
Near Real-time Face Parsing

by

Digvijay Singh, Ayush Minosha, Nataraj Jammalamadaka, C V Jawahar

in

NCVPRIPG 2013

Report No: IIIT/TR/2013/-1

Centre for Visual Information Technology
International Institute of Information Technology

Hyderabad - 500 032, INDIA
December 2013



Near Real-time Face Parsing

Ayush Minocha, Digvijay Singh, Nataraj Jammalamadaka, C. V. Jawahar
CVIT, IIIT Hyderabad

ayush.minocha,digvijay.singh@students.iiit.ac.in, nataraj.j@research.iiit.ac.in, jawahar@iiit.ac.in

Abstract—Commercial applications like driver assistance pro-
grams in cars, smile detection softwares in cameras typically
require reliable facial landmark points like the location of eyes,
lips etc. and face pose at near real-time. Current methods are
often unreliable, very cumbersome or computationally intensive.
In this work, we focus on implementing a reliable and real-time
method which parses an image and detects faces, estimates their
pose and locates landmark points on the face. Our method builds
on the existing literature. The method can work both for images
and videos.

Keywords—Face detection, Real time, Facial points, Pose, Land-
mark points, face parsing

I. INTRODUCTION

Face detection and recognition is one of the oldest prob-
lems in computer vision. Recent developments [11] have
shown a positive trend towards detecting faces in the wild.
As a consequence, many applications demand information
beyond location and identity of the person. This information
is in the form of landmark points (eyes, nose, ears etc. ) and
pose (orientation) of the face. Driver assistance programs, for
example, process the area around the landmark points on the
driver’s face and raise an alarm if driver is dozing off. They
can also predict when the driver is not paying attention to
the road. Similarly, cameras have on-chip programs which can
detect smile using the landmark points. Such applications need
an accurate and fast detector as a false or a late detection is
not viable. In this paper, we aim to parse an image to locate a
face, determine landmark points and estimate the pose of the
face very accurately and in near real-time.

In the past, each of the face detection, pose estimation
and landmark detection problems have been independently
addressed until Zhu and Ramanan [11] brought them together
using the Pictorial structures framework [3]. Some of the
popular face detection methods are [8], [6]. However, Viola
Jones detector [10] is undoubtedly most popular among them,
and is a real-time solution. For the pose estimation, methods
like [5], [7] have state-of-art results. Finally for landmark
detection, active appearance model [9] and Constrained Local
Models [1] are very popular. The work by Zhu and Ra-
manan [11] outperforms all the above methods in three tasks
of detection, pose estimation and landmark estimation. This
performance of course comes at a very high computational
price. For an image of size 770 × 500, the algorithm takes
14.5 seconds giving the output displayed in Figure I. Please
note that the output displayed contains the locations, poses
(in degrees) and landmark points on the faces detected. For
comparison, algorithms like Viola Jones [10] typically take
about 0.05 seconds for face detection.

A deeper analysis of Zhu and Ramanan [11] revealed
that some of the sub-parts of this algorithm dominate the

All detections above the threshold

060
45

Fig. 1. Zhu and Ramanan algorithm [11] has detected the three faces, the
angle of these faces w.r.t to the camera, called as pose, and locations of various
points on the faces like eyes, ears, nose, chin, jaw-line e.t.c ,called as landmark
points, of the three people in the image. It took about 14.5s to process this
image of size 770× 500.

computation. Further, the prior knowledge about the structure
of the human face is not effectively used. For example, all
human faces have eyes above the nose-level. If the input to
the algorithm is a video, person can be tracked very efficiently
at a near-real time speed. In our work, we use the above
observations to develop a robust and real-time method which
parses an image to detect face, estimate the pose and locate
landmark points. An image or a video frame is first processed
using a fast face detector. We use the OpenCV implementation
of the Viola-Jones [10] algorithm as the detector. The detector
quickly gives a set of face detections, some of which can
be false positives. The detections are then passed through
the proposed method to obtain accurate face detections, pose
estimates and land mark points. If the input is a video, results
from the previous frame are used to further speed-up the
proposed method. The results were observed to be very fast
and accurate. A face of size 380 × 250 takes 0.3 seconds in
our method as compared to 2.4 seconds in Zhu and Ramanan’s
method [11].

II. EFFICIENCY AND EFFECTIVENESS

In this section, we describe and evaluate the two popu-
lar face detection algorithms, Viola-Jones [10] and Zhu and
Ramanan [11]. Both the algorithms are compared using three
measures: precision, recall and computational time. For this
purpose, we annotated the first 500 frames of a popular
television show “The big bang theory” ,which henceforth is
called as “BBT dataset”, and ran both the algorithms on this
data. The dataset has significant variations in size and pose of
faces.



Viola Jones (VJ) [10] algorithm models the face as a
collection of rectangular shaped Haar-like features. Three types
of features containing two rectangles, three rectangles and four
rectangles are used. These rectangles have same dimensions
and placed adjacent to each other. All the pixels within each
rectangle are summed up and feature is simply the difference
of summations among different rectangles. Using the integral
map, these summations and differences can be very efficiently
computed. The classifier used is the Adaboost algorithm which
combines the series of weak classifiers cleverly to obtain a
strong classifier. The weak classifier ht is given by:

h(x, f, p, θ) =

{
1 if pf(x) < pθ
0 otherwise (1)

where f is the feature, θ is the threshold and p is the po-
larity indicating the direction of the inequality. The following
equation describes the strong classifier:

C(x) =

{
1

∑T
t=1 αtht(x) ≥

1
2

∑T
t=1 αt

0 otherwise
(2)

where αt are the weights of the classifier. For real-time
performance, a series of classifiers with increasing complexity
are trained and are arranged as a cascade. The complexity of
the classifier is increased by increasing the number of weak
classifiers. The first two classifiers in the cascade, for example,
use only two features. The threshold of these initial classifiers
are adjusted such that extremely high detections rates close
to 100% are achieved at the cost of high false positive rates.
The idea is to reject all the simple subwindows and pass the
difficult ones to the next stage of the classifiers. Each classifier
is trained only on those samples which have passed through
all the previous classifiers. Thus difficulty of the task increases
for the latter parts of the cascade. During testing, the image
is passed through this cascade of trained classifiers and the
sub-windows which are rejected at any point during the parse
are ignored and the ones which goes through all of them are
finally selected. We use the OpenCV implementation of the
algorithm in our paper.

Zhu and Ramanan (ZR) [11] algorithm models the face as
a collection of parts and represents them as a collection of tree
structured pictorial structures [3]. These parts are the keypoints
on the face which include the edges of eyes and lips, tip of the
nose and few points on the jaw line. The neighboring points
are connected by an edge to capture the structure of the face.
The model consists of M mixtures of trees Tm = (Vm, Em)
where Vm are the nodes and Em are the edges in the mixture
m. An image is represented by I and each face is represented
by configuration L = (l1, ..., ln) where li is the location of
part i. A configuration L in a mixture Tm is scored as :

S(I, L,m)=Appm(I, L) + Shapem(L) + αm (3)

Appm(I, L)=
∑
iεVm

wmi φ̇(I, li) (4)

Shapem(L)=
∑
ijεEm

amijdx
2 + bmijdx+ cmijdy

2 + dmijdy. (5)

The scoring function accumulates the appearance score of
each part li, the relative positions of a part pair ei,j = (li, lj)
and bias for the mixture m. All the parameters listed above

TABLE I. Performance Analysis. The performance of Viola Jones [10],
Zhu and Ramanan [11] and proposed method are compared in terms of

precision, recall and computational time.

Algorithm Viola Jones [10] Zhu and Ramanan [11] Ours
Precision 15.6 10.7 72.0

Recall 59.1 64.1 57.6
Time 0.08 162.86 5.05

are learned using structured prediction framework [11]. Please
note that each mixture component models a particular pose
range. In their implementation, a total of 13 components cor-
responding to ±90◦,±75◦,±60◦,±45◦,±30◦,±15◦ and 0◦

are used.

For this work, the analysis of inference is very relevant.
Here the inference algorithm is briefly described. Given any
image, first a feature pyramid is constructed. The feature used
is histogram of oriented gradients [2]. Then the part filters
across all the mixture components are convolved to obtain
responses. These responses serve as the appearance/unary term
given in equation 4. Since the CRF described above is a tree-
structured graph, exact inference is performed using belief
propagation. The following equation describes the inference
procedure for one pyramid level,

S∗(I) = max
m

[max
L

S(I, L,m)]. (6)

Let L be the number of levels, M be the number of mixtures,
K be the number of parts and N be the number of possible part
locations. The number of edges would be K−1. The standard
belief propagation [3] has a complexity of O(KLMN2). Us-
ing the distance transform [4], the complexity of the algorithm
can be reduced to O(KLMN). Distance transform solves the
following problem very efficiently:

dt(x2) = min
x1

f(x1) + (x1 − x2)2. (7)

For each value of x2, the minimum value of the function on
the right has to be found. A simple algorithm takes O(N2)
where N is the number of possible values that both x1 and x2
can take. Distance transform has an order complexity of O(N).
The rhs of the above equation can viewed as a shifted parabola
in terms of x2. Thus for each x1, a parabola can be described.
Distance transform finds the lower envelope of these set of
parabolas in O(N) time. After the belief propagation algorithm
is run, only those configurations are considered whose max-
marginals at the root node are greater than −1.

On the whole the algorithm can be split into four parts: (i)
constructing feature pyramid, (ii) convolution with part filters
(Appm in equation 4), (iii) belief propagation and distance
transform (equation 7) and (iv) non-maximal suppression and
miscellaneous tasks. In this work, we reduce the complexity of
the algorithm to O(KMN) in case of detection and O(KN)
in case of tracking. Further, we search over a small of fraction
K, M , N reducing the time taken.

Comparison: Table I gives the results of Viola-Jones’ [10]
and Zhu and Ramanan’s [11] approach on the BBT dataset.
It can be observed that Zhu and Ramanan’s [11] approach
has better recall values, but is computationally very expensive
taking more than 2.5 minutes per frame. Viola-Jones [10] on
the other hand has relatively low precision and recall but is



very fast at 0.08 seconds. Our method, as the table I suggests,
strikes a nice balance between quantitative performance and
computational cost.

III. FACE PARSING

Given an image or a frame of a video, it is first processed
using a face detector. In our implementation, we use VJ
algorithm and get face detections. To ensure that there are no
misses, the threshold of the algorithm is lowered at the cost of
having more false positives. The detected bounding boxes are
then expanded by a scaling factor F to allow the subsequent
components of the method to refine the detections. We then
pass on the expanded bounding boxes to the two subcompo-
nents of our method, Face-Track and Face-Detect. Face-Track
tracks the faces from the previous frame by initializing the
ZR algorithm to detection from the previous frame and then
efficiently finding the face in the current frame. If the method
is run on a stand-alone image, Face-Track algorithm returns an
empty set. The outputs of both face detector and Face-Track
are sent to Face-Detect algorithm. Face-Detect is an optimized
version of ZR which takes advantage of the face structure and
the location of the face pointed by face detector. It runs only on
those face detector bounding boxes which are not associated
by Face-Track algorithm.

As we have noted earlier, ZR is computationally expensive.
It handles the variations in translation, scale and pose by
sliding the part templates over the entire image, searching
over feature pyramid and searching among the components
of the mixture model respectively. All the three operations
are computationally expensive considering that they have to
be repeated over all the parts of the face. To speed-up the
algorithm, we constrain the number of feature pyramid lev-
els and locations that sliding window visits in Face-Detect
algorithm. In Face-Track algorithm, we further restrict the
number of components in the mixture model. Each of these
steps significantly speeds-up the algorithm and cumulatively
have a factor times speed-up. Below, we describe all the three
optimizations.

A. Reducing Scale Space levels

Zhu and Ramanan [11] algorithm is built using faces of
certain standard size. Any face whose size is less than the
standard size cannot be detected. But faces whose size is larger
than the standard size are detected using the feature pyramid
trick. A pyramid consists of a collection of images with base
image being the original image itself and the subsequent levels
having images of gradually lesser sizes. Thus images stacked
on top of each other in a progression reminds of a pyramid.
A feature pyramid is simply a pyramid containing feature
responses to a particular filter. In our case, we use HoG [2] as
the feature. After building the pyramid, Zhu and Ramanan [11]
algorithm is run over all the scales.

We have observed that a maximum response is obtained
at that level where the detector’s dimensions match that of
the face. Unfortunately, obtaining the detector’s dimension is
not straight-forward, since the Zhu and Ramanan [11] has a
collection of part templates rather than a single large face
template. Therefore cross validation has been used to find
the detector’s [11] dimensions. Given the face dimensions and

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Fig. 2. Mixture components and Parts: In the clock-wise direction, mixture
component corresponding to 0◦ and locations of left eye, right eye, chin, left
ear and right ear are plotted in a normalized space.

the detector dimensions, the level at which the best detection
occurs can be approximately estimated using,

l = dlog2H − log2((h− d)S))I + I +Ke (8)

where l is the desired level, H is the the height of the face, h is
the height of the detector, d is a constant, dependent on the size
of padding, S is the HoG [2] cell size, I is the octave interval
in the feature pyramid and K is a constant. Using the above
formula, a level l is estimated given the face dimensions by the
face detector [10]. The feature computation is then restricted
to levels {l − 1, l, l + 1} to accommodate for approximations
in the above formula.

Reducing the scale space to 3 levels significantly reduces
the computation time. In the section II, we noted that the
order complexity of the algorithm is O(KLMN). By reducing
the number of levels from L to 3, the order complexity is
reduced to O(KMN). Reduction in the scale space levels
saves time in the following steps of the algorithm: (i) feature
pyramid construction, (ii) convolution with part filters (Appm
in equation 2) and (iii) belief propagation. Both Face-Detect
and Face-track algorithms use this optimization.

B. Reducing Spatial Configurations

To optimize the search in possible locations parts, we use
the fact that every keypoint on the face can be localized to
some approximate region. For example, the right ear cannot be
found on the left side of a frontal face. Thus it is not necessary
to do a sliding window search over the whole search space.
These regions are obtained by collecting statistics from Zhu
and Ramanan’s [11] outputs on a number of images from our
dataset. First VJ algorithm is run on each image and correct
detections are retained. These detections are then expanded
by a factor of F and passed to ZR algorithm. The value of F
is determined to be 1.6 using cross-validation. After running
the Zhu and Ramanan [11] algorithm, bounding boxes of face
detections are computed using the minimum and maximum in-
dices of the face keypoints. Next the keypoints are normalized
with respect to the previously obtained bounding box from VJ
algorithm. The key points from all the images in the validation
data are collected to obtain an approximate region for each
keypoint. These approximate regions are obtained for each
part-mixture component combination.



Using the localized regions for each part, we limit the
search for a part to be in a definite region. This saves time
while computing the appearance term Appm as the convo-
lution operation is on a much smaller region. Similarly the
belief propagation is limited to the above localized regions.
Figure III-B illustrates that the parts are well localized regions
occupying a small region in the search space. While this step
does not change the order complexity, it reduces the time taken
by the algorithm as the number of spatial locations searched
by the algorithm is now limited to regions determined above.
While this optimization can be used both for Face-Detect
as well as Face-Track algorithms, Face-Track algorithm can
be further optimized. Face-Track algorithm uses the detection
from previous frame to refine the current detection. Thus the
algorithm can be limited to the previous frame’s part positions
and a small neighborhood around them. The scaling factor for
converting the part positions from original scale to a particular
level in the pyramid can be directly computed using,

SF = 2−
(l−I−K)

I (9)

where SF is the scaling factor, l is the level of the pyramid
under consideration, I is the octave interval in the feature
pyramid and K is a constant. The constant K in case of Zhu
and Ramanan [11] is 1.

C. Reducing number of components

In the Face-Detect algorithm, since it is not known apriori
what is the pose of the face detection given by the VJ
algorithm, the ZR algorithm has to search over all mixture
components. Face-Track algorithm on the other hand has the
prior information from the previous frame. It can be safely
assumed that between two consecutive frames the pose of
the face will not significantly change. Hence the Face-Track
algorithm simply searches for the best match around the pose
obtained from the previous frame. To be more precise, if the
mixture component of the previous detection is m, the search
space is restricted to {m − 1,m,m + 1}. This step needs a
careful consideration. When the search transitions from a mix-
ture component corresponding to near frontal angle to the one
corresponding to the a side profile, the part correspondences
have to be carefully mapped. This will prove very useful in
initializing the locations of parts and thus optimizing the search
over spatial configurations.

IV. EXPERIMENTS

In this section we evaluate our algorithm on both
performance and efficiency. To evaluate the algorithm we
have created two datasets and used another standard dataset.
We evaluate only the face detection accuracies and the speed
of the algorithm. For the performance of pose estimation
and landmark localization please refer [11] as our algorithm
does not effect performance of these two tasks. The next
few sections describe the datasets used for evaluation,
experimental set-up and the results obtained.

Datasets: The proposed method is evaluated on three
datasets viz., driver dataset, AFW dataset [11] and BBT dataset.
The datasets are in the increasing order of complexity. The
driver dataset consists of four YouTube videos containing

people driving a vehicle and facing camera at different poses.
This dataset has been chosen to mainly showcase the algorithm
for driver assistance application. The dataset is relatively
simple with typically one or two persons in a vehicle and
a relatively simpler backgrounds. The AFW dataset has been
introduced in Zhu and Ramanan [11]. It consists of images
with multiple people at varying poses located in cluttered
background. Finally the BBT dataset, introduced in section II,
is the most challenging of the three. It has significant variations
in pose and size of the faces and imaging conditions.

Experimental set-up: Each image is processed by the
proposed method to obtain face detections. The outputs and
the computation times of (i) feature pyramid creation, (ii) Part
filter convolution, (iii) Belief propagation, (iv) Non maximal
suppression and other miscellaneous codes and (v) total time
are noted. Precision, recall and computational times are used
as the measures.

Results: The first step of the algorithm is the VJ face
detection algorithm. Both the frontal face and side profile
detectors of VJ algorithm are run. As mentioned before, we
lower the threshold of the algorithm to increase the detection
rate. Table II shows the performance of the face detection
before and after lowering the threshold and the total time taken
on all the datasets. As expected, the precision of the algorithm
drops and the recall increases as the threshold is lowered. The
time taken by the algorithm is unaffected by the threshold used.
Please note that the value of the threshold has implications on
the speed of the whole algorithm. For lower thresholds, more
detections appear and both Face-Detect, Face-Track have to
do more work.

Next these face detections are passed through the Face-
Detect and Face-Track parts of the algorithm. Table III shows
the performance of our algorithm on the Driver dataset, AFW
dataset [11] and BBT dataset respectively and compares it
with [11]. As expected, the algorithm has performed excel-
lently on the simple Driver dataset with perfect precision and
recall. Due to the relatively simpler settings of the dataset,
Viola-Jones algorithm [10] was able to detect most of the
faces with high precision and recall. On the AFW dataset,
it has very good precision and recall. On the BBT dataset,
the method has surprisingly good performance. We believe the
improved performance is because of the tracking step (Face-
Track algorithm) which the other two algorithms [10], [11]
(please refer to Table I) do not leverage by design. On the
whole, the performance drop in terms of recall (table III)
is minimal on the driver dataset and acceptable on the BBT
dataset. On both these datasets the algorithm performs Face-
Track step. On AFW dataset the drop in recall is tolerable.
Figure IV shows some of the detections on the three datasets.

Tables III,IV give the statistics on average computational
time of our method. As summarized before, the algorithm
can be broadly split into (a) feature pyramid computation,
(b) convolution and (c) belief propagation. Table IV gives the
computational time of the above mentioned sub-parts of our
method , the total time taken on Driver dataset and compares
it to that of Zhu and Ramanan [11]. Clearly the overall method
has achieved a speed-up by a factor of 35 times over Zhu and
Ramanan [11]. The table also shows the computational times
of Face-Detect and Face-Track steps. As expected Face-Track
is faster than Face-Detect step and hence it is desirable to



Fig. 3. Qualitative Results. The example detections of the proposed method on Driver dataset (column 1), AFW dataset [11] (column 2) and BBT dataset
(column 3).

TABLE II. Quantitative Results. The precision (P), recall (R) and
computational time (T) of Viola jones before and after lowering threshold.

P-before P-after R-before R-after Time
Driver 100 100 97.5 100 0.35
AFW 68.4 9.65 76.9 61.88 9.56
BBT 72.0 14.03 56.6 89.52 5.05

TABLE III. Quantitative Results. The precision (P), recall (R) and
average computational time (T) on various datasets.

P-ours P [11] R-ours R [11] T-ours T [11]
Driver 100 100 97.5 100 0.35 12.97
AFW 68.4 10.2 76.9 93.8 9.56 242.9
BBT 72.0 10.7 56.6 64.1 5.05 162.9

have more Face-Track runs. Table III gives the computational
time of our algorithm on various datasets and compares it with
Zhu and Ramanan [11]. Our algorithm has a speed of 2.9 FPS
on the driver dataset. The reason for this speed is because
the algorithm ran primarily the Face-Track step. On the AFW
dataset the speed of the algorithm has dropped. There are two
reasons for decrease in speed: (i) Viola-Jones [10] outputted
many false positives and as a consequence Face-Detect step
had to be run many more detections and (ii) since the dataset
has stand-alone images, Face-Track could not be used. On
the BBT dataset, the method has a good speed. Overall the
algorithm has a near-real time speed with good performance.

V. CONCLUSION

In this paper, we proposed a near real-time method which
detects face, estimates pose and locates landmark points. The
algorithm of Zhu and Ramanan [11] has been throughly opti-
mized to achieve this speed. We introduced two new datasets
(a) BBT dataset and (b) driver dataset. We demonstrated that
on videos and particularly those with simpler backgrounds, the
algorithm runs with good performance and high speed. This
algorithm is particularly suitable for applications like driver-
assistance programs and smile detection softwares on cameras.

TABLE IV. Average computational time. The timings in seconds
computed on Driver dataset of various components of the algorithm are
displayed. ‘Feat.Pyr’ stands for feature pyramid computation and ‘BP’

stands for belief propagation.

Algo component Feat.Pyr Convolution BP Total
Face Detect 0.013 0.40 0.19 1.18
Face Track 0.013 0.03 0.19 0.31

Overall 0.013 0.07 0.19 0.35
[11] 0.620 6.590 5.587 12.974

REFERENCES

[1] P. N. Belhumeur, D. W. Jacobs, D. J. Kriegman, and N. Kumar,
“Localizing parts of faces using a consensus of exemplars,” in CVPR,
2011, pp. 545–552.

[2] N. Dalal and B. Triggs, “Histograms of oriented gradients for human
detection,” in CVPR (1), 2005, pp. 886–893.

[3] P. F. Felzenszwalb and D. P. Huttenlocher, “Pictorial structures for
object recognition,” International Journal of Computer Vision, vol. 61,
no. 1, pp. 55–79, 2005.

[4] ——, “Distance transforms of sampled functions,” Theory of Comput-
ing, vol. 8, no. 1, pp. 415–428, 2012.

[5] L. Gu and T. Kanade, “3d alignment of face in a single image,” in
CVPR (1), 2006, pp. 1305–1312.

[6] B. Heisele, T. Serre, and T. Poggio, “A component-based framework for
face detection and identification,” International Journal of Computer
Vision, vol. 74, no. 2, pp. 167–181, 2007.

[7] M. Jones and P. Viola, “Fast multi-view face detection,” MERL,
TR2003-96, Tech. Rep., 2003.

[8] Z. Kalal, J. Matas, and K. Mikolajczyk, “Weighted sampling for large-
scale boosting,” in BMVC, 2008, pp. 1–10.

[9] I. Matthews and S. Baker, “Active appearance models revisited,” Inter-
national Journal of Computer Vision, vol. 60, no. 2, pp. 135 – 164,
November 2004.

[10] P. Viola and M. J. Jones, “Robust real-time face detection,” International
Journal of Computer Vision, vol. 57, no. 2, pp. 137–154, May 2004.

[11] X. Zhu and D. Ramanan, “Face detection, pose estimation, and land-
mark localization in the wild,” in CVPR, 2012, pp. 2879–2886.


