
Parallel Divide and Conquer Ray Tracing

Srinath Ravichandran∗

IIIT - Hyderabad
P.J.Narayanan†

IIIT - Hyderabad

Figure 1: Buddha (1.08M, 315 ms), Dragon (871K, 283 ms) and Fairy (174K, 276ms) models rendered with shadows using our approach.
Right: Buddha model with 8 ambient occlusion rays per pixel (410 ms). Resolution 1024× 1024.

Abstract

Divide and Conquer Ray Tracing (DACRT) is a recent technique
which constructs no explicit acceleration structure. It creates and
traverses an implicit hierarchy in a depth-first fashion recursively
and is suited for dynamic scenes that change constantly. In this
paper, we present a parallel version of DACRT that runs entirely on
the GPU, which exploits efficient primitives like sort and reduce.
Our approach suits the GPU well, with a low memory footprint.
Our implementation outperforms the serial CPU algorithm for both
primary and secondary ray passes. We show good performance on
primary pass and on advanced effects.

CR Categories: I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Raytracing;

Keywords: Raytracing, Graphics Processors, Divide and Conquer,
Parallel Processing

1 Introduction

Ray tracing is important to generate photo-realistic images. Effi-
cient ray-tracing uses structures such as BVH, k-d trees, grids, for
efficiency. The construction is expensive and acceleration struc-
tures have high memory requirements. Several methods to con-
struct acceleration structure in parallel on CPUs and GPUs have
appeared recently. For general dynamic scenes, the acceleration
structure has to be reconstructed every frame. Divide and con-
quer ray tracing (DACRT) aims at resolving these problems [Mora
2011; Áfra 2012; Nabata et al. 2013]. DACRT traces rays through a
3D scene without constructing an explicit acceleration structure. It
takes an array of scene primitives, its bounding box, and an array of
rays as input. It then reduces the problem by recursively subdivid-

∗e-mail:srinath.ravichandran@research.iiit.ac.in
†e-mail:pjn@iiit.ac.in

ing the space and partitioning the elements of the ray and primitive
lists that satisfy a basic intersection condition. When the problem
size is small enough, it uses an exhaustive procedure to compute
intersections between all rays and primitives.

In this paper, we present the first fully parallel DACRT algorithm.
We use a breadth-first traversal of the space to extract parallelism
and exploit parallelism at all stages of the algorithm on the GPU.
We also exploit efficient primitives on the GPU for several key steps
to get maximum performance. We achieve good speed up compared
to the CPU DACRT method. Figure 1 gives example images with
timing for different models and effects.

2 Parallel DACRT

The pseudo code for our algorithm is given in Algorithm 1. A node
represents a node in the implicit hierarchy. It contains a number of
triangles and an enclosing AABB, along with a number of rays that
intersect the AABB. A child-node is created from a parent node
by splitting its AABB according to some condition, and contains
a subset of its parent’s triangles and rays. A level represents the
group of nodes at a fixed depth from the root of the implicit hier-
archy. A pivot is a two component vector that stores the start and
end points of a group of elements belonging to a node within a lin-
ear list. Every ray stores the distance mints to the nearest intersected
object indicated by hitid. Global mints and Global hitid arrays store
parameter information for all input rays. Terminal-nodes have tri-
angle or ray count below a fixed threshold. Terminal-node buffer
represents a buffer in which all terminal nodes are stored temporar-
ily before processing. The buffer also contains a separate mints and
hitid arrays to store temporary ray parameters.

The Parallel DACRT algorithm starts with a linear list of rays and
triangles along with the scene bounding box as shown in Figure 2.
The algorithm iteratively constructs an implicit hierarchical struc-
ture over the list of triangles and traverses it level by level at the
same time. The data is always kept in linear lists though referred to
as nodes and levels. Nodes are implicitly defined over a linear list
(level) using pivots that indicate the range of elements belonging to
it. Nodes have pivots for both triangle and ray lists. The implicit
hierarchy is created by splitting nodes into children. The splitting
scheme defines the type of hierarchy constructed. Spatial splitting
of nodes results in a k-d tree while splitting of objects results in a
BVH. We follow a spatial splitting scheme which splits a node’s



Algorithm 1 Parallel DACRT

1: procedure PARALLELDACRT(TriangleArray 4, RayArray ↑,
Scene AABB �, Global mints array, Global hitid array)

2: Initialize level with root info
3: while true do
4: Split all current level nodes into child nodes in parallel
5: Perform Triangle & Ray Filtering in parallel
6: Calculate child-node pivots; mark terminal-nodes
7: if (terminal node buffer almost full) then
8: Process all terminal-nodes
9: Update global mints and global hitid

10: end if
11: Compute next level node sizes in parallel
12: Gather next level triangle and ray index data in parallel
13: Copy terminal-nodes to buffer in parallel
14: Re-index next level pivots in parallel
15: Create next level and assign it to current level
16: Free memory for current level
17: end while
18: if (terminal-node buffer not empty) then
19: Process all remaining terminal nodes
20: Update global mints and global hitid
21: end if
22: end procedure

AABB into two child AABBs at the midpoint of the largest extent
dimension. Once a node is split, the filtering operation determines
the triangles and rays that intersect the child AABBs. Ray filter-
ing works similar to a breadth first ray tracing where groups of rays
are traced together down the implicit hierarchy. This scheme pre-
vents the use of early ray termination as construction and building
are performed together. However, the ray and triangle filtering of-
fer fine-grained parallelism as every ray and triangle within every
node can be handled independently. We exploit this to accelerate
the process as a whole.

2.1 Parallel Filtering

The pseudo code for parallel filtering operation is given in Algo-
rithm 2. Element list corresponds to either the ray list or triangle
list and Element id list corresponds to respective id list.The filtering
operation defined in Line 5 in Algorithm 1 is a per element inter-
section test with an AABB. We refer to the result of the filtering
operation as a status code (Figure 3). The status codes returned
by the filtering operations are used to rearrange the elements of the
list so that elements with the same code occur contiguously as seg-

Figure 2: Implicit root node is defined over the input triangle and
ray index lists. Each triangle and ray is handled by a thread to
determine if it intersects the child AABBs afer split.

Figure 3: Child AABBs created after splitting. Parallel candidate
tests on triangles and rays yield the status codes as shown. Ele-
ments have their status codes coloured to indicate left (green), both
(brown), right (yellow) or none(blue)

ments within the list (Figure 4). The segments correspond to nodes
and are identified uniquely using pivots.

Consider a level (Root in Figure 2) in the hierarchy containing n
nodes each with t triangles and r rays that needs filtering. When a
parent node is split, its triangles can be in one, both, or none of the
child nodes. A ray of the parent’s AABB can intersect one, both,
or no children’s AABB. Hence, the output of the candidate tests for
triangles can be left, right or both, encoded for each triangle as 1, 3,
or 2, respectively. For rays, the possible results are left, right, both
or none, encoded respectively as 1, 3, 2, and 4 (Figure 3). The status
code is encoded as an unsigned integer with 30-bits for the node
number and right-most 2 bits for the intersection result. We then
sort with the status code as the key and the element id as the value.
The elements that straddle both children will be between those that
intersect the left or right child after the sort (Figure 4). We can then
extract the pivot ranges for the left and right children of each node
easily from this representation. The left pivot’s range would cover
elements with codes left and both and right pivot’s range would
cover both and right (Figure 4). A parallel reduce operation on the
status codes would yield values that are multiples of their respective
status codes. Dividing each value by its status code would return the
number of elements for each node considered (Figure 5).

After parallel filtering, a kernel marks all nodes that have low tri-
angle (< α) or ray (< β) counts as terminal-nodes (Figure 6). We
then compute the sizes required for the next level nodes to store the
ids. We allocate enough memory for the next level nodes and a par-
allel gather operation copies nodes into their respective locations.

Figure 4: Sort-by-key rearranges elements of the two child nodes
maintaining pivot property. The pivot ranges are marked with
coloured dashed lines. Pivot ranges can substantially overlap be-
tween sibling nodes at any level.



Figure 5: Parallel size calculation for child nodes at a level

Figure 6: Nodes at level n. All nodes indicate their pivot ranges
within a triangle and ray list maintained on a per level basis. The
highlighted node is marked for naive intersections and its contents
are copied directly into the terminal node buffer at the end of the
iteration

The terminal nodes have their ids and data copied to a buffer and
processed as described in section 2.2. We then re-index the pivot
elements to account for the terminal nodes that have been removed
from the list. We free memory used for the current level and pro-
ceed ahead to the new level created in a similar manner, till we have
no more levels to process. We use α = 256 and β = 256 for best
performance.

2.2 Segmented Naive Ray-Triangle Intersections

The pseudocode for processing the terminal nodes is given in Al-
gorithm 3. In order to fully utilize the resources of the GPU, we
follow a buffered approach where each terminal node’s triangle and
ray ids are copied into a pre-allocated buffer that has a fixed size
of η elements. When the buffer contents cross some fixed thresh-
old λ ≤ η(Line 7 in Algorithm 1), we launch a GPU kernel that
computes naive intersections between all the rays and triangles in
every stored node. Every ray is handled by one thread and blocks
of N threads handle every segment(node). Triangles for each seg-
ment are loaded in batches of size T into shared memory(Line 5 in
Algorithm 3). We then proceed to compute the minimum mints and
corresponding hitid value of every ray in the buffer by sorting the
buffer mints and hitid value by using the ray-id and then perform-
ing a segmented minimum reduction using the ray-id as key. We
then launch a kernel that updates the global mints and hitid arrays
appropriately. In our experiments we empirically set the value of N
= 256 and T = 256.

Algorithm 2 Parallel Filter Algorithm

1: procedure PARALLELFILTER(Aabb List, Element List, Ele-
ment id List, Segment List, Pivot List)

2: for each segment i ∈ (0, numsegments] in parallel do
3: for each element j ∈ (0, numelements] in parallel do
4: Split parent AABB into Left and Right
5: Compute element intersection with AABB splits
6: Compute status code and update keys
7: end for
8: end for
9: parallel ReduceByKey(keys, keys, newkeys, newvals)

10: for each key i in newkeys do
11: Compute count of each status code
12: end for
13: for each i ∈ (0, numsegments] in parallel do
14: Compute left, both, right and none values
15: Update child pivot values
16: end for
17: end procedure

Algorithm 3 Parallel Segmented Ray-Triangle Intersections

1: procedure NAIVEINTERSECTION(TerminalNodeBuffer, Tri-
angles List, Rays List)

2: for each segment i ∈ (0, numsegments] in parallel do
3: for each ray j ∈ (0, numrays] in parallel do
4: Batch load triangle data into shared memory[256]
5: for each triangle k ∈ shared memory do
6: Compute ray-triangle intersection
7: Update ray intersection parameters
8: end for
9: end for

10: end for
11: // Using buffer values
12: parallel SortByKey(rayid, mints, hitids)
13: parallel ReduceByKey(rayid, mints, hitids)
14: end procedure

3 Results

We have implemented our algorithm using CUDA on a machine
having an Intel Core i7-920 CPU and a Nvidia GTX 580 GPU. All
reported results are averages of values obtained during rendering
from 12 different viewpoints.

3.1 Performance

Dynamic scenes change every frame. DACRT builds an implicit hi-
erarchy and traces the hierarchy simultaneously. Table 1 compares
the performance of our PDACRT method with the CPU DACRT
work [Mora 2011]. The timings reported are for primary rays along
with the implicit structure creation. Our algorithm performs better
than CPU DACRT for all the scenes except the Conference scene.
The early ray termination using cones makes the sequential CPU
version fast for Conference, as the viewpoint is inside the bounding
box. Our PDACRT does a lot of work lacking early termination.
Inspite of this, we are 1.2 to 1.5 times faster than the CPU imple-
mentation on other scenes with viewpoints outside the bounding
box. The Conference scene needs 344 ms without cone tracing on
the CPU [Mora 2011]. The effect of parallel acceleration is thus
much higher than is indicated in Table 1 as a result. PDACRT also
performs much better compared to the best parallel CPU k-d tree
method, which needs 654ms and 835ms respectively to build the k-
d tree for Dragon and Buddha models on a 32 core machine [Choi



Scene CPU DACRT PDACRT
Bunny 105 ms 87 ms

Conference 99 ms 148 ms
Angel n/a 143 ms

Dragon n/a 155 ms
Buddha 238 ms 165 ms
Turbine 285 ms 223 ms

Table 1: Comparison of ray casting time between CPU
DACRT[Mora 2011] and Parallel DACRT(PDACRT). CPU DACRT
results indicate ray casting time in a single core 3Ghz Core 2 ma-
chine. All scenes were rendered at 1024x1024 resolution

Scene PDACRT
Shadow
rays

PDACRT
Specular
Refl.
rays

PDACRT
AO rays

Bunny 67 ms 96 ms 149 ms
Conference 197 ms 222 ms 240 ms

Sponza 220 ms 246 ms 280 ms
Angel 102 ms 163 ms 182 ms

Dragon 128 ms 177 ms 192 ms
Buddha 150 ms 190 ms 204 ms
Turbine 213 ms 252 ms 287 ms

Table 2: PDACRT performance results for shadow rays, specular
reflection rays and ambient occlusion rays. All results were gener-
ated at 1024× 1024 resolution. Shadow rays were generated with
one point light source. Ambient occlusion rays were generated with
8 AO rays per primary ray intersection.

et al. 2010]. The best GPU k-d tree construction method also needs
511ms and 645ms respectively for Dragon and Buddha [Wu et al.
2011]. PDACRT is 4-5 times faster to construct-and-trace these
models. We also tested the performance of our algorithm for sec-
ondary rays with path tracing. Our path tracing performance with
a 1024 × 1024 resolution and 7 diffuse bounces for the Confer-
ence and Sponza scenes are 5.9 MRays/sec and 4.8 MRays/sec re-
spectively, compared to 5.5 and 4.6 MRays/sec reported by [Mora
2011]. Table 2 shows performance of PDACRT for shadow, specu-
lar reflection, and ambient occlusion rays. Shadow rays generated
towards a point light source have little coherence. As can be seen
from Table 2, PDACRT is a little slower on the secondary ray pass
than the primary pass, with higher difference on small object mod-
els when the viewpoint is inside the bounding box due to the highly
incoherent nature of the rays. The performance for ambient occlu-
sion(AO) rays (Table 2) show that even large number of incoherent
rays is handled well by PDACRT.

3.2 Memory Requirements

A key advantage of DACRT is its low memory footprint. The CPU
implementation by [Mora 2011] follows a recursive depth first ap-
proach. Their memory requirements were for the two pivots (tri-
angle and ray) and for the recursion stack only. Parallel DACRT
implementation needs to store and maintain auxiliary information
about all the nodes at any level during each iteration. More memory
is needed as a result, but much lower than more traditional accel-
eration structures. Table 3 compares our peak memory usage with
the GPU Kd-Tree [Wu et al. 2011] for primary rays at 1024×1024
resolution. All scenes were rendered with a buffer of size 24 MB
except Bunny(8 MB buffer). In case of larger scenes or scenes with
a large amount of rays, more memory would have to be allocated
but still significantly lower than memory required by traditional ac-

Scene PDACRT GPU SAH KD-Tree
Bunny 47.66 MB 33.96 MB
Fairy 82.25 MB 80.33 MB

Exploding 82.68 MB 86.58 MB
Conference 85.82 MB 159.98 MB

Angel 82 MB 218.26 MB
Dragon 96.87 MB 417.33 MB
Buddha 107.89 MB 512.65 MB

Table 3: Comparison of peak memory usage for various scenes be-
tween Parallel DACRT and GPU SAH KD-Tree [Wu et al. 2011]
construction method. Parallel DACRT(PDACRT) values are for
scenes rendered at 1024 x 1024 resolution. Parallel DACRT val-
ues include memory requirements for buffer storage, triangle and
ray data(32MB) also. Values for GPU SAH KD-tree construction
include memory for triangle data only and not ray data.

celeration structures.

3.3 Limitations

The level-wise processing of nodes results in duplication of ray ids
which can be quite considerable at deeper levels, as a ray can in-
tersect multiple nodes in a level. The duplication can be large
for incoherent rays since rays can traverse deeply before they are
culled. This behaviour was seen particularly for indoor scenes (like
Conference) where the camera is inside the bounding box. All
rays test positive for intersections at the upper levels of the hier-
archy and have their ids duplicated. This duplication can lead to
increased memory requirements when enough rays and triangles
are not culled effectively. This behaviour is visible with relatively
higher memory requirements for Fairy and Conference scenes (Ta-
ble 3). Another issue is the lack of optimization strategies such
as ordered traversal that is available when tracing individual rays
through an acceleration structure. Parallel DACRT always pro-
cesses rays in batches across all nodes in a level and hence ordered
traversal is not possible.

4 Conclusions

In this paper, we have presented a fully parallel DACRT algorithm
on the GPU which is the first implementation of its kind. In the fu-
ture, we would like to optimize the algorithm further by employing
recent advances in hardware and also perform better load balancing
in a hybrid CPU-GPU setting.

References

ÁFRA, A. T. 2012. Eg 2012 - short papers. Eurographics Associ-
ation, Cagliari, Sardinia, Italy, 97–100.

CHOI, B., KOMURAVELLI, R., LU, V., SUNG, H., BOCCHINO,
R. L., ADVE, S. V., AND HART, J. C. 2010. Parallel sah
k-d tree construction. Eurographics Association, Aire-la-Ville,
Switzerland, Switzerland, HPG ’10, 77–86.

MORA, B. 2011. Naive ray-tracing: A divide-and-conquer ap-
proach. ACM Trans. Graph. 30, 5 (Oct.), 117:1–117:12.

NABATA, K., IWASAKI, K., DOBASHI, Y., AND NISHITA, T.
2013. Efficient divide-and-conquer ray tracing using ray sam-
pling. ACM, New York, NY, USA, HPG ’13, 129–135.

WU, Z., ZHAO, F., AND LIU, X. 2011. Sah kd-tree construction
on gpu. ACM, New York, NY, USA, HPG ’11, 71–78.


