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Abstract. Computer vision applications today run on a wide range of
mobile devices. Even though these devices are becoming more ubiquitous
and general purpose, we continue to see a whole spectrum of processing
and storage capabilities within this class. Moreover, even as the pro-
cessing and storage capacity of devices are increasing, the complexity
of vision solutions and the variety of use cases create greater demands
on these resources. This requires appropriate adaptation of the mobile
vision applications with minimal changes in the algorithm or implemen-
tation. In this work, we focus on optimizing the memory usage for storage
intensive vision applications.

In this paper, we propose a framework to configure memory require-
ments of vision applications. We start from a gold standard desktop
application, and reduce the the size for a given the memory constraint.
We formulate the storage optimization problem as mixed integer pro-
gramming (MIP) based optimization to select the most relevant subset
of data to be retained. For large data sets, we use a greedy approximate
solution which is empirically comparable to the optimal MIP solution.

We demonstrate the method in two different use cases: (a) Instance
retrieval task where an image of a query object is looked up for instant
recognition/annotation, and (b) Augmented reality where computational
requirement is minimized by rendering and storing precomputed views.
In both the cases, we show that our method allows a reduction in storage
by almost 5x with no significant performance loss.

1 Introduction

With the advancement in computing power, data driven methods have gained
popularity in solving many challenging computer vision problems. Just as years
of visual experience enables humans to make sense out of sparse, noisy and am-
biguous local scene measurements, data-driven methods use multiple examples
to train the machine (or just remember them) and help in solving the challeng-
ing vision problems. Many computer vision techniques use data (eg. images or
features from images) for training the vision solution [1,2]. Often, the data is
also required at the testing/inferring stage in these applications (eg. support
vectors in kernel svMs, image patches and dictionaries for inpainting). The sit-
uation is more challenging if one uses a template based solution, such as an
exemplar SVM [3] or a nearest neighbour scheme [4]. There have been many pre-
vious attempts in pruning the templates [5] or support vectors [6] in the pattern
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recognition literature. Most recently, Misra et al. [7] proposed a technique to
compact the set of exemplars used in Exemplar svM. However, such attempts
do not get enough attention as the storage capabilities of desktop machines have
increased rapidly in the last few years. This also led to an increased interest
in the methods that use large number of images or feature representations at
the run time to obtain better quality of results. This resulted in dictionaries
or databases of image [8], patches [9], or even feature vectors [10] becoming
popular in a wide spectrum of vision applications. In this work, we focus on
pruning the storage requirements of such vision applications to suite the mobile
device capabilities. Qur focus is not to design a novel mobile vision algorithm.
Rather we start with a vision solution that runs on desktops (considering it as
a standard reference), and demonstrate how the memory/storage requirements
can be reduced to practically design compact but equally powerful mobile vision
applications.

There are many applications that require large visual data at the test stage.
For example, Video Google [10] is a object retrieval system designed to find
identical instances (images or parts) in large collection of images and videos.
This technique has now emerged as the backbone of many product search so-
lutions [11]. Popular and commercial implementations still continue to use a
client server implementation where the mobile client is used only for capturing
the image and displaying of the product information. A more challenging im-
plementation can compute features and compact representations on the mobile
and minimize the communication overheads [12,13]. In instance retrieval, typi-
cally one needs to retain multiple exemplars of the same instance for acceptable
performance. The major challenge in such systems is to decide the number of
images or feature representations that needs to be maintained in the database.
Panda et al. [14] demonstrate the instance retrieval on reasonably large dataset
(50K) on common mobile phones. However, when the dataset (number of images
to be indexed) increases beyond 100K, even this method fails. Focus of [14] was
limited to pruning the vocabulary size (or representation) without modifying the
dataset of images to be indexed. The problem of automatic selection of relevant
exemplar images or their representations still remains as an open problem. A
solution to this can result in easy adaptation of the software without changes in
the algorithm or even implementation.

Vision on mobile and wearable computers has garnered a lot of interest in
the last half a decade. Recent research in this direction is focussing on data-
driven and on-device computing approaches. Paucher et al. [15] perform indoor
localization and pose estimation for AR on mobile devices using a database of
images of the environment taken from different locations. As we also show in
the experimental section, reducing storage helps in reducing the computational
requirement on devices, which have multiple purposes (unlike a dedicated com-
puter). There has been work in optimizing memory and computation of visual
search and recognition to work on-device [14,16, 11]. Computational photogra-
phy applications on mobile are also focussing on memory optimized design for
tasks such as panorama stitching [17]. Pollefeys et al. propose novel approaches
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overcome the underlying hardware limitations of mobile to accomplish extremely
heavy tasks such as live 3D reconstruction [18,19]. Some systems, however, still
choose to offload heavier recognition and detection tasks to servers, while run-
ning tracking on the device [20-22].

In this work, we address the problem of developing computer vision applica-
tions that can be customized to work on different devices having varying hard-
ware capabilities. We specifically target standalone apps which do all the com-
putations on the device itself, and require large amounts of data to be stored on
device. We attempt to reduce the size of such datasets to suit the device capabil-
ity, without any significant loss in quality of the solution. Consider a standalone,
product search application that needs to support more than 100K products, with
10 M exemplars require an index typically of size 40GB in size [23]. Current cloud
or server based infrastructure can support this much memory and would be able
to answer queries within less than a second. Modern desktops usually support
less than 4GB of RAM, but can flatten the dataset to disk, leading to response
times of the order 15-35s. High end mobile devices (such as iPhone) support
much less disk space (8-16GB), hence can not use the index from disk, and must
use an index over a subset. Though 10M examples are collected for 100K prod-
ucts for excellent retrieval performance, we notice that a subset of these images
can actually be pruned without any significant loss in performance.

Our main contribution is a fast and simple optimization framework that
works for various computer vision problems to select a near-optimal subset of
data required for the task to be stored on device. Note that our solution runs
on a desktop/server and provides the image/dataset selection information that
can lead to an application that fits a specific memory limit. We formulate this
selection problem as a mixed integer program (MIP) to select the most relevant
subset of data. Integer optimization being NP Hard, the MIP quickly becomes
intractable and hence, we use a greedy approximation of the same for larger
datasets. We validate our approach in two different vision applications: instance
retrieval, and mobile augmented reality for low end devices, by storing and ren-
dering precomputed views.

Even though storage is not a major concern on modern desktops or servers,
and in fact leads to more accurate performance, it does become a concern on
low-end mobile devices. Moreover, the advent of wearable computing devices in
the form of glasses and watches further aggravates the problem, as these typically
support even weaker hardware. For example, Google Glass currently support only
682 MB of RAM [24]. Therefore, even though the capabilities of mobile devices
have been increasing as a consequence of Moore’s law, appearance of computers
in miniature formats and growing popularity of data intensive applications still
leaves plenty of opportunity in optimizing applications for weaker devices. Even
as of today, a significant percentage of mobile devices in the world are incapable
of storing or processing large amounts of data to perform complex computer
vision tasks. Figure 1 illustrates this fact by giving the percentage market share
of android based mobile devices with respect to disk space, RAM and processing
power.
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Fig. 1: Market share of android mobile devices by disk space, RAM and process-
ing power in 2014. Even in 2014 we have large number devices with less than 1
GB RAM, and less than 4 GB of disk space. Data from gsmarena.com and [25].

We investigate the problem of extracting the most relevant information from
a large dataset of visual data. The common theme in most of the work in this
direction is to represent the similarity between images in the form of a graph and
selecting the nodes that can approximate for the others. One of most relevant
works in this direction is by Simon et al. on scene summarization [26]. They
extract a canonical subset of images as a visual summary of a scene from a large
collection of images sourced from the internet. Li et al. in [27] further build upon
this work to use iconic scene graph with the number of geometrically consistent
matches as the edge weights to cluster the images and extract ‘iconic’ views,
which they further use for visualization and search. Crandall et al. [28] use a
similar approach for organizing large photo collections. A more scalable approach
to clustering images at world-scale was described in [29]. Irschara et al. [30] use a
similar approach to compress 3D scene representation. Chum et al. [31] propose
similarity measures for detecting near-duplicate images.

In this paper, we propose a simple scalable scheme that can help pruning
the dictionaries to suite the mobile devices. We empirically show that pruning
can even result in improving the performance in some cases. As an example, we
take the instance retrieval and mobile AR problems. In both the cases, we prune
dataset of images, with no practical loss in performance. We report a reduction
in the number of images to be retained by a factor of 5.

2 Optimizing Memory Usage

2.1 Memory Reduction as Subset Selection

Given a vision solution that uses a database of images V' = {v1, v, ,v,} and
a given set of possible tasks T = {t1,ta, -+ ,tm }, we are interested in finding a
subset K C V such that |K| < k , and can solve the task ¢;,1 < i < m with
minimal impact on accuracy compared to when using the complete set V. For the
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case of instance recognition, V' corresponds to the set of all images available for
indexing, and we are interested automatically selecting in the subset K that gives
good performance for the task ¢; of recognizing specific products. Performance
is measured as precision @ 1 (P;) for the instance recognition.

Instance recognition and retrieval tasks typically use a lot of examples that
are usually sourced from the Internet or collected with minimal supervision.
They are also incrementally updated in many situations. Because of the nature
of this database and its growth, they tend to contain images that have no role
in instance recognition. To verify this, we did a small experiment on the Oxford
Buildings dataset [23] consisting of images of famous Oxford landmarks sourced
from Flickr. We used a Bag of Words (BoW) representation and observed that
almost 33% of the images in this dataset never appear in the top-10 for any of
the given queries. In other words, if one uses P; as a measure for the recognition
accuracy, these images can be pruned from the database with no loss in per-
formance. Figure 2 shows some of them. These images are of two broad types:
(i) Images that are redundant, as a better example is sufficient for the recogni-
tion. (ii) Images that are really outliers and have not much visual information
of interest.

We also observe that the tasks (the possible/popular set of queries) are also
not arbitrary. In a typical recognition setting of buildings, users often want
recognition of frontal images and not top views. The prior knowledge about the
possible tasks t; can help in computing the loss or cost of a failure due to the
pruning of the database. Database can now be designed to support these popular
queries and can be compacted further.

Full

500 subset

Fig.2: (a) shows the IR results for the left most query, using the full set and a
500 image subset. Note that the top few results in both cases are relevant and
sufficient for recognition. (b) shows some of the outlier images in the set.

Hence, we focus on the problem of selecting a k size subset from the dataset
V' of all elements required for the task, where k& depends on the device capabil-
ity. When the dataset is a simple collection of images, the selection is easy to
appreciate. Even when the dataset is computed from a large population (as in
the case of a dictionary computed with K-Means [10]), pruning can be used [14].
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In our case, the question of computing a reduced size dictionary does not really
arise since we start with a database of images, and we can only prune it.

2.2 Selecting Useful Images

We now represent the problem as a mixed-integer optimization (MIP) to select
a canonical subset (K) of size k that best approximates the complete set (V).
The number k£ would depend on the disk space and memory available on the
device. We define e; as a measure of error incurred when " image of V is
approximated using K. We limit our attention to problems in which a specific
image is approximated using only one other image. If the image v; is an outlier
and does not contribute to the performance of the solution, one can trivially
remove v; directly. However, removal of an image that has some utility is more
tricky. In this case, the images selected in the attempt to approximate its role
can lead to a possibly poorer performance. This quality reduction is represented
in e;.

As discussed earlier, in many situations the tasks are already known, and can
be used to drive the optimization to a solution that is optimal for those specific
tasks. Let W;; be the weight of image ¢ with respect to task t;. For example, if
task j is product search, W;; will be high for images 4 that correspond to the
most popular views of the product. Now, as our objective is to minimize the
total error incurred in approximating set V using set K, for a given task j, it
can be represented as:

\4
Objective : min Z Wijes (1)

=1

We weigh the error values with W;; to ensure good approximations for more
important views. However, this kind of a prior knowledge is usually hard to
determine and needs to be inferred from very large set of case studies and user
logs. Hence, for the remainder of this problem, we will consider all images to be
equally weighted for the task, and take W;; = 1, V4, 5.

Now, for each image in the set V', we define a binary variable z;, which equals
1 if it is selected to the subset. Let Ej;; be the error incurred when it" image
is approximated using j** image. Since it can not be actually computed, we
define it as based on similarity between v; and v;. F;; would be task specific, for
instance in IR, it could be the distance between GIST descriptors of the images.
In case of 3D object augmentation, we can use an image representation over
feature tracks to compute the error. Since each feature track corresponds to a
3D point, a low error would ensure same 3D pose is visible in both the images.
For even greater accuracy, we could use the distance between extrinsic camera
parameters of the two, if such information is available.

In order to control e; using E;js, we need to introduce a binary variable Z;;
which equals 1 if image 7 is approximated using image j. Finally, we need to
enforce the following constraints: (i) Total number of selected images is limited
by k (see Equation 2), (ii) An image can approximate for another image if it itself
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gets selected (see Equation 4), (iii) An image may be approximated using only
one other image (see Equation 3), and (iv) The error e; should be determined
from E;;, corresponding to the image j that is used to approximate image i (see
Equation 5). These translate to the following constraints:

A4
in <k (2) Zij < xj Vi, j (4)
=1 \4
V] ei >y Ei;jZi Vi (5)
SN Zij=1 Vi (3) _; Y
j=1
Equation 5 enforces the constraint (iv) as Z;; = 1 for a unique value of

j = j' for a given ¢ (as an image is approximated by only one other image), and
hence, Equation 5 reduces down to e; > E;;s, which is what is required by the
constraint. The variable x at the minimal value of objective will give the optimal
subset of given data set to be selected that would give least approximation error
summed over all images. The MIP as described above can be easily transformed
into a standard format (such as CPLEX) and solved using existing TP solvers.

2.3 Scaling to Large Sets

Even though MIP is easy to formulate and able to select the optimal subset to
store on device, solving itself becomes intractable as the size of the original set
increases. We observed that using one of the fastest non-commercial solvers,
scrp [32], the time taken and memory usage for the memory optimization grows
exponentially as size of original set (|V]) increases. Even though this optimization
is an offline task and can be performed using powerful servers, optimizing even
over sets of a few hundred thousand images could take few weeks for each device,
a timeline typically unacceptable to software application developers.

This motivated us to use a greedy algorithm to get an approximate solution
to the above problem. The algorithm starts with an empty K set. At every
iteration, we choose the image that leads to maximum reduction in the objective
(Q), i.e., the unselected image that best approximates the remaining unselected
images, and add it to the selected set. We keep going till k£ images get selected,
and output the final K set. Algorithm 1 formally presents our approach.

Figure 3 compares the performance of MIP optimization vs the Greedy ap-
proximate solution. We observed for selecting a subset of % from a set of size
N, the time taken to optimize MIP (using sCIP) and the memory used in this
process increases exponentially. On a desktop with 4GB of RAM, we could not
optimize over a set with more than 600 images. The greedy approach, on other
hand, was extremely light and fast. The computation time in this case scaled
linearly, and we could easily optimize over tens of thousands of images. More-
over, the final objective value at optima in both the cases were comparable for
small sets, showing the near-optimality of the greedy approximation. Hence, we
use our greedy approach for the further analysis in Section 3, and compare with
MIP for smaller subsets where ever possible.
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Algorithm 1 Greedy algorithm to select representative subset
1t K« 0

2: while |K| < k do

3: for allv eV — K do

4: Quv + Q(K) — Q(K Uv)
5: Qux <+ min (Quvs, Qv)
6: if Qu« <0 then
7 break
8: K <+ KUwx
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Fig. 3: These plots compare running time, memory usage and objective value for
greedy and MIP to select a subset of size % from N size sets. Greedy is quite
comparable to MIP in performance. MIP, however, takes much more time and
memory to compute.

3 Experimental Results

3.1 Example Use Cases

We validate our approach using two popular mobile vision applications, product
search using instance retrieval and 3D object augmentation. Instance recogni-
tion focusses on recognizing an image related to a specific object given a query
from widely varying imaging conditions. Most of the existing IR literature uses
variants of bag of words based approaches for the task [33,23,34] by matching
local image features that represent image geometry to those in database. Image
recognition mobile devices also has several successful examples such as Google
Goggles, Amazon Snaptell etc, but most of these applications rely on a remote
server for matching within large image databases. Some of these optimize on the
network communication by sending compressed feature representations to the
server [35,13,36,37]. Prior work on offline IR on mobile focusses on reducing
memory footprint of search index and includes [14, 38-40]. Though mean aver-
age precision (mAP) is used as the measure to quantify the retrieval quality,
precision at k (Py) with &k = 1 or even 3 or 5 are better suited for the instance
recognition task that we are interested in. Since product search or image anno-
tation applications typically use top 1 or 3 matches for recognition, we believe
mean precision (mP) to be a better indicator of the performance of our system.
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3D object augmentation, on the other hand, involves augmenting natural
3D scenes with virtual objects. The standard approach in such problems is to
register the query image with respect to the 3D structure of the scene. The
camera parameters thus obtained are then used to transform, render and merge
the object onto the query scene. Camera calibration for the query image is
the computationally heaviest step in this pipeline, typically achieved by first
computing 2D-3D correspondences between the image and 3D structure, and
using these to compute camera parameters using RANSAC. As these computations
are usually too heavy for a low-end mobile device, we design an approximate
solution that can easily be configured to the device capabilities. We pre-compute
the augmentation snapshots for a database set of images of the scene. At the test
time, the precomputed views of the virtual objects are merged with the input
image. If the camera parameters of the precomputed view is very close to that
of real one, visually the result is indistinguishable. However, storing thousands
of views of a structure might become a bottleneck on lower end devices. Hence,
there is a need to prune this database set of views to select best k views to store
(where k depends on the amount of disk space available). We use our subset
selection technique for the same.

3.2 Experiments and Results

Comparing MIP and Greedy over IR We first compare IR performance over
the subsets selected using MIP optimization and the greedy method. We use a bag
of words based approach over SIFT vectors quantized into visual words using a
1M vocabulary computed using Approximate K-Means [41]. The scores for rank-
ing are computed using the tf-idf statistic over the visual words, and we further
refine the ranklist using spatial consistency constraints, i.e., fitting a fundamen-
tal matrix and re-ranking based on number of inliers (we ignore the matches
if number of inliers < 15). We evaluate it over a 480 image subset of Oxford
Buildings dataset, consisting of the images of All Souls, Ashmolean and Balliol,
and their corresponding 15 queries. Number of SIFT inliers is popularly used as
a similarity measure between images, and we use its reciprocal to compute the
approximation error matrix (E) in both the subset selection approaches. As we
can observe from Figure 4, the subsets selected by both MIP optimization and
greedy give comparable mP at 3,5 and 10 (though MIP does little better than
greedy on average), justifying the usage of greedy for larger sets.

Greedy Subset Selection over Complete Dataset We evaluate the above
IR algorithm over the complete Oxford Buildings dataset, consisting of 5062
images of 11 Oxford landmarks with ground truth for 55 queries. We segregate
the images into a test set (containing the 55 query images) and a training set
(containing the rest 5007 images), and compute the index over the subsets of
training set. This helps in evaluating the performance of the system in the real-
world product search scenario, where the database does not contain the query
images.
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Fig. 4: Graph compares the P3, Ps, Piy values over 480 images subset of Oxford
buildings, using both MIP and greedy approaches. Both perform comparably,
though MIP is little better on the average.

We experimented with two different values for E;;. GIST [42] is a popular
global descriptor for representing scenes, and quite relevant for our problem of
removing the similar and outlier images of products. We used the euclidean
distance between 512D GIST descriptors as E;;. Another possible way to define
similarity between images is as the number of geometrically consistent inlier
matches. We also experimented with using reciprocal of this number as the error
metric. As we can observe from Figure 5, SIFT inliers are able to model similarity
better than GIST, and hence give better mean precision results.

In both cases, we observe from Table 1 that the size of index and computation
time goes down almost linearly. This makes our approach suitable for configuring
IR applications to mobile devices with all kinds of storage capacities.

Comparing MIP vs Greedy for Augmented Reality In this case, we use a
slightly more complex definition of E to ensure images with similar pose incur
less error. Hence, we compute SIFT feature tracks across all images, each of
which corresponds to a 3D feature point on the structure being augmented (using
VisualSfM [43]). Now, we use the images of these feature points to compute the
error incurred by using homography to approximate one of these images, by the
other. For every 3D point P visible in image i and 7, let z and y be the images of
P in i and j respectively. Now, Ej; is defined as the Euclidean distance between
x, and the point obtained by transforming y by the homography between these
images, averaged over all such P.
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Fig. 5: Greedy subset selection results on Oxford Buildings Dataset. We compare
the mean precision (mP) at positions 1,3,5 and 10 for GIST and SIFT inliers as
the similarity measures between images. In both the cases, size of index stored
on device and time taken for search comes down almost linearly.

For experimentation and analysis, we created our own dataset of a toy 3D
object in the lab setting. We collected 96 images of the object from different
viewpoints, and hand-picked 15 images as the test set. We used a 3D model of
a cap to augment the structure, and precomputed the augmentation snapshots
of the cap for all the database views. Figure 6 gives a visualization of the same.

We used the greedy and MIP optimization strategies of Section 2 to select sub-
set from the remaining 81 images. We quantitatively evaluate the performance
using mean reconstruction error over test images, defined in a similar way as FE.
Reconstruction error for image i is defined as

min Ez j

JjEK
and is averaged over all test images to get the mean (E;; is defined in Section 2.2).
We compute the mean reconstruction error for the 15 test images and plot it

Fig. 6: An image of the toy 3D model from our dataset, and a snapshot of the cap
used for augmentation. A snapshot of the cap corresponding to the first image
is used to generate the final result
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against the subset sizes in Figure 7. Interestingly, the greedily selected subset at
times gives even lesser error than the MIP optimized subset. This is because MIP
tends to overfit the solution to the training data, giving the most optimal subset
that can reconstruct the other training images, with no consideration to test im-
ages. Greedy, on the other hand, does not have such tight constraints and hence
tends to generalize better. We also show qualitative results of augmentation with
different subset sizes in Figure 7.

—o— Greedy
100 —=— MIP

50 *

Mean Reprojection Error

20 40 60 80
Subset Size

Fig. 7: The graph shows the variation of reprojection error as we use smaller sets
of precomputed views. We also show augmentation results for 3 different views
of our 3D object at different values of subset size k. Clearly, reducing the size of
selected subset has marginal effect on quality of augmentation.

3.3 Applications in Digital Heritage

Recently, there has been a rising interest in building computer vision applications
for digitally preserving and promoting cultural heritage, such as the The Great
Buddha Project [44], HeritageApp [45] etc. The 3D augmentation system too has
a natural application in digital heritage, especially in augmenting 3D structures
with parts that no longer exist. Stone Chariot at Hampi is a famous historical
monument in India (Figure 8). Its structure went through various changes over
the course of history; the most prominent one being the removal of a dome like
super-structure from top of the monument. With the objective of preserving
this cultural heritage, a 3D model was built that captures the structure in its
former glory (Figure 9) We aim to make this visualization accessible to people
on their mobile devices. Our application allows any tourist to see the missing
parts augmented over the original structure, using any mobile device. Some of
the results of our homography based approach are shown in Figure 10.

This dataset consists of 1505 images of a heritage monument taken from
different viewpoints and the precomputed augmentation snapshots occupy nearly
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Fig.8: The Heritage structure in 1856 (courtesy Fig.9: The 3D model of the
hampi.in) and now. Note the dome-like superstruc- missing dome constructed by
ture that no longer exists. architects.

Fig. 10: Example use of our application to augment the missing parts.

420 MB on disk. We reduce this requirement using the greedy subset selection
to enable it to run on devices with low disk space. Figure 11 shows the marginal
increase in reprojection error with reduction in size of subset using the greedy
approach. Table 2 lists the various specifications of the app for different subset
sizes for a Lenovo s820 mobile device. These include the disk space occupied by
precomputed snapshots, size of the search index used for localization, startup
time of the app to read data into memory, time in instance retrieval over database
views for localization and finally the time to compute matching, homography and
warping and merging the precomputed snapshot onto the query. As expected,
total computation time and memory load decreases with decrease in the subset
size.

3.4 Discussions

Apart from low processing power, less memory capacity, small screen size and
limited connectivity, another major challenge faced by mobile devices is limited
battery power. Even as the memory and processing power continue to grow
exponentially according to the Moore’s law, growth in battery technology has
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Table 2: AR Mobile app specs
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200 | | Search Index (MB) | 7.3 |12.7| 18.6
Startup Time (sec) |0.7| 1.2 | 1.6
100 | 1 Localization (sec) [0.03|0.07 | 0.1
Augmentation (sec)|0.6| 0.6 | 0.6

Mean Reprojection Error
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Fig.11: The graph of mean reprojection error with subset size shows for the
1505 image heritage monument dataset. The table lists our app specifications
for different subset sizes.

been much slower. For instance, while Apple claims that the iPhone 5S delivers
56x faster graphics and 40x faster CPU than original iPhone [46], the battery
capacity of 5S has grown by only 15% from the original [47].

Clearly, such a situation warrants the need for more battery conscious ap-
plications. Fortunately, our configurable application approach fits this scenario
well, too. Since using smaller subset of visual data requires lesser computation
and hence lesser battery consumption, a smart application can automatically
shift to using a smaller subset as the device goes low on power. The different
subsets may either be stored on device or can be retrieved on the fly over the
network. Once the device charges up again, the application can again shift to
using complete data for more accurate performance.

4 Conclusion

In this work, we successfully formulate a fast and simple approach for prun-
ing datasets required by storage intensive applications, enabling them to work
across a spectrum of devices with varying capabilities. Even though finding the
most optimal such subset is computationally infeasible, we show that a greedy
approach can closely approximate that performance. We validate this approach
over popular vision applications, IR and Augmented Reality, showing significant
reductions in storage and computation requirements while nearly preserving the
accuracy of performance. We also demonstrate its application in digital heritage,
by enabling low end mobile devices to visualize the parts of heritage monuments
that were lost over time.
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