was built. Moreover, such simple methods fail in
effectively handling “out of dictionary” words. This limitation
of dictionary based method resulted in the popularity of
statistical language model (SLMs) for error detection.

In the past, most of the studies in error detection [2], [3]
have focussed on English or very few Latin languages like
German. In 1992, Kukich [1] performed experimental analysis
with merely few thousands of words, while the methods
discussed in 2011 by Smith [4] use a corpus as large as
100 Billion words. This growth in linguistic resources has
to be attributed to the rapid proliferation of Internet, huge
content (amount of text) that has become available publicly,
and the increase in computing and storage powers of modern
computers. Most of these studies did not have enough impact
on many other languages where building and managing large
dictionaries were considered to be impractical.

Although efforts have been present in developing post-
processing techniques for such inflectional languages [5], [6],
it has been perceived and argued that most of the attempts
in English have no direct impact on such languages. There
are many valid reasons for these arguments: (a) the electronic
resources available for many of these languages is very small
(eg. the best Telugu corpus is around 4 million words while
that of the popularly used English corpus is around 100 Billion
words). (b) language processing modules (like a morphological
analyser, synthesizer) are still getting developed and refined.

Though there exist morph analysers for many of the Indian
languages, the efficiency of those analysers are nowhere close
to what we have for English. They are not possibly ready to
be used for error correction in OCR. (c) The unique word lists
to get any meaningful results are too high to work with. We
broadly agree with most of these observations. However, with
significant increase in availability of newly created content
for many of these languages on Internet, one can now have
better estimate of the complexity of the problem. This led us
in revisiting the problem.

The closest to error detection is the literature on (i) post-
processor design in OCRs and (ii) spelling correction in
word processing. There have been several previous works
in this area. Parker et al. [7] used hidden markov models
(HMMs) in detecting OCR errors while Golding et al. [8]
have combined part of speech (POS) trigrams with Bayesian
methods for error detection. In a recent work, Smith [4] has
used a combination of classifier confidence and word nGrams
in automatically detecting and correcting word errors. Error
detection on inflectional languages have also been attempted
before [9], [10]. In this work, we show that by properly
adapting the statistical techniques, one can obtain superior
performance than those reported in [9], [10] for far more
complex languages. Commonly available spell checkers like
GNU Aspell are also limited by the small dictionaries they
use, and primitive error detection schemes. In general, SLM
based methods have shown considerable success in solving this
issue. In this paper, we try to understand why the problem
is harder for Indic scripts from a statistical point of view.
We comment on possible direction to design effective error
detection and correction schemes. We also propose a method
for error detection by learning error patterns from a set of
examples using a SVM classifier.

II. ERROR DETECTION: WHY IS IT HARD?

Inflectional languages have an extremely large vocabulary.
Words can take forms due to the gender, sense or other contex-
tual factors. Inflectional languages have looked at the problem
of understanding words, by building word morphology anal-
ysers. However, most morphology analysers assume that the
words are correct. One of our primary focus is to work with
words which are erroneous, and sometime invalid. Inflectional
languages are also morphologically rich and agglutinative in
nature with complex structures. Besides, there are so many
morphophonemic changes in the word formation process. i.e:
two or more valid words can be combined to form another valid
word. This issue is explained with an example in Figure 1(b).
For Indian languages, the basic unit to work with is an akshara,
which is a set of one or more consonants and a vowel. This
imply that multiple Unicodes can form a single akshara. We
demonstrate this formation in Fig. 1(a). An akshara could have
5 or 6 Unciodes in extreme cases.



Fig. 1. First image shows some sample aksharas and the Unicodes associated
with them. As shown, there are many cases where a single akshara is formed
using multiple Unicode characters, unlike English. Second figure shows a
single valid word formed using combination of multiple other words.

A. Size and Coverage

We first look at the coverage of the language. Table I
presents the statistics of different languages. We have con-
sidered 5 Indic scripts for our analysis and compared it with
English. We have used CIIL corpus [11] for Indic scripts and
have used British National Corpus (BNC) [12] for English. The
BNC corpus consists of nearly 100 million words. However,
to do justification in comparison (with respect to the corpus
size), we have taken a subset of 5 million words from BNC
to populate the data in the table. There are some interesting
first level observations that we can infer from the table. The
percentage of unique words in Indian languages are signifi-
cantly higher than English. For eg. one in every three words
in Malayalam is a new word whereas for English, it drops to
one in 20 words approximately. Also note that the data shown
in this table can be considered as an approximation as using
a huge corpus of say 100 million can change the number. For
eg. if we use the entire 100 million BNC corpus, we get a
unique word count of 667,165, which is around 0.67% of the
corpus. One way to gather raw text data in the present Internet
age would be to crawl through the Internet and build a larger
corpus. However, most of these languages doesn’t have enough
content available on Internet to generate a corpus which is even
10% of what we have for English. The entire Wikipedia dump
of Malayalam is around a Million words in size. The case of
other languages are also not very different. This table argues
that the task of dictionary building is still an open task for
Indic scripts as we need much larger vocabulary to cover a
considerable percentage of words.

TABLE I. DATASET DETAILS FOR DIFFERENT LANGUAGES. THE
PERCENTAGE OF UNIQUE WORDS FOR INDIC SCRIPTS IS MUCH LARGER

WHEN COMPARING WITH ENGLISH.
Language Total Words Unique words Average word length

Hindi 4,626,594 296,656 (6.42%) 3.71
Malayalam 3,057,972 912,109 (29.83%) 7.02
Kannada 2,766,191 654,799 (23.67%) 6.45

Tamil 3,763,587 775,182 (20.60%) 6.41
Telugu 4,365,122 1,117,972 (25.62%) 6.36
English 5,031,284 247,873 (4.93%) 4.66

Another factor to take into consideration is the word
coverage for different languages. Word coverage tell us how
many unique words are needed to cover certain percent of a
language. This will help us in deciding the size of dictionary
that will cover a considerable percentage of the language.
There have been previous work showing such statistics [13].
We re-created the statistics from that work and the same is

Fig. 2. Unique word coverage between Malayalam, Telugu and English. For
a language to get saturated, we would require a large dataset.(better seen in
colour)

shown in Table II. The table shows the comparison between
different languages for coverage. To cover around 80% of the
words, English requires around 8K words. The same for Telugu
and Malayalam are closer to 300K. A linguist may argue that
this explosion is primarily due to the morphological variation,
and does not really relate to the richness in the language.
However, at the level of error detection, this number critically
affects, until we have morphological analyzers which can work
on erroneous text.

The coverage statistics for Indian scripts are actually a poor
estimate of the real quantity. Figure 2, presents the variation
of the unseen words per 1000 words in a language as the
corpus size increases. The graph shows that while the number
of unique words becomes close to zero really fast for English,
for languages like Telugu and Malayalam, the convergence
has still not yet happened with the available corpus. If we
try to estimate the size of the corpus required to stabilize the
unique word fluctuation for other languages, it would come
to approximately 10M. We got the value by considering the
English graph as Ke−αx and trying to find the area under
the graph to estimate for other languages. It clearly shows
that while it is easy to create a dictionary for English with
extremely high coverage, similar dictionaries for Malayalam
or Telugu are not immediately possible.

TABLE II. WORD COVERAGE STATISTICS FOR DIFFERENT
LANGUAGES. AS SHOWN THE NUMBER OF UNIQUE WORDS REQUIRED TO
COVER 80PC. OF LANGUAGE VARIES FROM ONE LANGUAGE TO ANOTHER.

Corpus % Malayalam Tamil Kannada Telugu Hindi English
10 71 95 53 103 7 8
20 491 479 347 556 23 38
30 1969 1541 1273 2023 58 100
40 6061 4037 3593 5748 159 223
50 16,555 9680 8974 14,912 392 449
60 43,279 22,641 21,599 38,314 963 998
70 114,121 54,373 53,868 10,1110 2395 2573
80 300,515 140,164 144,424 271,474 6616 8711

B. OCRs are Error Prone

Multiple OCRs exist for English that can provide character
level accuracies in excess of 99% [14], [15]. However even
the state of the art OCR systems for many Indic scripts have
sub 90% accuracy [16] at character level. This increases the
possibility of having multiple errors in a word, which makes
the correction tougher. Also, from Table I, we can see that the
average word length is higher for Malayalam and Telugu. This
means that, with a specific character classification accuracy,
the word accuracies could be much lower for Malayalam and



Telugu. The nature of the scripts and the complexities of the
script, make the accuracies much smaller than what one could
expect for English. With higher character and word error rates,
the error detection and correction gets further compounded. We
argue this with the help of hamming distance below.

C. Error Detection Probability

Most error detection mechanisms discuss about detecting
two types of errors: “Non-Word” and “Real-Word” errors.
Non-word error words are those which cannot be considered
as a valid word. eg: ”Ball” getting recognized as “8a11” or “l”
getting confused with “!” etc. Such errors are easy to detect
as the probability of a word containing letters and digits are
extremely low. The second type of errors are more tough to
detect. In this category, the resultant error word is another
valid word. eg: “Cat” getting recognized as “Cab”. Such
errors cannot be detected by considering words in isolation as
detection requires availability of larger contextual information.
Usage of word bigrams or trigrams have been proven to be
successful in detecting such errors for English [4].

The possibility of detecting such errors in a language
requires us to know what percentage of words have the above
mentioned pattern. ie. An akshara getting replaced by another
akshara results in generation of another valid word. Any
language which has a large percentage of words exhibiting
such a pattern would present a considerable challenge in error
detection as every error word can also be considered as another
valid word.

We investigated the Indian languages on these lines. The
results were compared against English to observe if there
exists any similarity between these languages. For a given
hamming distance, we decided to find out what percentage
of words can generate “real-word” errors. Hamming distance
measure was chosen instead of edit distance as we felt that
the classifier is more likely to make a substitution error rather
than insertion/deletion errors.

Fig. 3. The above figure shows some words that can be converted to another
valid character with a Hamming distance of 1.

For a given word (W) of word length (L), we computed
Hamming distance (h) such that h ≤ L/2. This was done as
any word Wi of length L can be converted to Wj , which is
also of length L, with a hamming distance L. eg. Any 4 letter
(akshara) word can be changed into another 4 letter (akshara)
word using maximum 4 substitutions. As shown in the Fig. 4,
Indian scripts exhibit a very peculiar behaviour where more
than 1/3rd or even 1/2 of the words can be converted to another
valid word with a hamming distance of 1. While the percentage
of words for English stands around 5%.

There could be multiple reasons for such characteristics to
exist for Indian languages. The vocabulary size could be one

Fig. 4. The above figure shows for a given hamming distance, what
percentage of words gets converted to another valid word in a language.(better
seen in colour)

major reason. While English character set can be limited to 52
characters, most Indian scripts have more than 200 symbols at
their disposal. Also, the presence of considerable number of
”matras” or vowel modifiers complicate the problem. Many
such matras can be replaced with another matra to get another
valid word. Figure 3 shows some examples from different
languages where one word can be changed to another valid
word with hamming distance one.

D. Error Correction Probability

The process of correcting a detected error is usually done
by replacing the erroneous word/segment with another segment
which has got the maximum probability of becoming right.
The most common approach is by picking the “nearest” word
with highest frequency of occurrence. To state an example,
consider there is a wrong word W which has 5 words with
hamming distance one in the dictionary. From these, we pick
the one which has occurred the most in the language. Now the
probability that the word with highest frequency of occurrence
is actually the “right” word is 0.2 in this case. Infact, as the list
grows larger, the difference in frequencies between the words
will also start dropping. And at certain point, the significance
of frequency will cease to exist. We will have a better chance of
picking up the right candidate by choosing a sample randomly
from the list. The odds will improve considerably when we
tweak the method to include the individual nGram probability
to the entire architecture. A majority voting mechanism can
be used to improve the odds by selecting the word which is
supported by both word and nGram dictionary. Further aid of
language rules like a vowel cannot be replaced by matra can be
used to improve the chances. However, this would require us
to provide a set of possible matras and vowels to the algorithm.

III. ERROR DETECTION EXPERIMENTS

After all the discussion about the challenges which we face
in detecting errors, we look into possible methods in detecting
errors. In this section, we propose multiple error detection
methods and the evaluation parameter which we will be using
for their evaluation.

We take Malayalam and Telugu as two working examples
and demonstrate the error detection and correction methods.
These languages were chosen as they appear most complex
with respect to the number of unique words, average word
length and word coverage.



A. Error Models

We believe that there are different types of errors that could
arise and each of them needs to be handled differently. Below
we give details of different error models and how it should be
handled.

1) Natural erroneous data and Artificial data: These are
the non-word and real-word errors mentioned in previous
section. Artificial errors are the non-word errors which could
be formed due to multiple reasons like degradations, noise
etc. We feel that correction of such errors could be very tough
using language models as the language information from such
words is insufficient for any meaningful purposes. Such words
would be tagged as ”Wrong words” and would be left as
it is. One possible approach in correcting such errors could
be re-classification of such words using better features/pre-
processing etc.

2) Error at akshara level: Among the real-word errors, the
errors which violates the basic word building principles are
easy to detect. eg: Every akshara would be formed by follow-
ing the pattern C∗V . i.e: zero or more consonant followed by
a vowel. This will help us in detecting errors like cases where
a vowel occurs in between two consonants etc.

3) Errors due to confusion among aksharas: Most of the
languages have got a set of aksharas which can get confused
with each other. Such confusion can be taken into account
while correcting errors. When presented with the decision to
select one replacement from a list, higher weight can be given
to such high confusion pairs ahead of other choices.
B. Methodology

We decided to look into possible solutions using both word
level as well as sub-word(akshara) level methods.

1) Dictionary based model: The simplest of our proposed
error detection models involves using a binary dictionary.
Every word Wi from our test set is either considered as an
in-vocabulary or as an out-of-vocabulary word. The success of
such a method depends on the size of dictionary as a dictionary
with larger size would infer larger word coverage.

2) nGram model: The above mentioned method was im-
proved so that for any given word, we get the list of all possible
akshara nGram combinations to compare it with dictionary.
i.e: For a word of length 4, we get the list of all akshara
4 grams, 3 grams and 2 grams to be compared against the
corresponding dictionary. This method possesses significant
advantage against simple word dictionary based method as the
possibility of detecting an error was much higher. In this case,
the nGram probability of a word is shown as:

P (Wi) =
L∏
j=1

P
(
wj |wj−1

j−n+1

)
≥ θ,∀n : 2 ≤ n ≤ L

Here, θ is the threshold which decides if a word is valid
or not. The model is flexible in a way such that we can have
strict enforcement by saying criteria should be met ∀n or it
can be relaxed by saying if atleast one ’n’ satisfies the criteria,
word is considered valid.

C. Detection through learning

A formal method towards detection of errors can also be
achieved using popular machine learning approaches. We use

linear classification methods to classify a word as valid or
invalid. We consider the nGram probabilities of a word as its
features and send them to a linear classifier for learning. One
constraint with such a method is that we require a set of ”false”
labels so that the classification can happen. For this, we use
a subset of our OCR output and train a binary classifier. This
classifier is used to detect errors in later stages.

D. Evaluation Metrics

Error detection performance is an important factor as
improper detection can significantly reduce the accuracy while
error correction. eg. tagging correct words as wrong will result
in “correcting” the right word to some other word, which will
decrease the overall word accuracy. We use True Positive(TP),
False Positive(FP), True Negative(TN) and False Negative(FN)
for evaluation purposes.

A word is considered TP if our model detects it as invalid
and the result is seconded by the annotation. Similarly, a
word is considered as TN when we tag it as a valid word
and it is in-fact a valid word. We show these numbers in
percentages where TP shows percentage of invalid words
which we detected correctly among all possible invalid words
present. Since our final target is to correct the words which
we tag as error, TP has higher significance than FP. Also, the
presence of TN will indicate the level of corruptness among
the list of words which our model tagged as wrong. This is
significant as higher level corruptness would indicate that an
error correction module would try to ”correct” a word which
is already correct and thus, can make it wrong. Hence, any
advantage that we gained by correcting the wrong words would
be gone. We also compute Precision, Recall and F-Score based
on the above values for our evaluation.

E. Experiments and Results

We test our methods on the OCR outputs of state-of-the
art OCR for Malayalam and Telugu [16]. Malayalam OCR
has a character accuracy of around 95% whereas for Telugu,
accuracy is around 75%. Both the OCRs where used to convert
around 5000 pages of printed document into unicode text. The
pages are of reasonable quality, taken from multiple books.
We have used a dictionary covering the entire dataset and
contains around 670K words for Malayalam and 700K words
for Telugu. The dictionary was generated using the CIIL
corpus [11] from which all unique Malayalam/Telugu words
were extracted.

We tested the approaches mentioned in previous section
and evaluated them on the evaluation parameters. The results
are shown in Table III and Table IV.

TABLE III. TRUE POSITIVE, FALSE POSITIVE, TRUE NEGATIVE AND
FALSE NEGATIVE PERCENTAGE FOR DIFFERENT METHODS

Method Malayalam Telugu
TP FP TN FN TP FP TN FN

Word Dict. 72.36 22.88 77.12 27.63 94.32 92.13 7.87 5.67
nGram 72.85 22.17 77.83 27.15 62.12 6.37 93.63 37.88

Dict+nGram 67.97 14.95 85.04 32.02 65.01 2.2 97.8 34.99
Dict+SVM 62.87 9.73 90.27 37.13 68.48 3.24 96.76 31.52

Table III shows the percentage of TP, FP, TN and FN. One
observation is that the FP percentage is highest for simple
dictionary based method. False positive is the percentage of
words that we tagged as invalid words but are actually valid



TABLE IV. PRECISION, RECALL AND F-SCORE VALUES FOR
DIFFERENT METHODS

Method Malayalam Telugu
Precision Recall F-Score Precision Recall F-Score

Word Dict. 0.52 0.72 0.60 0.51 0.94 0.68
nGram 0.53 0.73 0.61 0.91 0.62 0.73

Dict+nGram 0.61 0.68 0.64 0.94 0.64 0.76
Dict+SVM 0.69 0.63 0.66 0.95 0.67 0.78

words. This is because any Out-of-Vocabulary (OOV) words
are tagged as invalid and since the coverage of dictionary
is limited, more words get tagged as invalid. This value is
decreasing as we keep using nGrams or SVMs. We are able to
achieve better coverage by using such methods. Percentage of
false negatives shows the amount of real-word errors existing
in the data. These are those words whih has been tagged as
valid but is infact invalid. Such errors cannot be detected using
such word/sub word based methods. Another observation is
with respect to precision in Table IV. Precision provides the
percentage of correctly detected invalid words from all words
tagged as invalid. The significance of this measure is when we
try to correct the detected errors. Low precision implies that
the percentage of FP is high and the possibility of overall
accuracy decreasing after error correction. This is because
while correcting, we will be trying to ’correct’ an already
correct word which would eventually make that word invalid.
Ideally, we would like to have 0 FP so that even in worst case
scenario, the accuracy does not drop after error correction.

Using nGram dictionary along with word dictionary have
helped in bringing down the FP ratio, especially for Telugu.
However, deciding on the right threshold value determines the
accuracy of this method. Dictionary coupled with SVMs have
proven to be the best pick among the tested methods. Although
SVMs are using the nGram features for classification, better
formalization have helped in improving the results. Error
detection score of 0.78 which we obtained for Telugu is
comparable to detection scores for Hindi, which has detection
score of 0.8.

F. Integration with an OCR

The field run of our method using an OCR for error
correction is mentioned in this section. We use Malayalam
OCR from [16] to obtain word outputs of 5000 pages. The
OCR was having an initial accuracy of around 73% at word
level. We integrated our method with OCR to detect the errors
generated by it and proceeded to correct them as required.
The error words where corrected by selecting the replacements
from a set of possible nGrams and dictionary words. We were
able to achieve a reduction of 10% in word error rate using
our method.

One main limitation of our error correction mechanism
is that it assumes perfect character segmentation i.e: no cuts
or merges in characters. We understand this assumption not
practical. While we are able to detect such errors using our
method, correction of such errors would be tough using a
word replacement method. This is because in cases where
there are two or more characters joined together, we have to
rely on edit distance and not hamming distance to find the
replacement. Such a method will increase the possible number
of replacement words exponentially. A better method needs
to be identified for such corrections. Note that the primary
objective of this paper is in exposing the challenges associated
with the error detection of highly inflectional languages.

IV. CONCLUSION

In this paper, we discussed why error detection is difficult
for inflectional languages, specially by comparing with lan-
guages like English. Issues related to size, coverage, hamming
distance and classifier accuracies were discussed. The com-
plexity of Indic script only add to the problems. We analysed
the problem and came up with several error models and ways
to detect them. Our error detection mechanisms where able
to achieve an F-score of 0.66 for Malayalam and 0.78 for
Telugu. Simple dictionary-frequency based error correction
was performed on Malayalam and we were able to obtain word
error rate reduction of 10%.

We would like to extend this work by looking into more
efficient and effective methods of detecting and correcting
errors. We would like to investigate the significance of specific
nGrams in language that can aid us in detecting/correcting er-
rors. A more formal method of correcting errors using machine
learning techniques will also be an interesting direction to look
into.

REFERENCES

[1] K. Kukich, “Techniques for automatically correcting words in text,”
ACM Comput. Surv., vol. 24, no. 4, 1992.

[2] J. Perez-Cortes, J. Amengual, J. Arlandis, and R. Llobet, “Stochastic
error-correcting parsing for OCR post-processing,” in Pattern Recogni-
tion, 2000. Proceedings. 15th International Conference on, 2000.

[3] M. Wick, M. Ross, and E. Learned-Miller, “Context-sensitive Error
Correction: Using Topic Models to Improve OCR,” in Document
Analysis and Recognition, 2007. ICDAR 2007. Ninth International
Conference on, 2007.

[4] R. Smith, “Limits on the Application of Frequency-Based Language
Models to OCR,” in ICDAR, 2011.

[5] T. Sari and M. Sellami, “MOrpho-LEXical Analysis for Correcting
OCR-generated arabic words (MOLEX),” Ninth International Workshop
on Frontiers in Handwriting Recognition, 2002.

[6] D. V. Sharma, G. S. Lehal, and S. Mehta, “Shape encoded post
processing of Gurmukhi OCR,” in ICDAR, 2009.

[7] T. L. Packer, “Performing information extraction to improve ocr error
detection in semi-structured historical documents,” in Proceedings of
the 2011 Workshop on Historical Document Imaging and Processing,
2011.

[8] R. Golding and Y. Schabes, “Combining trigram-based and feature-
based methods for context-sensitive spelling correction,” in Proceedings
off the 34th Annual Meeting of the ACL, 1996.

[9] B. Chaudhuri, U. Pal, and P. Kundu, “Non-word error detection and cor-
rection of an inflectional Indian Language,” in Symposium on Machine
Aids for Translation and Communication(SMATAC-96), 1996.

[10] U. Pal, P. K. Kundu, and B. B. Chaudhuri, “OCR error correction of
an inflectional indian language using morphological parsing,” Journal
Of Information Science and Engineering, vol. 16, 2000.

[11] Central Institute Of Indian Languages (CIIL) Corpus. [Online].
Available: http://www.ciilcorpora.net/

[12] British National Corpus (BNC). [Online]. Available:
http://www.natcorp.ox.ac.uk/

[13] A. Bharati, P. Rao, R. Sangal, and S. M. Bendre, “Basic Statistical
Analaysis of Corpus and Cross Comparision,” in Proceedings of ICON-
2002: International Conference on Natural Language Processing, Mum-
bai, 2002.

[14] Tesseract Optical Character Recognition Engine . [Online]. Available:
http://code.google.com/p/tesseract-ocr/

[15] Abbyy finereader. [Online]. Available: http://finereader.abbyy.com/
[16] D. Arya, T. Patnaik, S. Chaudhury, C. V. Jawahar, B.B.Chaudhuri,

A.G.Ramakrishna, C. Bhagvati, and G. S. Lehal, “Experiences of
integration and performance testing of multilingual ocr for printed
indian scripts,” in J-MOCR Workshop,ICDAR, 2011.


