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Abstract. We present a novel framework for depth based optic cup
boundary extraction from a single 2D color fundus photograph per eye.
Multiple depth estimates from shading, color and texture gradients in
the image are correlated with Optical Coherence Tomography (OCT)
based depth using a coupled sparse dictionary, trained on image-depth
pairs. Finally, a Markov Random Field is formulated on the depth map to
model the relative depth and discontinuity at the cup boundary. Leave-
one-out validation of depth estimation on the INSPIRE dataset gave
average correlation coefficient of 0.80. Our cup segmentation outperforms
several state-of-the-art methods on the DRISHTI-GS dataset with an
average F-score of 0.81 and boundary-error of 21.21 pixels on test set
against manual expert markings. Evaluation on an additional set of 28
images against OCT scanner provided groundtruth showed an average
rms error of 0.11 on Cup-Disk diameter and 0.19 on Cup-disk area ratios.

1 Introduction

Glaucoma, a sight-threatening disease, is characterized by the deformations in
the optic disk (OD) in retina. The OD is a bright elliptic region with a cen-
tral depression (called the optic cup) devoid of retinal nerve fibers surrounded
by a neuro-retinal rim, where the nerve fibers bend into the cup region (Fig
1(a)). Glaucoma destroys optic nerve fibers causing neuro-retinal rim thinning
and cup enlargement which is widely measured quantitatively via the vertical
Cup-Disk diameter ratio (CDR). Deriving CDR from fundus images requires
accurate OD and the cup boundaries and hence their segmentation has received
much attention. Majority of the existing methods perform OD segmentation in 2
stages: OD localization using intensity and shape based template matching such
as Hough transform [1][2], followed by boundary extraction using ellipse fitting
[3] or specially adapted deformable models [1],[2].Though most methods report
good performance in OD segmentation, cup segmentation remains a challenging
problem. The optic cup boundary (OCB) is largely characterized by change in
depth of the retinal surface in the OD region and hence methods for cup seg-
mentation rely on (i) explicit measurement of depth or (ii) appearance features
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Fig. 1. (a) Sample OD sub-image with a sketch of corresponding depth. (b) System
for cup segmentation. Top green box - online system; bottom red box - offline system.

which provide depth cues. In (i), depth information is obtained either from 3D
imaging modalities such as OCT [4] or derived using stereo image pairs [5] [1].
Though better suited for accurate OCB extraction, the availability, portability
and cost of these imaging devices inhibits their use in a glaucoma screening. In
(ii) high level depth cues are extracted from single color fundus images based
on pallor intensity and vessel bends [2] in addition to superpixels [3] and graph
cut [6] based approaches. In absence of depth information, these features are
susceptible to shape, color variabilities and indistinct OCB. Further, sparse dis-
tribution of vessels in the nasal, temporal sides and occurrence of vessel bends
at non-OCB locations makes its detection challenging.

To deal with above mentioned challenges, we propose a depth based OCB
extraction framework from single color fundus image per eye in which multiple
depth estimates from shading, color and texture gradients are extracted from
the image and correlated with OCT based depth values using a coupled sparse
dictionary pre-trained on a set of image-depth pairs. Finally, OCB is extracted
using a novel contour point detection based MRF formulation defined on the
depth map to model the relative depth and discontinuity at OCB while reducing
computation by lowering the number of sites to be labeled. We leverage the
fact that in a clinical setting, OCT and fundus imaging are possible while for
screening, only fundus imaging may be possible in the field. While supervised
methods for estimating depth from single images have been recently used in
computer vision [7] [8], such strategy remains unexplored in the medical domain.

2 Methodology

A square region around the OD center is automatically extracted using a Hough
transform based OD localization [2]. The region is aligned based on symmetry in
vessel density (in the nasal-temporal and superior-inferior regions) and resized
to a standard size of 393× 393 pixels. The proposed method shown in Fig. 1(b)
comprises of 2 stages: depth map estimation from single image per eye (sec. 2.1)
and OCB extraction from the estimated depth map (sec. 2.2).
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Fig. 2. Block diagram of the proposed supervised depth estimation

2.1 Depth Estimation

As noted in [1], different clinical studies have defined OCB as 50 microns below
the retinal surface, 1

2 or 1
3 drop in depth from the OD edge to the deepest point.

This indicates that relative depth estimates rather than absolute depth values
define the OCB. Hence, we obtain depth maps defined up to an arbitrary scale
factor rather than absolute depth values.

The proposed depth estimation (Fig. 2) comprises of extraction of chromi-
nance (C), luminance (L) and texture word map (T ) features, followed by in-
dividual depth map estimates dc and dl from C and L respectively. dl and dc
suffer from inaccuracies due to the lack of 1-1 correspondence between C and
d, simplified assumptions in shape from shading (SFS)and treating each pixel
independent of its neighborhood. To obtain a more accurate and robust depth
map, 8× 8 image patches are extracted and represented in a feature space Pcca
and correlated to OCT based depth estimates Qcca using coupled sparse dictio-
naries U and V to obtain the final depth map. Details are provided below.
Feature Extraction: (a) T : 30 energy responses of a Gabor filter bank (6 ori-
entations, 5 scales) [9] along with their 1st and 2nd order derivatives along two
directions (30 × (2 + 2) = 120) are combined to obtain a 150-D feature vector
for each pixel which is clustered (during training) into 60 words. Each pixel is
represented by the nearest word index [10] to obtain T . For remaining features,
diffusion based inpainting is first applied to suppress vessels.(b) C : At each
pixel, the color values r,g,b are normalized as j/(r+g+b); j is r,g,b respectively
to obtain 3-D feature C. (c) L: The luminance information is obtained by sup-
pressing high color gradients in intensity channel using [11].
Individual depth estimates: dl is obtained from L by complementing the
output from a simple but fast SFS algorithm [12]. dc is obtained from C using
a supervised approach;for each depth value d ∈ [0, 255], P (C | d) is learnt from
a training set of image-depth pairs, using a 3-D Gaussian Mixture Model with
number of Gaussians selected in the range 1-6 that maximizes the Akaike in-
formation criterion. During testing, each pixel is assigned a d that maximizes
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P (d | C) using maximum a posteriori estimation.
Dimensionality reduction: In the training phase, each pixel is represented
in 2 feature spaces: (a) F ∈ R7 obtained from the image by concatenating
dl,dc, their gradients ∂dl

∂x , ∂dl
∂y , ∂dc

∂x , ∂dc
∂y and T , (b) G ∈ R3 computed from the

ground truth depth maps comprising of the depth value doct along with it’s
gradients ∂doct

∂x ,∂doct∂y at the pixel position. The dimensionality of F and G are

reduced (while maximizing the correlation between them) using Canonical Cor-
relation Analysis [13]. This yields Pcca = φTimg.F and Qcca = φTdepth.G, where

φimg ∈ R7×3 and φdepth ∈ R3×3 (xT denotes transpose of x) are the canonical
factors. Now, each pixel can be represented separately in Pcca, Qcca ∈ R3 spaces
extracted from image and depth map respectively. Only Pcca is computed using
pre-trained φimg during testing.
Coupled Sparse Dictionary Training: From each image-depth pair in train-
ing dataset, 8 × 8 overlapping patches(1 pixel apart) are extracted and repre-
sented in 2 feature spaces: P,Q ∈ R192 obtained by concatenating the 3-D fea-
tures of each of the 64 pixels of the patch in Pcca and Qcca space respectively.The
objective is to learn two, overcomplete (each consisting of 1100 basis vectors),
coupled sparse dictionaries U and V in the P and Q feature space, such that the
same sparse code α is shared in the two representations: P = U.α and Q = V.α
for all the training patches. This is done by concatenating the corresponding
vectors [14][8] for each training patch, Z = {zi = (pTi , q

T
i )T }, pi ∈ P and qi ∈ Q.

An online dictionary learning algorithm 1 [15] was used for learning the sparse
dictionary W ∈ R384×1100 from the feature set Z using batch size of 600, sparsity
coefficient λ = 0.6 and max-iteration= 800. The learnt basis vectors W was split
into U and V by taking the first and last 192 rows of W .
Coupled Sparse Dictionary Testing Once U and V are learnt, given a new
test image, its representation Ptest can be extracted from the image and sparse
code α∗ can be estimated by solving the LASSO problem. The desired Qest is
then obtained by projecting α onto the depth basis V [16].

α∗ = argminα||U.α− Ptest||22 s.t. ||α||1 ≤ λ (1)

Qest = V.α∗ (2)

After reconstructing the 3-channel D′ from Qest, we backproject it to obtain
Dest = (φdepth)−1.D

′
, Dest consisting of the depth value d and its gradients ∂d

∂x

and ∂d
∂y at each pixel. The refined depth value is taken as the average of d and

the depth estimated from ∂d
∂x and ∂d

∂y using inverse gradient methods [11].

2.2 Optic Cup Boundary Extraction

The depth map computed by stage 1 is used to extract its boundary as described
next. Consider a circular ROI centered at r0 = (x0, y0) with radius R. We denote
the depth profile along a ray in direction θj from r0 by dj(r), where r ∈ [0, R]. Let

1 implemented using SPAMS available at http://spams-devel.gforge.inria.fr/
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the closed curve B be the desired boundary, centred at r0, required to be detected
from the depth map.B is uniformly sampled to obtain an ordered set of boundary
points bj ; j = 0, ..J . Note that this sampling is aligned to the orientation θj about
r0. We take a probabilistic approach to finding B by determining the likelihood
that a point in dj(r), belongs to B. Let B = {bj |0 ≤ j ≤ (J)}, be a random
field where each bj is associated with dj(r), such that P (bj = r) represents the
probability that bj = r is a boundary point on dj(r). The set of labels associated
with bj is L = 0, 1...R. Assuming a pairwise Markovian property that each bi is
only affected by its immediate adjacent neighbors, we define the Neighbour set
N = {(bj , bj+1)|0 ≤ j ≤ (J−1)}

⋃
{(bJ , b0)}. We define a Markov Random Field

based energy function E(X) which is minimized to get the optimal labelling.

E(B) =
∑
bj∈B

Dbj (bj) + λ
∑

(bj ,bl)∈N

Vbjbl(bj , bl) (3)

The data term Dbj (bj) defines how well the labelling of bj fits the probability
distribution learnt from the boundary points on profile dj(r) from a set of train-
ing images. Both d and r values are normalized to [0, 1] along each direction
separately. We define Dbj (bj) as

Dbj (bj = k) = 1− P (k|bj) (4)

P (k|bj) represents the probability of assigning label k to the random variable
bj associated with profile di(r). A Gaussian model is used to parameterize the
distribution, since the dj(r) on cup boundaries tend to cluster around a single
mode. The pairwise term Vbjbl(bj , bl) captures the shape constraints in terms of
the relative position of the boundary points in adjacent profiles.

Vbjbl(bj = mj , bl = ml) = 1− Pj(|mj −ml|) (5)

|mj−ml| is the absolute difference in distance of the boundary points from r0 in
the adjacent profiles dj and dj+1. During training, the probability distribution
(assumed to Gaussian) Pj(|mj −ml|) between every adjacent boundary points
is learnt from the ground truth data. Eqn.3 is solved using a multi-label graph
cut approach with tree-reweighted message passing algorithm.

3 Experimental Results

Depth Estimation: The proposed depth estimation method was validated on
30 monocular color fundus images from INSPIRE dataset, obtained at a resolu-
tion of 4096×4096, cropped to a region of interest centered at OD. Correspond-
ing depth maps obtained using SD-OCT scans in 200× 200× 1024 mode [5] are
available as ground truth. Due to limited availability of data, a leave-one-out
cross validation analysis is done using correlation coefficient ρ to quantitatively
measure the similarity in the overall trends of the estimated depth maps d and

the ground truth D; ρ(d,D) =
∑

m

∑
n(dm,n−d̄)(Dm,n−D̄)√

(
∑

m

∑
n(dm,n−d̄))2(

∑
m

∑
n(Dm,n−D̄))2

with d̄ and

D̄ representing the mean values of d and D. m,n represents pixel locations in d
and D. The mean ρ was found to be 0.80± 0.12.
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Fig. 3. OD regions from 3 sample images (column a) with corresponding depth es-
timates visualised as greysacle image where depth increases from white to black and
topographical surface. Columns (b,c): ground truth; (d,e): computed results.

Optic Cup Segmentation: The method for optic cup segmentation was val-
idated on DRISHTI-GS dataset [17] which consists of 50 training and 51 test
images obtained using 30 degree FOV at a resolution of 2896×1944. The ground
truth OD and cup segmentation masks were obtained by a majority voting of
manual markings by 4 ophthalmologists. Quantitative evaluation is based on
the F-score to measure the extent of region overlap and the absolute pointwise
localization error (measured in the radial direction) in the computed boundary
as against the ground truth as reported in [2]. Both metrics were derived using
a 10 fold cross validation approach, where for each of the 5 images, the param-
eters of the Gaussian distributions where learnt from the remaining 45 images.
Performance evaluation on the test set is derived after training the system on
an independent training set. The quantitative results have been provided in Ta-
ble 1. Cup segmentation results are also reported for methods based on vessel
bends [2], superpixels [3] and that provided along with the benchmark dataset
in [17] for comparison. The tabulated figures show that the proposed method
outperforms all the methods including [17] which relies on multiple input images.
Results of cup segmentation on sample images are shown in figure 4.

Finally, we compare the results of the proposed method against OCT scan-
ner provided values for CDR and cup to disc area ratios (CAR). Color fundus
images for 28 eyes (18 Normal, 10 Glaucoma) were obtained at a resolution of
2896 × 1944 and 30 degree FOV along with OCT imaging whose reports pro-
vided ground truth CDR, CAR values. While the proposed method was used
for cup segmentation, method in [2] was used for disc segmentation. The root
mean square (rms) error for CDR was found to be 0.11±0.08 for and 0.10±0.05
while rms error in CAR was 0.17 ± 0.12 and 0.21 ± 0.11 for Normal and Glau-
coma cases, respectively. While CDR error is uniformly low for both classes, it
is marginally higher for the glaucoma class for CAR.
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Table 1. F-score and average boundary error in pixels

Optic Cup
F-score Boundary error(px)

Train Test Train Test

R-bend[2] 0.74 ± 0.20 0.77 ± 0.20 33.91 ± 25.14 30.51 ± 24.80

Superpixel[3] 0.67 ± 0.12 0.63 ± 0.13 37.04 ± 16.96 41.00 ± 16.50

Multiview [17] 0.77 ± 0.17 0.79 ± 0.18 24.24 ± 16.90 25.28 ± 18.00

Proposed method 0.80 ± 0.18 0.81 ± 0.16 22.10 ± 19.47 21.21 ± 15.09

(a)                      (b)                  (c)                   (d)               (e)                       (f)

Fig. 4. Qualitative results; a: Input image ; b: ground truth cup marking; Cup bound-
aries computed using c: proposed method d: R-bend e: Superpixel and f: Multiview

4 Discussion and Conclusion

Inspired by the clinical significance of depth information of the retinal surface
in the OD region and its use for cup segmentation in 3D imaging modalities
(like OCT, HRT) and stereo image pairs, we have proposed a novel, supervised
method for depth-based cup segmentation. The method relies on a dictionary
trained on fundus image-depth map pairs. Although exact estimation of depth
from single view images is a highly underconstrained problem, the performance
of the proposed method (avg. correlation coefficient of 0.8 against ground truth)
indicates that there is sufficient potential in the method. Since this was achieved
with a moderate sized training set (30 pairs) it is possible to improve the results
with a larger training set. Future work will explore ways to combine pallor and
vessel kink information to further improve the reported results.
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