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Abstract—We present an approach for fast registration of a
Global Articulated 3D Model to RGBD data from Kinect. Our
approach uses geometry based matching of rigid parts of the
articulated objects in depth images. The registration is performed
in a parametric space of transformations independently for each
segment. The time for registering each frame with the global
model is reduced greatly using this method. We experimented the
algorithm with different articulated object datasets and obtained
significantly low execution time as compared to ICP algorithm
when applied on each rigid part of the articulated object.

I. INTRODUCTION

In recent years, cheap and fast scanning devices have been
easily available in the market. Scanning devices like Microsoft
Kinect provides us with plentiful of information about the
surrounding environment. Using such vast information, it is
possible to generate 3D Geometric model of the nearby envi-
ronment. 3D Geometric Models provides better insight of the
surface pattern, physical structure and realistic motion. With
fast scanning devices like Kinect, it is viable to generate real-
time 3D Geometric Model.

Range scan registration poses the problem of matching
and estimation of rigid transformation of various scans of
the same object. What makes the problem difficult is that
correspondence between the point scans are unknown a priori.
If the object is rigid, registration and tracking is relatively
easier to solve. Motion of articulated objects is complex as
they are continuously changing their shape during the motion.
Although the overall structure is changing, the structure of
each rigid part remains the same.

In this paper, we presents a fast algorithm for registration
of articulated 3D global models to frames from RGBD images
from devices like the Kinect. Our approach transforms the
global model to align with successive depth images from
sensors like Kinect. Our approach is fast and efficient to align
the known global model to an unknown depth image frame.
We perform geometry-based registration of articulated objects
and perform the registration in a parametric space, inspired by
Hough transforms.

A popular approach for registration of rigid surfaces is
Iterative Closest Point (ICP) introduced by Besl [1] and
Chen [2]. The technique is attractive because of its simplicity
and its performance. Although initial estimate does need to be
reasonably good, the algorithm converges relatively quickly.
Other techniques were developed with a variation of ICP

for registration of Non rigid Surfaces( [3], [4], [5]). These
approaches are limited to local deformation of non rigid objects
and will not work for significant changes in the pose. Kinect
Fusion [6], developed in recent years, creates 3D models of
real world objects or environments by combining a continuous
stream of data from the Kinect. It enables 3D object model
reconstruction, 3D augmented reality, and 3D measurements.
However if the object in the environment is moving, it creates
multiple deformed models.

Mitra et al. [7] performs shape registration as an ap-
plication of symmetry detection. Sagawa et al. [8] rely on
matching both texture and shape features to register a sequence
of deforming texture scans.Other work on mesh morphing
solves the correspondence problem by finding a common
base parameterization across multiple meshes of a common
topological type ( [9], [10], [11]).

The Correlated correspondence algorithm developed by
Anguelov [12] is an unsupervised algorithm for registering
3D surface scans of an object undergoing significant de-
formations. It doesn’t uses user-placed markers, or assumes
temporal coherence or rough initial alignment. With the modest
requirement of template shape, it finds a good correspondence
assignment in spite of significant changes in the object. Chang
and Zwicker [13] performed registration of articulated object
to optimize the transformation assignment. Although the reg-
istration obtained is quite effective, it required large amount
of time.

II. OUR APPROACH

This paper presents a fast algorithm to register an articu-
lated 3D global model to its depth scans. The animation consist
of motion of different rigid parts of an articulated object. The
motion is tracked by comparing the feature all points in one
frame to another. The feature geometry at any point of the
object is described as a collection of several points around the
point with the distances between them and information about
their local geometry. Depth scans are searched for the geometry
of each rigid part and the difference between the position
of corresponding rigid parts provides the transformation of
the articulated object. Final Transformation for the articulated
objects consists of a set of transformation each of which
representing the movements of one rigid part of the object.

The global model, G, is a known standard 3D model that
can be rendered from all directions to depth images. The



Fig. 1. Pipeline for the registration of Articulated Object Using Hough Transform

templateless articulated model consists of multiple rigid parts
that are labelled such that each point in the point cloud can be
labelled to one of the rigid parts. Our proposed pipeline herein
takes input a global model and aligns it with the incoming
depth frames of the same moving object. The pipeline uses
Hough Transform for matching features of global model to
incoming frames and calculate the transformation on a voting
basis.

A. Pipeline

The execution of the algorithm pipeline starts with the
preprocessed global model and the first frame as input. The
frame is then processed and matched with the global model.
The different steps of the pipeline are described below.

1) Intial Processing: : Intial step of the pipeline consist of
loading the point cloud from the sensor and segmenting the
object from background. If the density for the point cloud is
high to process then we downsample the point cloud using
voxelgrid filter. Other filtering used are radius outlier removal,
color filtering, etc. depending on the type of point cloud. After
the Initial processing, we are left with a depth frame consisting
of point cloud of the given object which is then forwarded to
next block in the pipeline.

2) SIFT KeyPoint detection: : Since the number of points
in a point cloud is huge, we sample them to a subset of
interest points that represents stable, distinctive and identifiable
structure of the object. The number of interest points in a point
cloud will be much smaller than the total number of points
in the cloud. When used in combination with local feature
descriptors at each keypoint, the keypoints and descriptors can
be a compact yet descriptive representation of the original data.
SIFT(Scale Invariant Feature Transform) [14] can be extended
from images to 3D Point Clouds by using RGB values or point
value or normal and curvature as replacement for “intensity”
[15]. We detect SIFT keypoint for a given point cloud using
normals and curvature on these points and match only these
keypoints to incoming frame. This has two advantages: 1.)
reducing the number of points to be processed and therefore
reducing the time of processing non SIFT Keypoints and 2.)
Since we are only matching keypoints of Global model to

keypoints of frame, we reduce the error of matching a keypoint
to a non-keypoint of frame (as keypoints are only supposed
to match corresponding keypoints). Here we are using SIFT
only to detect the keypoints and not to define the features for
matching. After the selection of keypoints, the next step is to
calculate features of these keypoints.

3) Normal and Feature Estimation: : We use the Fast
Point Feature Histogram (FPFH) for matching [16], [17].
FPFH is a faster version of Point Feature Histogram (PFH)
and retains most of the discriminative power of the PFH.
Point Feature Histograms are robust multi-dimensional features
which describe the local geometry around a point p for 3D
point cloud datasets. We calculate FPFH features on each of
the identified interest points of G. The algorithm is tested with
various features including SIFT, PFH, Spin Images, FPFH. Out
of these features FPFH gave the best result in execution time
performance.

4) Matching using Hough Transforms: : Hough transform
is a technique to find structure in a parametric space even
under incomplete data. It uses voting in the parametric space
(here it is Transformation space) to accumulate evidence of the
presence of a particular structure. We use Hough transform
in the Transformation space after matching FPFH features
from the observed frame to the known model for each interest
point. We first match interest points using FPFH by searching
in the known model. Since the object is articulated, the
search space for registration of one rigid part is reduced
from the position of nearby rigid part, thereby improving
computational performance. Each match corresponds to a vote
the transformation space for that part. When all the matching
is completed, the distribution of votes in the transformation
space represents multiple clusters, one for each joint. The
final transformation is calculated by extracting clusters and
evaluating the transformation for each. Figure 2 shows the
implementation of Hough Transform.

5) Bad Correspondence Rejection: : After matching points
using Hough Transform, we can get multiple correspondences
from one keypoint of global model to incoming frame. Due to
local neighbourhood similarity, there will be several wrong
matches. Since the frames are coming in continuously, we



Fig. 2. Hough Transform for various datasets depicting multiple correspon-
dences of the same point. Each correspondence is used as a vote in parameteric
space.

anticipate the motion to be continuous and reject the corre-
spondences which are too far off. We remove correspondences
if the difference between motion of a particular point is above
a manually selected threshold.

6) Final Transformation: : In the final stage of the pipeline,
we calculate the final transformation by clustering the cor-
respondences in transformation space and finding out the
transformation that represents the cluster. For a most efficient
transformation, all the correspondence will lie around a point
in transformation space. We used a simple data clustering
approach in an Euclidean sense which is implemented by
making use of a 3D grid subdivision of the space using fixed
width boxes, or more generally, an octree data structure. We
made use of nearest neighbors and used a clustering technique
that is essentially similar to a flood fill algorithm. Each cluster
represents the transformation of corresponding rigid part of the
object.

B. Preprocessing

In the preprocessing step, G is processed to label all the
points to their corresponding rigid parts. G is computed so
as to have the information of whole articulated object . We
used multiple incomplete frames and combined them with ICP
algorithm to get the global model with complete information of
the articulated object. So for all the features in the incoming
frames, there will be a feature in G. All the points in G is
then labelled with their corresponding rigid parts. Therefore,
for each correspondence from frame to G, we’ll have the
corresponding rigid part it matched with. After the labelling,
we calculate the SIFT keypoints using normal and curvature
for G which are to be used for matching with frames. For
these set of points, Normals and FPFH features are calculated
to describe the local geometry around them. After this, G is

given as initial input to the pipeline.

III. EXPERIMENTATION RESULTS AND DISCUSSION

We performed experiments on several object datasets for
registration with multiple frames. For each dataset, a set of
frames which describes motion of the articulated object, are
taken to perform the registration. We took a hand model, a
horse model, an arm model, a camel model and a human
model. We have implemented the code in C++ and used Point
Cloud Library(PCL) [15] for processing of incoming frames.
For each object dataset, a sequence of 35 frames is used for
experimentation. The experiments were intended to verify the
computational efficiency and accuracy of the presented algo-
rithm. The results are compared with ICP algorithm (provides
registration of rigid objects with high accuracy) for each rigid
part of the articulated object. The mesh data used in this project
was made available by Robert Sumner and Jovan Popovic from
the Computer Graphics Group at MIT [18].

Fig. 3. Registration of various datasets. The white cloud represent the target
point cloud of the incoming frame to be registered with and the green cloud
represents a rigid part of the Global model.

Figure 4 shows the final average reprojection error of
registration of all datasets. The Final Average Reprojection
Error for the registration of frames varies from 1% to 9%. But
the execution time per frame is reduced by more than 95%
compared to ICP. The error in registering multiple frames
in the proposed pipeline is not accumulative. Figure shows
the registration between the various frames of the datasets.
Since the matching is done in continuation one frame after
another frame, the error of one frame is therefore included
in the registration of next frame. Hence the error doesn’t add
up. The bulgy area represents the accumulation of error but
the decline after the bulge shows that the error is reduced by
including it in the registration of next frame. In Figure 4, we
can see that there are many bulgy areas in between frames
where the reprojection error is high (around 8-9 %) but while
registering successive frames, this error is compensated in



TABLE I. AVERAGE PERFORMANCE AND TIMING STATISTICS FOR FIVE DATASETS. THE RUNNING TIME STATISTICS WERE GATHERED FROM TESTING
OUR IMPLEMENTATION ON MULTIPLE CORES OF A CORE I3 2.3 GHZ INTEL PROCESSOR.

Object #Points #Joints #KeyPoints Preprocessing #Frame Ava Matching Avg Clustering Avg Transformation ICP
Model Time Vertices Time Time Time Time
Hand 2281 2 241 5.0 min 2100 0.9s 0.008s 0.01s 3.1 min
Horse 3490 14 442 8.2 min 3396 1.1s 0.01s 0.01s 8 min
Arm 3620 5 374 7.3 min 3507 1.0s 0.008s 0.01s 5.9 min
Camel 3500 14 426 9.0 min 3412 1.1s 0.01s 0.01s 8 min
Human 4563 8 577 10.8 min 4270 1.4s 0.009s 0.01s 11 min

the calculation of next transformation, hence the overall error
for the next frames comes out to be better than the previous
error. The execution and processing time are shown in I. In
any frames, if a rigid part of the articulated object is occluded
or partial data of the rigid part is present, then transformation
of the articulated object will be performed using registration
of partial data. Since some of the data is missing, the
features that are calculated may have a little difference in
the neighbourhood, therefore will have more registration error.

Parameters: The performance of the algorithm is depen-
dent on parameters we choose for registration. Major parame-
ters are Normal and Feature Radius, Votes per keypoint, Prob-
ablistic Search Radius, Matching Threshold, Correspondence
removal distance Threshold. Choosing them inappropriately
will make the algorithm computationally inefficient.

Fig. 4. Final Average Reprojection Error for datasets

IV. CONCLUSION

We presented a fast articulated object registration algorithm
for aligning articulated 3D model to incoming depth frames.
We formulated the registration problem as matching geometry

of rigid part of the articulated object. The algorithm finds out
the geometry of rigid objects in depth frames. It then trans-
forms the global model so as to align with the depth frames.
With the final reprojection error for registration ranging from
1%-9%, the execution time is reduced by more than 95%.
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