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Abstract. In this work, we aim at understanding semantic interaction
among graspable objects in both direct and indirect physica l contact
for robotic manipulation tasks. Given an object of interest , its support
relationship with other graspable objects is inferred hier archically. The
support relationship is used to predict the \support order" or the order in
which the surrounding objects need to be removed in order to manipulate
the target object. We believe, this can extend the scope of robotic ma-
nipulation tasks to typical clutter involving physical con tact, overlap and
objects of generic shapes and sizes. We have created an RGBD dataset
consisting of various objects present in clutter using Kine ct. We con-
ducted our experimentation and analysed the performance of our work
on the images from the same dataset.
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1 Introduction

Understanding semantic interaction among the objects plays an important role
in various robotic manipulation tasks in clutter. However, most of the robotic
grasping and manipulation tasks remain con�ned to isolated objects, and of-
ten lying on planar surfaces [2, 8]. Recently, there has been a few attempts to
infer pairwise support relationship among objects in clutter. Rosman et al. [9]
predict three types of support relations: \on", \adjacent to", \both adjacent
and on" using Kernel SVM. However, they assume that background is already
segmented from the data. Sj•o•o and Jensfelt [11] infer four types of relations
among each pair of object, viz. casual support, support force,protection and
constraint using logistic regression classi�er. But they work on simulated envi-
ronment and hence remain limited to the inherent imperfections of simulation.
Silberman et al. [10] perform inter-class support inference among regions of four
major structure classes, viz. 
oor, wall, furniture and props using linear pro-
gramming. They work in cluttered indoor settings. However, their work does
not exploit the spatial relationship among di�erent objects that ov erlap onto
each other. Unlike the previous works, the aim of our work is to perform sup-
port inference in clutter involving both graspable and non-graspable objects,
infer both direct and indirect support relations and then predict th e \support
order" in which the supported objects should be removed so that the object of
interest can be manipulated without causing damage to the environment.
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Fig. 1. Overview of our framework: Given the RGB and depth images and target ob-
ject, our algorithm predicts the Support Matrix and the Supp ort Order of the objects.

In our proposed framework, we learn the semantic interaction among the
objects in clutter in three phases. At �rst, the regions corresponding to the
graspable objects are separated out from the background entities in a cluttered
indoor scene. Then, a target object is detected in clutter and its support re-
lationship w.r.t. other objects is inferred hierarchically. Four kinds of support
relations, i.e., \support from below", \support from side", \conta inment" or
\none" are inferred. A \tree of support" is simultaneously built dur ing support
inference to encode the support relationship. Finally, the tree of support is tra-
versed to predict the \support order". During tree traversal, special scenarios
are identi�ed and addressed so that minimal damage occurs when the objects
are removed according to the predicted support order. We use di�erent geomet-
ric features using both RGB and depth information to e�ectively capture the
physical properties of objects. We validate the inferred supportrelationship and
support order on various images from our RGBD dataset capturedusing Kinect
in di�erent indoor settings. In contrast to our previous work [7], wh ere support
relationship among every pair of objects present in the scene is obtained prior to
detecting the target object and performing support order prediction, in the pro-
posed work, support inference for all pairs of objects is avoided by posing it as an
object-centric task. Here, support inference is performed hierarchically w.r.t. the
object of interest. Using this approach, the number of comparisons required is
reduced fromO(n2) to O(nlog(n)). We believe, the predicted support order can
be very useful in many applications such as grasping and object manipulation
tasks in clutter involving overlaps and support by multiple objects. The overall
framework of our work is explained through the block diagram shownin Fig. 1.

2 Support Inference

2.1 Segmentation & Object Detection

The image is segmented into di�erent regions and target object is detected. Hi-
erarchical segmentation method of Hoiemet al. [4] is used to segment the scene.
This method uses superpixels segmented using Arbelaez's method [1].Both 2D
and 3D features of images are used for segmentation. The segmented regions are
provided as input to the object detection and support inference modules. In the
object detection module, SIFT feature matching [3,6,12] between the template
image of the object of interest and the input image is performed. The outliers are
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discarded by applying RANSAC. The segmented regions corresponding to the
matched points of the input image are merged into one region and chosen as the
region corresponding to object of interestO, i.e., the object to be grasped. This
approach ensures that the entire object region is chosen for grasping. Given the
region corresponding to the target object, support relationshipamong di�erent
regions is predicted hierarchically.

2.2 Learning & Inference

A cascade of classi�ers is applied to the segmented regions and the target ob-
ject for support inference. The learning methods, classi�ers andapproach for
inference is discussed in detail below.

Structure Class Classi�cation An indoor environment typically consists of
entities with distinct structural properties such as 
oor, walls as well as entities
with highly diverse structural properties such as furniture. Given a cluttered
scene, it is important to �rst determine which objects are graspable and segregate
them from other non-graspable entities. A logistic regression classi�er is trained
to predict the structure class (
oor/wall/furniture/graspable o bjects) [10] of
each region. The regions predicted as graspable objects are selected for support
inference while other regions are discarded as background. By discarding regions
corresponding to walls, 
oor and furniture, unnecessary comparisons between all
the regions in the image are avoided. In our experimentation, logisticregression
is performed using stochastic gradient descent algorithm over thenormalized
features. The values of learning rate, batch size and maximum number of updates
are empirically set to 10� 5, 100 and 7000, respectively.

Support Class Classi�cation In clutter where objects overlap on one an-
other, an object supports multiple other objects. In order to access any objectO
without causing damage to the environment, all objects thatO supports must be
identi�ed and removed. Our goal is to predict these supported objects. Pairwise
support relationship among these objects is inferred using a 3-layer feed-forward
neural network based support classi�er. We perform support inference hierar-
chically instead of comparing all regions with each other for e�ciency. Given a
pair of regions (A; B ), the support class classi�er predicts if B supports A \from
below", \from side", \contains" it or \not related" to it.

The support features for the regions corresponding to only the graspable
objects are extracted and normalized for training the neural network. Sigmoidal
activation function is used for the four output units to limit all the ou tputs to
a �xed range([0 1]) so that the outputs can be interpreted as probabilities. The
number of hidden nodes is kept as one tenth of the size of the training data to
avoid over-�tting. Stochastic gradient descent algorithm is used to minimize the
cross-entropy loss function which is appropriate for dealing with probabilities.
The most probable support class is assigned to the pair of regions given as
input. In our experimentation, the values of number of hidden nodes, learning
rate, batch size and maximum number of updates are empirically set to 50, 10� 4,
100 and 10,000, respectively.
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Fig. 2. Support Inference Module: The graspable object regions are�ltered using struc-
ture class classi�er. Support inference is performed hierarchically. tree of support and
Support Matrix are generated as �nal output.

Hierarchical Support Inference An object can support multiple objects both
directly and indirectly through other objects it directly supports. To ensure min-
imal damage during manipulation, support inference is performed hierarchically
beginning with the target object.

Suppose,S = f Oi ji = 1 ; : : : ; ng is the set ofn graspable objects/regions in the
scene andO 2 S is the target object. A tree of support T is built with the target
object in the root to encode the predicted support relationship. (The details
of traversal of T are discussed in Section 3). Instead of inferring for all possible
pairs of objects which will requiren(n� 1)=2 comparisons, support relations of all
the objects that O directly supports are inferred at �rst. Every object is paired
with O and support relations of each of the pairsf (Oi ; O)jOi 2 S � f Ogg are
inferred from the support classi�er. The objects Ss = f Osg predicted as objects
supported by O are stored in a FIFO queueQ. They are also inserted into the
tree T as child nodes ofO. The object pulled from the queueQ is again fed to
the support classi�er to predict the objects that it supports in tu rn. All other
regions except the supporting regions(s) or parent(s)pa(Os) and grandparents
pa(pa(Os)) of Os , are paired with Os for the prediction. Note that special care
is taken to discard all the parents and grandparents of the object Os in order
to avoid loops which may lead to damage in practical scenario. The support
inference is performed hierarchically until all the outcomes of the classi�er are
negative, i.e., all the support relationships are predicted as \not related"and
consequently the queueQ is empty.

The advantage of performing support inference hierarchically instead of in-
ferring for all pairs of objects is that this approach signi�cantly re duces the
number of comparisons required fromO(n2) to O(nlogn). Fig. 2 illustrates the
process of support inference.

2.3 Features

For structure class classi�cation, features proposed by Silberman et al. [10] are
used. The features include SIFT features, histograms of surface normals, 2D and
3D bounding box dimensions, color histograms and relative depth.

For support classi�ers, various features that capture the pairwise relationship
of regions are used. Support featuref (A; B ) determine if region A is supported
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by B, but not the reverse. Hence, these features are not symmetric in nature.
We adapt support features from [10]. The features include SIFT features of both
regions to capture their individual characteristics, location features that capture
absolute 3D positions of the regions and geometric features that capture di�erent
geometric relations between the two regions. In addition to this, weintroduce
�ve more new geometric features for improvement in encoding the pairwise rela-
tionships brie
y discussed below. (i) Proximity between two objectsf p(A; B ) is
measured as the ratio of distance in 3D between the centroids of the two objects
and the sum of radii of the spheres circumscribing the two regions.The radius of
the circumscribing sphere is approximated as the distance betweenthe centroid
and the point farthest from the centroid. (ii) The amount of overla p f br (A; B ) is
measured byBoundary Ratio , i.e., the ratio of the length of the boundary of
the supported object A in contact with B with the perimeter of A.(iii) Depth
Boundary f d(A; B ) is used to di�erentiate visual occlusion and actual contact.
It is the average distance between the two objects from the contact boundary.
(iv) Containment f c(A; B ) is the percentage of volume of the supported object
A lying within the 3D convex hull of B . This feature determines if an object is
on another object or inside it. (v) A stable object has higher probability of sup-
porting an unstable object. If the gravity line of an object is in alignment with
the baseline, it is considered as stable.Relative stability f s(A; B ) is de�ned
as 1 if supporting object is stable and supported object is unstable, -1 for the
reverse and 0 if both are stable or unstable.

3 Support Order Prediction

(a) (b)

Fig. 3. Support Order Prediction. (a) f O; O1 ; O2 ; O3g: support in multiple hierarchy;
f O4 ; O5 ; O6g: containment, f O7 ; O8 ; O9g: simultaneous support by multiple objects.
(b)Reverse Level Order Traversal of Tree of Support. Edges in gray: Pruned edges.
Nodes in light blue: skipped nodes.

The tree of support T is traversed using reverse level order traversal to pre-
dict the support order. The objects present at the leaf nodes are the ones not
supporting any other object. So they are picked up �rst and then the upper layer
is traversed and the process repeats until we reach the root node, i.e., the tar-
get object. Various special cases are identi�ed and handled duringtree traversal
to ensure minimal damage during manipulation. In case of support bymultiple
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Fig. 4. RGBD dataset for Support Inference: the dataset consists of images with dif-
ferent types of support, heavy clutter and occlusion.

hierarchy, the child node corresponding to the supported objectis connected to
multiple parent nodes from di�erent layers. It is not feasible to reta in all edges
connecting to the child node. Retaining any of the edges in the upperlayer(s)
implies that the object corresponding to the child node will be searched even
after its removal. On the other hand, pruning the edges in the lowerlayer(s) will
increase the chance of damage since the presence of the supported object will
be ignored while picking the parent node(s) in the lower layer(s). Therefore, the
edge(s) between the child node and the parent node(s) at the lowest layer are re-
tained while pruning o� edges connected to parent node(s) in the upper layer(s).
If any object contains other objects inside it instead of merely supporting it,
then it is grasped directly without the need to remove the containedobjects. So
prior to retrieving any node during traversal, if the support type f or a node is
found to be \containment", then, this node is not retrieved. Fig. 3(b) graphically
demonstrates the tree traversal and support order predictionfor objects shown
in Fig. 3(a). We traverse from the leaf nodes towards the root node. The support
order is predicted asO3 ! O9 ! O2 ! O8 ! O7 ! O4 ! O1 ! O:

4 Experiments and Results
We have collected a dataset consisting of 50 images, point clouds anddepthmaps
with di�erent levels of clutter using Kinect and have manually created annota-
tion for each image, and ground truth support relationship for each pair of
regions in all images (Refer Fig.4). The raw depthmaps are smoothened using
an adaptation of colorization method by Levin et al. [5]. A 5-stage hierarchical
segmentation approach proposed by Arbelaezet al. [1] is used for segmenting
the images.

Table 1. Accuracy: Structure class & Support Inference

Inference Structure class Inference Support Class Inference
Type Training Testing Training Testing

Ground Truth Regions 100 97.02 73.42 64.72
Segmented Regions 97.79 83.88 53.00 49.17

The output of the structure classi�er a�ects support inference, since only
the regions predicted as graspable objects are given as input to the support
classi�er. The support relationship of the regions missed by structure classi�er
can not be established. And, if a region is falsely classi�ed as graspable object,
we may end up inferring an infeasible support relation. Hence, it is important
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S. O: 15 14 13 5 4 3 2 116 S. O: 3 2 1 67

S. O: 3 2 1 S. O: 3 2 1 7

S. O: - 11 S. O: - 7
(a) Input Images (b) Results (c) Input Images (d) Results

Fig. 5. Results of inference: The highlighted section in input imag es in column (a) &
(c) are zoomed in columns(b) & (d) respectively for better vi ew. The arrows point from
target object to objects directly and indirectly supported by it. Support Order (S.O.)
for each result is shown below the respective images.

to achieve high accuracy in structure class prediction. The accuracy of structure
class classi�cation is shown in Table 1. High accuracy in structure class inference
can be due to similar background entities in our dataset.

The result of support inference is shown in Fig. 5. The predicted support
order corresponding to the images are shown below each image. Theresults in
row 1, 2 and 3 depict support from below, support from side and containment
respectively. The results in row 1 show support relation from below to multiple
objects. In row 2, we can observe the hierarchical support relationship. Book 7
supports book 1 directly and book 1 supports books 2 and 3. Therefore, book 7
also indirectly supports books 2 and 3. The results in row 3 show containment.
All the objects contained in the basket are shown as supported bythe basket.
But due to containment, they need not be removed in order to remove the basket,
as evident in the support order shown for images in row 3.

The accuracy of support class classi�cation is given in Table 1. We achieve
64.72% accuracy on the ground truth regions. We observe that, support inference
fails in a few situations. Often in frontal view, when the entire surface area of the
supporting object is not visible and the contact to the supporting surface is not
visible, the support relation is not inferred. In a few cases, due to error in struc-
ture class prediction, some valid graspable object regions are missed whereas
some furniture regions are misclassi�ed as graspable objects causing incorrect
support inference. Sometimes, di�erent planes of one object aresegmented into
di�erent regions giving multiple regions for one object. In these cases also, in-
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feasible support relations are inferred. Inaccurate segmentation errors also a�ect
the support inference and thus support order prediction. As evident in Table 1,
the accuracy of support class classi�cation using segmented regions is 49.17%,
which is signi�cantly lower than compared to ground truth regions. T his leaves
lot of scope for improvement in this direction in future.

5 Conclusions
In this paper, we learned semantic interaction among objects in clutter by in-
ferring support relationships and using them to predict the support order in
which surrounding objects should be removed to access the target object. Our
work extends the scope of semantic interaction to complex situations involving
overlap, physical contact and objects of varied shape and size. We created a
dataset consisting of di�erent objects used in household and o�ceenvironment
and performed our experimentation on the same. In future, we plan to work
on improving the performance of segmentation on RGBD data so that support
relations are learned more accurately.
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