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Abstract—In this paper, we present a novel automated method
to detect motion in perfusion weighted images (PWI), which is
a type of magnetic resonance imaging (MRI). In PWI, blood
perfusion is measured by injecting an exogenous tracer called
bolus into the blood flow of a patient and then tracking it in
the brain. PWI requires a long data acquisition time to form
a time series of volumes. Hence, motion occurs due to patient’s
unavoidable movements during a scan, which in turn results into
motion corrupted data. There is a necessity of detection of these
motion artifacts on captured data for correct disease diagnosis.
In PWI, intensity profile gets disturbed due to occurrence of
motion and/or bolus passage through the blood vessels. There
is no way to distinguish between motion occurrence and bolus
passage. In this paper, we propose an efficient time-frequency
analysis based motion detection method. We show that proposed
method is computationally inexpensive and fast. This method is
evaluated on a DSC-MRI sequence with simulated motion of
different degrees. We show that our approach detects motion in
a few seconds.

I. INTRODUCTION

MRI has been emerging as an efficient tool in clinical
practice for the analysis of brain functions through several
metabolic parameters. There are two types of MRI, namely,
diffusion weighted imaging (DWI) and perfusion weighted
imaging (PWI). PWI has been used extensively for the evalua-
tion of tissue after acute stroke, noninvasive histologic assess-
ment of tumors and evaluation of neurodegenerative conditions
such as Alzheimers disease [1]. There are two types of PWI:
(1) dynamic susceptibility contrast (DSC) T'2* imaging, and
(ii) dynamic contrast enhanced (DCE) T'1 weighted imaging.
DSC is most widely used for the brain, while DCE is most
widely used in the rest of the body though its experimental
and research use is increasing in brain. In PWI, cerebral
perfusion is used as a metabolic parameter, which explains
the blood passage through the vascular system of the brain.
An exogenous tracer called bolus is injected into the blood
flow of a patient and then cerebral perfusion is measured by
the analysis of hemodynamic time-to-signal intensity curve
generated when bolus passes through the brain.

In PWI, a time series of volumes are formed in a long
acquisition time. Patient often has difficulty in staying still
during this period. Therefore, it is more likely that patient
may move unavoidably during scanning which in turn results
into motion artifacts in scans. There is a need of detection
and subsequent correction of these motion artifacts. There are
works in medical imaging, for example [2], [3], [4] addressed
this problem in terms of registration of whole time series
to a reference volume. These methods do not detect motion.
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Hence, non-corrupted volumes are also registered which makes
the process computationally expensive and it is obvious that
these volumes do not need any correction [5]. Therefore, it is
preferable to have a prior knowledge about motion corrupted
volumes.

In perfusion weighted MRI, intensity profile over time
should be flat. If there are any disturbances in intensity
profile, it can be due to two reasons: (i) passage of bolus
through the blood vessels and (ii) motion of the patient during
scanning. Therefore, while detecting motion, bolus passage
should also be taken care of. However, traditional motion
detection methods consider non-uniform intensity variations
due to bolus passage as motion corruption. Hence, they may
fail to detect motion in perfusion MRI. In [5] and [6], motion
is detected by bolus dependent approach. Here, perfusion MRI
data is divided into three sets as (i) pre wash-in, (ii) transit and
(iii) post wash-out sets. Intensity correction is applied to transit
set and then motion is corrected in each set differently. In this
paper, we detect motion using time-frequency analysis.

Even though MRI scans consist of volumes of two di-
mensional images, they are acquired over the time. Therefore,
we can extract one dimensional time series from volumes.
Motion detection using one dimensional time series is obvi-
ously faster compared to that of two dimensional scans. These
facts motivated us to analyze the MRI data in terms of one
dimensional time sequences because we believe that frequency
of time series will vary when there are motion artifacts. Most
popular approach for temporal analysis is Fourier transform.
Even though Fourier transform gives the information about the
spectral components in a signal, it fails to locate where those
frequencies occur in that signal. So, it is preferable to consider
time frequency representation (TFR). Different techniques for
time frequency representation have been proposed. A few of
them are short time Fourier transform (STFT), Gabor trans-
form, continuous wavelet transform (CWT) and Wigner ville
distribution etc. In [7], it was proven that Stockwell transform
(ST) outperforms all these TFR techniques in localizing time
and frequency because it has frequency dependent resolution
whereas other transforms have windows of fixed width. ST
provides useful phase of the spectrum which is not available
from CWT.

In the recent past, ST has been used for the analysis of
MRI data. In [8], ST is used to remove artifacts in functional
MRI (fMRI) time courses due to which brain activity detection
is improved. In [9], polar version of ST is used to analyze
the texture patterns in MRI for the diagnosis of multiple
sclerosis. [10] discusses the effectiveness of ST for medical
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Fig. 1. Stockwell transform for an impulse function. Impulse function shown
in left is A[0 : 39] = 0, h[20] = 1. Stockwell transform is shown in right.
Note that bright pixels indicate high strength of transform. Here, bright pixels
are at ¢t = 20.

imaging and shows how to enhance fMRI time courses by
removing frequency artifacts which are introduced due to
patient’s quick breathing.

In this paper, we demonstrate how one dimensional ST can
be used to detect motion. Given a MRI sequence of volumes,
we consider specific key points which are generated by an au-
tomated method. Time series are extracted at these key points
and ST is applied on them. The process is computationally
inexpensive due to the facts that (i) motion is detected by one
dimensional time series instead of two dimensional scans and
(ii) these time series are extracted only at a few key points.
Mean time taken for motion detection is around 3 seconds.

II. STOCKWELL TRANSFORM

In this section, we discuss details of Stockwell transform
(ST) and its suitability for analyzing MRI time sequences. For
a given time signal h(t), its Stockwell transform is defined as,

S(r. f) = / hw(r —t, fle-® e (1)

where w(t, f) is defined as
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h(t) is the time signal, w(t, f) denotes the window, f denotes
the frequency, 7 denotes time shift parameter, and |.| denotes
absolute value. Since window (w(t, f)) is frequency depen-
dent, narrower windows are applied at higher frequencies and
broader windows are applied at lower frequencies. Hence, ST
is a suitable time-frequency representation for current work.

In our work, intensity profiles over time are obtained from
DSC-MRI sequence. There are strong disturbances in these
one dimensional time series (intensity profiles) corresponding
to motion corrupted volumes. In general, there will be many
disturbances in time series with respect to number of contin-
uous corrupted slices in MRI sequence. Since ST is a linear
function, we explain it with one single intensity disturbance
for simplicity. To show that these intensity variations are
well represented by Stockwell transform, we modelled single
disturbance in time series as an impulse, h(f) as shown in
Eq. 3.
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ST of h(t) is given as
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Absolute value of S(r, f) is given as

S(va):

f_--ayr?/2
_J T—a 5
5¢ )

On taking first and second derivatives of Eq. 5 w.r.t. 7, we
obtain

1S(7, )l =

NS Nl fP e
5 = \/%(T a)e (6)
2 3
PO -ty 4 p2r— 0] @)

or? Vo

In Eq. 5, |f| is replaced with f because f > 0. It can be
easily observed that maximum of |S(r, f)| occurs at t = a

because w =0 and % < 0. Stockwell

transform for h(t) = %(t—a) with @ = 20 is shown in Figure 1.
There is bright region around ¢ = 20 in ST. Even though there
is some noise present in the time series, it does not affect ST
much because the region around ¢ = 20 will still be bright
relative to other regions.

III. MOTION DETECTION

We propose a novel automated method to detect motion
corrupted volumes in perfusion weighted MRI using Stockwell
transform. We assume that there is no intra-volume motion in
this MRI time series because it takes a few seconds time to
scan. Therefore, whole volume is corrupted by same motion.
Instead of considering whole volumes to detect motion, we
consider only central slice of each volume. Motion can be
identified through two ways, i.e., (i) intensity of voxel gets
changed and (ii) a voxel comes into the location of another
voxel. In this work, we detect motion using first category.

Overview of the proposed method to detect motion is
shown in Fig. 2. For a given PWI MRI volume series, we
consider central slices to detect the motion in corresponding
volumes. The proposed method consists of the following
steps: (i) Pre-processing, (ii) Estimation of landmark pixels,
(iii) Time-frequency analysis of time series extracted at these
landmark pixels, and (iv) Detection of locations of corrupted
slices from time frequency representation of the extracted time
series.

Algorithm for proposed motion detection method can be
seen in Algorithm 1. If given PWI MRI series contains
N volumes, there will be corresponding N central slices,
{Cy}_,. Bach central slice is of size Ax B. We first process all
N central slices using intensity based thresholding technique
such that the noise regions are discarded while preserving the
edges. These pre-processed images, {I;}1¥ ;, are then used to
detect the motion. To determine the landmark pixels, it was
observed that considering all pixels for detecting the motion
corrupted slices is not efficient due to the fact that (i) the
whole process will be time consuming and (ii) all pixels
may not contain information about the corruption. Therefore,
we adopted a mechanism to find landmark pixels. These
pixels are obtained from the difference of consecutive central
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Fig. 2. Motion Detection. Central slices ({Ct}i\r: 1) of a PWI MRI series are pre-processed to get noise-free images ({It}iV: 1). Then, one dimensional time

series ({hy(t)}f£_,) at landmark pixels ({p;}2_,) are extracted from difference of consecutive pre-processed slices ( { D¢ ¢+1 }i\f: 711> Time-frequency analysis
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Fig. 3. DSC-MRI time series. It shows central slices of 40 volumes from
top to bottom and left to right. Here, central slices corresponding to non-bolus
phase are from 1 to 9 and from 21 to 40. —159 rotation is added to volumes 7,
8, 30, 31 and 32 respectively and their corresponding central slices are shown
in red boxes.

slices ({Dt7t+1}i\7:711) of all given volumes because the pixels
at edges definitely experience motion from one to another
slice. All these edge difference maps are summed up and
then landmark pixels, {pl}le, are selected such that every
edge pixel can be considered. Then, one dimensional time
series, {hy(t)}£_, at all L landmark pixels are extracted from

{De 1}’

Wherever motion occurs, there will be a strong disturbance
at that slice location in one dimensional time series. Therefore,
there may be many disturbances depending on the number
of consecutive corrupted slices. It is difficult to find those
consecutive slices from the time series itself. For this purpose,
we use Stockwell transform ({S;(7, f)}/=,) at all L extracted
time series. There might be still a few of landmark pixels
which may not represent the pixels that undergo motion.
To take care of this, Stockwell transforms at all landmark
pixels can be added to get proper representation so that non-
significant landmarks can play negligible role in detecting
motion. This summed up Stockwell transform can be denoted

L
as, S(7,f) = > Si(r, f). As explained in Section II, there
i

=1
will be bright region at locations of corrupted slices. If there
are M consecutive corrupted volumes, bright region will be

around corresponding M locations in ST. We extract those
bright regions and locations where those bright regions occur.
If there is a bright region from location I, to .4 p;—1, then we
can categorize the slices at locations, {l,, }¢5~1, as corrupted

slices and corresponding volumes are motion corrupted.

IV. EXPERIMENTS AND RESULTS

We have conducted experiments to validate the perfor-
mance of the proposed framework with a DSC-MRI data
obtained from a 1.5T GE MRI scanner. The data details are:
number of volumes = 40 (Is/phase), number of slices = 20,
dimensions of slice = 128x128 and thickness of slice = Smm.
All experiments are implemented on a system with 4GB RAM
and Intel® core i5 CPU with 2.5 GHz processor.

There are 29 non-bolus volumes out of 40 volumes. Here,
non-bolus volumes means volumes in which bolus is not
present in brain. For our experiments, we introduced 3D
rotation to DSC-MRI volumes to simulate motion in transverse
plane in the range [—20° 20°] in random number of volumes.
We detect motion as explained in Section III. Table I shows the
performance of our motion detection method with number of
corrupted volumes as 5, 10, 20, and 25 respectively. These
corrupted volumes are chosen randomly and they are not
always consecutive volumes. This randomness reflects the
worst possible scenarios during scanning. Here, we considered
only rotation because translation inside the scanner is almost
impossible due to the structure of MRI scanner. A specific
case is shown in Fig. 3 where central slices of 5 volumes are
corrupted by a rotation of —15°. In general, different amount
of rotation can be possible at different sets of consecutive vol-
umes according to patient’s typical movements. For example,
as shown in Fig. 3, 7*", 8t" volumes can be corrupted by a
rotation of —15° while 30%", 315¢ and 32"¢ volumes can be
corrupted by a different amount of rotation other than 15°. We
have experimented with many such scenarios also and we are
still able to achieve similar performance. It can be observed
from Table I that except for the range [—1° 1°], our method is
able to detect all corrupted volumes correctly. Even in practical
cases, there is less probability that patient can move only 1°. In
case of 25 corrupted volumes, we are able to detect all 25 for



TABLE L

EVALUATION OF PROPOSED MOTION DETECTION METHOD.

[ # Non-bolus/Total Volumes ] 29/40 |
[ # Corrupted Volumes [l 5 [ 10 [ 20 [ 25 |
Simulated Rotation # Detected Time # Detected Time # Detected Time # Detected Time

Volumes Taken (in sec) Volumes Taken (in sec) Volumes Taken (in sec) Volumes Taken (in sec)
—179 17 3 2.62 B 2.642 11 2.64 13 2.75
—50 59 5 2.622 10 2.642 20 2.67 25 2.81
—10Y 10 5 2.65 10 2.66 20 2.68 25 2.82
—157 15° 5 2.67 10 2.78 20 2.87 25 2.93
—207 207 5 2.69 10 2.72 20 2.97 25 3.25

Algorithm 1 Motion Detection

Input: Central slices, {Cy(i, )}, wherei =110 A, j =1
to B
1)  Pre-processing:
e  Pre-process all central slices for removing
the noise regions at edge regions to get
{It (273)}1]5\]:l
fort=1to N do
It - Ot
M; = mean(C})
for i=11to A do
for j =1to B do
if It(l,]) < M; then
It (Za .7) =0
end if
end for
end for
end for

Find locations of landmark pixels:

2)

e Find difference of consecutive

{Dt i1}y
fort=1to N —1do

Di 1= |It - It+1|
end for

e Find landmark pixels,
{(‘Thyl)}jl'/:l
Extract time series:
e  Extract time series {h;(¢)}, at locations
{pi}f2, from {Dp i1}
for j =1to L do
fort=1to N —1do

hj(t) = Dy r1(21, 1)
end for
end for
Determine Stockwell transform:
e Find Stockwell transform of each time series,
{Sur, F)}e
for [ =1to L do
S (Tv f) = fjooo
t, f)efiQﬂ'ftdt
end for
Estimation of locations of corrupted slices:

e Sum all STs, S(r, f) = i Si(, f)
=1

images,

{Pl}lel

3)

4)

5)

e Find locations of bright regions, . and
legnr—

Output: Locations of corrupted volumes, {l,, }¢f~1

mJim=c

[—10° 10°], [=15% 15°] and [-20° 20°], while in [6], 21, 24
and 22 volumes are detected for respective motions. Average
of time taken for all experiments for each case are shown in
Table I. Time taken to detect motion is around 3 seconds (see
Table I) while it is from 7.68 to 132.21 seconds (depending
on block size) in [5]. This reduction in time is due to the fact
that proposed method detects motion using one dimensional
time series instead of two dimensional images.

V. CONCLUSIONS AND FUTURE WORK

We have proposed a novel automated approach for motion
detection in DSC-MRI perfusion data using time-frequency
analysis. Instead of considering all two dimensional images
for the process, we used one dimensional time series due
to the fact that these scans are acquired over time. This
made the proposed method computationally inexpensive. We
have demonstrated that motion detection can be performed in
automated fashion by using a time frequency representation
called Stockwell transform. We demonstrated our method in
non-bolus phase of perfusion MRI sequences. However, the
proposed method will work in the bolus phase provided pre-
processing is done to account for the local contrast change.
In future, we look forward to extend this method to (i) detect
motion in all possible directions (ii) detect bolus phases first
and then motion and (iii) correct motion.
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