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ABSTRACT

We present a method to interactively simulate and visualise
Generalised Newtonian Fluids (GNF) using GPUs. GNFs
include regular constant viscosity fluids as well as other flu-
ids such as blood, which display variable viscosity due to
variable shear rate. We use a statistical approach called Lat-
tice Boltzmann Method (LBM) for the simulation. LBM is
easy to understand and implement and does not include dis-
cretisation of differential equations. We exploit the inherent
parallelism of LBM coupled with its memory access pattern
to create a fast GPU implementation that gives scientifi-
cally accurate and fast results such as interactive real time
simulations for reasonable domain size. MultiGPU imple-
mentations provide the potential to scale to larger problem
sizes.
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1. INTRODUCTION

Imitating the behaviour and characteristics of fluids with
the help of a computer is called fluid simulation. Fluid sim-
ulation begins with the formulation of the Navier Stokes’
equations originally developed in the 1840s on the basis of
conservation laws and first order approximations.
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¥ + v.Vv + ;Vp = feor + VV.Vv (1)

Vv = 0. (2)

Equation 1 is basically Newton’s second law of motion, re-
lating the rate of change of velocity field (v) with the forces
acting on the fluid. These are the forces due to the pressure
(p) caused by the weight of the fluid, resistive force due to
viscosity (v) and the net force exerted externally (fext). Eq 2
models incompressibility of the fluid. These equations, how-
ever, generalise the fluid behaviour seen around us. They de-
scribe a class of fluids called Newtonian fluids — fluids which
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have constant viscosity throughout. Water is an example
of such a fluid. Fluids such as blood, mucus, multi-phase
mixtures such as curry, emulsions, etc., fall in another class
called non-Newtonian fluids. A majority of the fluids we see
around us are non-Newtonian in nature.

Computational fluid dynamics models have existed for
over five decades. Harlow et al. [14] were the pioneers
in the field. The computer graphics community used Eu-
lerian and Lagrangian viewpoints traditionally for simula-
tion by discretising the Navier Stokes’ equations post the
era of hand-drawn animations. Lattice Boltzmann Method
is a relatively new method, derived as a development over
Lattice Gas Cellular Automata, it is a discretised model of
the Boltzmann Equation of Kinetic Theory ([4]). It is a
mesoscopic approach, with particles (logical in nature) col-
liding at grid centers, then progressing to their neighbours
in fixed directions. Fluid properties are obtained from these
particles through an aggregating method known as coarse
graining. It is thus a statistical approach that eliminates
the need to solve partial differential equations. Although
traditional implementations of LBM require a few tweaks
for higher Reynold’s numbers for laminar flows, the method
gives second order accuracy [4] in contrast to first order ac-
curacy displayed by conventional Eulerian and Lagrangian
methods [8].

LBM works on a Cartesian grid, with each cell function-
ing independently of others. This makes it highly suitable
for parallel implementation. Transfer of data between the
centers is ordered and can be utilised to make data access
patterns conducive for implementing on a GPU. This en-
ables us to simulate complex fluid behaviour in realtime or
near-realtime. Such behaviour may include interactive sim-
ulations or implementing a single algorithm to tackle both
Newtonian and non-Newtonian behaviour.

In this paper, we present a system for interactive simu-
lation and visualisation of generalised Newtonian fluids us-
ing a parallel implementation of the LBM method on the
GPUs building on our earlier work [25]. Our system pro-
vides fast and accurate simulation of a wide variety of fluids
as well as different situations including free surface simula-
tion. We show simulation of liquids with shear-thickening
and shear-thinning properties and compare their behaviour
with the analytical and real world expectations. We also
show a multi-GPU implementation that can scale to larger
grids and more general situations. We demonstrate simula-
tion at 600 MLUPS using one NVIDIA K20c GPU (which
translates to realtime performance on a 64° grid) and over
900 MLUPS using two K20c GPUs.



2. RELATED WORK

Before the 1990s, fluid animation was either hand drawn
or used bump mapping tricks. CFD models were highly
complex and had poor scalability. Foster and Metaxas did
pioneering work on free surface flow [9] using the standard
MAC grid. Stam [20] took the Eulerian method forward
making it semi-Lagrangian in nature. To get the field value
for a point at time t + At, he backtraces the point through
the field over time At. These methods suffered from non-
conservation of sub-grid mass. Enright et al. [7] solved the
problem using Particle Level Sets. However, Eulerian simu-
lations often have difficulty in producing small scale effects
like sprays and foam which are essentially sub-grid in na-
ture. Lagrangian methods were developed earlier to counter
the shortcomings in Eulerian simulations. Desburn et al.
[6] used Smoothed Particle Hydrodynamics as a means to
simulate highly deformable bodies as particle systems. This
was carried forward by Muller et al. [16]. Hybrid methods
such as FLIP (Fluid Implicit Particle) are popular nowa-
days ([26]). Using the particle data, the Lagrangian moment
equations are solved on (preferably) adaptive grids. [1] is
another method evolved recently coupling Eulerian tetrahe-
dral mesh discretisation with the FLIP method, leading to
increased accuracy.

Application of statistical models to fluid simulation started
in the 1970s. Lattice Gas Cellular Automata was the pio-
neering work in this direction [13]. LGCA did not evolve as
a feasible method because of the aggregation of statistical
noise. LBM emerged from LGCA, starting with Chen at al.
[4]. Thuerey has been on the forefront of developing LBM
to simulate free surface flows [23, 22, 21]. Recent times have
seen parallel implementation of LBM come to the fore. Tolke
[24] gave a 2D implementation of LBM using CUDA. Bailey
et al. [2] gave a 3D parallel implementation of bulk LBM.
Schreiber et al. [19] describe an OpenCL implementation for
multicore architectures to obtain realtime simulations of free
surfaces. Januszewski [15] present an LBM method on mul-
tiple GPUs for Newtonian fluids. They use diffuse interface
models without explicit interface tracking and use additional
lattices to represent multiple components and couple them
using Shen-Chen or Free Energy models.

Over the last decade and a half, various problems con-
cerning non-Newtonian fluids have been tackled. Goktekin
et al. [12] dealt with viscoelastic fluids, i.e., the fluids ex-
hibiting both viscous (characteristic of liquids) and elastic
(characteristic of solids) properties. Clavet et al. [5] took a
Lagrangian approach towards viscoelastic simulation. Ap-
plication of second order accurate LBM in simulating non-
Newtonian fluids was done by Boyd et al. [3]. Giroud et
al. have presented a multi-relazation-time LBM model for
viscoelastic flows in [11] and [10]. Phillips et al. [18] pro-
duced a survey of the developments in coupling LBM with
various non-Newtonian models. Pereira et al. [17] gave a
parallel Navier-Stokes solver for generalised Newtonian flu-
ids targeted to computational rheology applications.

Our method simulates generalised Newtonian fluids in-
cluding those with shear thinning and shear thickening in
a general situation with fluids, boundary, and free surfaces.
Unlike Shen-Chen or Free Energy models, we have chosen
the LBGK model for its simplicity and ease of implementa-
tion without compromising on accuracy. With the parallel-
friendly LBM method for simulation and marching cubes
for visualisation, we achieve interactive speeds using one or
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Figure 1: Flow curve for Generalised Newtonian Fluids

more GPUs.

3. GENERALISED NEWTONIAN FLUIDS

For a Newtonian flow, the relation between the resultant
shear stress 7 and shear strain is given by Eq 3.

F dvg .
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Here, A is the area of cross section of the plates and v the
velocity of the fluid. The minus sign implies a resistive force.
w is the Newtonian viscosity of the fluid which is a constant.
It can be seen that Newtonian fluid follows a line through the
origin (Fig 1). The deviatoric normal stress in a Newtonian
flow in simple shear are identically zero.

The flow curves for non-Newtonian fluids are either non-
linear or linear but not passing through the origin. In fact,
Newtonian fluids fall into a subclass of a broader class called
Generalised Newtonian Fluids (GNF). For a GNF, there is
a one-to-one functional dependence of the rate of shear on
the shear stress given by

Tyz = f (ya) - (4)
GNF can be of three categories:

1. Shear-thinning or pseudoplastic. These are fluids for
which viscosity decreases with increasing shear rate.

2. Shear-thickening or dilatant. Viscosity increases with
increasing shear rate for them.

3. Newtonian. Viscosity remains constant.

GNF behaviour is modelled by power law, also known
as Ostwald-de Waele relationship between viscosity (v) and
rate of shear (%). It is given by the following equation.

v = miy" !, (5)
where, n < 1 for shear-thinning fluids, n = 1 for Newto-
nian and n > 1 for shear-thickening fluids. The viscosity v
needs to be accounted explicitly to simulate departures from
Navier Stokes’ behaviour that GNFs entail.

The rate of shear is defined as,

4 =+/2d:d, (6)

Where d is the strain rate tensor given by,

d= %(VVJFW). (7)
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Figure 2: D2Q9 and D3Q19 Grids
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Table 1: Velocity vectors for D3Q19

Ostwald-de Waele relationship can be represented as a
power law, which in truncated form is given below,

Ex~™t 4 <A
v={kxA"h g <A < Yoo (8)
Exys™ b g0 <A

4. LATTICE BOLTZMANN METHOD

LBM depends on a Cartesian discretisation of the simula-
tion domain into regular cells. Particles are constrained to
travel in specific directions only. Some of the popular imple-
mentations allow particles to travel in 9 (two dimensional),
and, 15, 19 and 27 (three dimensional) directions from a
grid cell. On this basis, the grids are called D2Q9, D3Q15,
D3Q19 and D3Q27 respectively. D3Q19 is the most popular
among them as it is more precise than D3Q15 and involves
lesser computations than D3Q27 without compromising on
accuracy. D2Q9 and D3Q19 grids are shown in the Fig 2.

For ease in computation each cell is assumed to be unit
sided and each particle unit massed. A cell keeps track of
the number of its particles going in different directions using
particle distribution functions (PDF). As the name suggests,
this is not an actual count of the particles but it is a dis-
tribution function, and hence, is allowed to take fractional
values. As, in a single time step, particles can only travel
from a cell to its neighbour in one of the directions, each
direction has a velocity vector associated with it.

For D3Q19, these (e;) are shown in Table 1. Density p for
a cell is obtained by adding the PDF's as the particle is unit
massed and the cell, unit sided, according to Eq 9. Here, df;
is the PDF in direction i.

o= df (9)

The velocity field value u for a cell is given by Eq 10.

u = de,' - e (10)

Algorithm 1 Basic LBM for DXQY lattice

1: procedure STREAM(X, y, z)

2: Update current DF with neighbours’ DF

3: procedure COLLIDE(X, y, z)

4 Calculate density(p) and velocity (u) using Eq 9, 10
5: Calculate df¢? using Eq 11

6: Update df using Eq 12
7
8
9

: procedure LBM

for all cells in parallel do
: stream(x, y, z)

0: collide(x, y, z)

—_

4.1 Basic LBM

Two steps, streaming and collision comprise the basic al-
gorithm to simulate bulk of the fluid without a free surface.
A cell of D3Q19 lattice at (z,y, z) maintains a vector of 19
PDF values, <dfo, dfl, ey df13>.

4.1.1 Streaming

Streaming involves reading neighbours’ distribution func-
tions for corresponding directions and updating. Hence it
involves 18 independent copy operations.

4.1.2 Collision

Velocity and density for each cell are calculated by coarse
graining as given by Eq (10) and (9). Collision involves com-
putation of equilibrium distribution functions (dfs?, ..., df1s)’
followed by a final update of DF's using BGK approximation
[4].

dfpow) =i (p= St 30wk Sleow?) ()

dfi = (1 — w)dfi + wf;? (12)
1

The weights (w;)/ are & for the present cell, ;% for neigh-
bours at a Manhattan distance of one and % for neighbours
at a Manhattan distance of two. w is the relaxation fre-
quency.

Algorithm 1 gives an outline of the steps for Basic LBM.

4.2 Free Surface LBM

The above method outlined the two basic steps for simu-
lating the bulk of fluid. To simulate free surfaces (the par-
tition between the fluid and the environment) for a gener-
alised Newtonian fluid, we need to expand the algorithm to
account for the interaction of the fluid with the environment.
We build upon the algorithm given by Thuerey et al [22].

The cells are differentiated on the basis of whether they
contain fluid, gas (environment) or form the interface be-
tween the two. This interface is formed by cells partially
filled with fluid. As the fluid progresses forward, the cells
get relabelled after each iteration according the amount of
fluid they hold. Atmospheric pressure, reference density and
pressure of fluid are assumed to be unity for simplicity.

Since the label on a cell depends on how much fluid it
holds, fluid fraction e is calculated for each cell. It is defined
as ratio of the cell mass m with its density p.

€= ; (13)
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Figure 3: Overview of Free Surface LBM

4.2.1 Reconstruction of distribution functions

Streaming of distribution functions happens the same way
as in the basic algorithm (Section 4.1.1), with empty cells
not taking part in it. Since one side of the interface cells do
not contain PDF's to stream we need to construct those. If
for a cell at x there is an empty cell at x + e; , then,

dfl = dff*(pa,u) + dfE(pa,u) — dfi(x,t)  (14)

where df’ is the updated distribution function and pa, the
density of gas (taken to be unity). 7 is the direction oppo-
site to 7. The DF's coming from the direction of the interface
normals are also reconstructed to counter the effect of asym-
metrical streaming, using the same equation.

4.2.2 Mass Transfer

The collision step is the same as that of basic LBM (Sec-
tion 4.1.2). Fluid cells are filled to their maximum capacity
and mass exchange between them at any point of time is
equal and opposite. Mass transfer from a fluid to an inter-
face cell is given by,

Am;(xi,t + At) = df;(x + e;At, t) — dfi(x,t) (15)

The mass exchange between interface cells depends on
their mass densities.

e(x + e;At,t) + e(x,t)
2 " (16)
se = df;(x + e;At, t) — dfi(x,1)

4.2.3 Relabelling cells

Often, the amount of mass exchanged between cells makes
their mass density go beyond the permissible range. This
may happen when a cell empties or fills up completely in t <
At. Hence we need to relabel the cells which emptied or filled
up and their neighbourhood. Also, we need to distribute the
excess or deficient mass.

If the current mass density exceeds a threshold value, it is
labeled filled. Else, if it falls below the threshold, it is labeled
emptied. The neighbourhood of the filled cells is checked and
any empty cells are relabelled interface. Equilibrium DF's
are awarded to them by allotting them average velocity and
average density of their neighbourhood. We also remove the
emptied interface cells from the emptied list, which will be
used as boundary for the filled cell. The filled cells can now
be labeled fluid. The process is repeated for emptied cells.

Am;(xi,t + At) = se

Algorithm 2 Free Surface LBM for DXQY lattice

1: procedure RECONSTRUCTDF (X, y, z)

2 Update df using Eq 14

3: procedure TRANSFERMASS(x, v, z)

4 Update mass using Eq 16

5 if cell becomes completely filled then
6 Mark as filled_interface_cell

7 else if cell becomes completely empty
8: Mark as emptied_interface_cell
9
10
11
12

: procedure RELABELCELLS(X, y, z)
if filled_interface_cell then
Convert empty neighbours into interface cells
Make current cell a fluid cell

13: else if emptied_interface_cell
14: Convert fluid neighbours into interface cells
15: Make current cell an empty cell

16: procedure DISTRIBUTEEXCESSMASS(x, v, z)
17: if filled_interface_cell or emptied_interface_cell then

18: Distribute excess mass among neighbours
19: procedure CALCULATENEWVISCOSITY (X, y, z)
20: Calculate viscosity using truncated power law

21: procedure FREE SURFACE LBM
22: for all cells in parallel do

23: if fluid or interface cell then

24: stream(x,y,z) > Same as Basic LBM
25: if interface cell then

26: reconstructDF(x, y, z)

27: if fluid or interface cell then

28: collide(x,y,z) > Same as Basic LBM
29: if interface cell then

30: transferMass(x, y, z)

31: relabelCells(x, y, z)

32: distributeExcessMass(x, y, 2z)

33: if Non Newtonian fluid then

34: calculateNewViscosity(x, y, z)

4.2.4 Excess Mass Distribution

Excess mass for an emptied or filled cell is given by m
(negative) or m — p respectively. Mass is distributed to the
neighbours, weighted favourably for the cells lying along the
direction of progression of the surface.

4.2.5 Calculating new viscosity

Generalised Newtonian Fluid (GNF) simulations employ
localised omega values for each cell. Velocity field variation
between cells give rise to variable strain. Using this we cal-
culate the rate of shear. Applying truncated power law (Eq
8) we obtain localised viscosity using which we calculate re-
laxation time 7.

6v+1
2

The overview of the algorithm is shown in Figure 3.

T =

(17)

S. PARALLEL IMPLEMENTATION WITH
CUDA

We build upon the algorithm given by [22], with changes
in the order of execution of the steps to make it conducive
with the GPU architecture.

5.1 Data Requirement

The data requirement for each cell is given in Table 2.
These are stored in the global memory, as described in the



Data Size Use

Previous DFs 19 floats | Previous iteration distribution
function

19 floats | Current iteration distribution
function

Type of cell in previous iteration
Type of cell in current iteration

Current DFs

Previous State | 1 int
Current State 1 int

Epsilon 1 float Intermediate, visualisation pur-
poses

Velocity 3 floats Intermediate, visualisation pur-
poses

Table 2: Data Requirement for each cell
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Figure 4: Thread Mapping with Grid Elements

Thread Id

following sections. We use double buffering for storing the
state and the distribution function for the grid.

5.2 Thread Mapping

Since each cell reads its neighbour’s previous data and
writes only its own current data, the computation for each
cell happens independent of the others. Thus, we assign one
thread per cell for doing the computation.

We make a 1D grid of threads and map each thread to the
grid elements in row major format as shown in Figure 4.

Because each warp consists of 32 threads, for grid sizes
with x-dimension multiple of 32, each warp operates on cells
which lie in the same row, thus leading to optimised access
as explained in the following sections.

5.3 Data Layout

For efficiency, it is critical to store the data in a manner
which allows maximum possible coalesced read and write
operations. To achieve this, we employ a SoA (Structure of
Arrays) data format to store the information required for
each cell, wherein the data for the 3D grid is stored linearly
in the memory as a 1D array in row major format.

The distribution function is stored the same way, with
the values corresponding to a particular direction stored in
contiguous memory blocks in row major format, as shown
in Figure 5.

5.4 Memory Access Pattern

In stream, reconstructDF, collide and transferMass

kernels given in Algorithm 2, all threads in a warp read /update

the distribution function for a particular direction at the
same time. These memory accesses are fully coalesced be-
cause adjacent threads map to horizontally adjacent cells of
the grid. For instance, if a thread with thread index (tid)
maps to the cell (x,y,z) , then the thread (tid + 1) will
map to the cell (x + 1,7y, z). Their k' neighbour would be
(T 4 €ix, Y + €iy, 2 + €iz) and (x + 1+ €iz, ¥ + €y, 2 + €iz)
respectively, where (e;z, €iy, €;>) is the k" direction vector.
Hence, the k" neighbour of adjacent cells are also adjacent.
Because of the SoA data layout, the distribution function
values of a particular direction for the k" neighbour of ad-
jacent cells are also adjacent in memory. This is shown in
Figure 6. These kernels achieve 100% occupancy on the

0" DF ((0,0,0){(0,0,1){(0,0,2)|(0,1,0) (2,2,00|(2,2,1)[(2.2,2)
15t DF (0,0,0)|(0,0,1){(0,0,2) | (0,1,0) (2,2,0)|(2,2,1)((2,2,2)
18 DF ((0,0,0)((0,0,1){(0,0,2)|(0,1,0) 2,2,0)[(2,2,1)](2,2,2)

Figure 5: Distribution Function Layout for a 3* Grid, stored
in row major format
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Figure 6: DFs for k" neighbours of adjacent cells

GPU hardware.

The remaining steps, relabelCells and distributeEx-
cessMass, read their neighbour’s data and update their own.
Since neighbours of adjacent cells are adjacent in memory,
these too are coalesced accesses. These kernels only achieve
75% occupancy of the GPU due to the need for more regis-
ters to hold the variables used.

5.5 Thread Divergence

Since the steps for Free Surface LBM are performed only
for the interface cells, and the kernels are called for all cells,
it introduces thread divergence in the kernels. One solu-
tion to avoid it is to sort the cells according to their state.
However, because of this, adjacent threads do not work on
adjacent cells in memory, thus leading to uncoalesced mem-
ory accesses. To achieve coalesced memory access, data also
needs to be moved, which worsens the situation, making the
process much slower.

The interface cells form the boundary of the liquid and are
much less in number. The threads corresponding to the non-
interface cells simply return and there is thread divergence
only for those warps which have both interface and non-
interface cells. Thus, the overhead of thread divergence is
much lower than the computational overhead of separating
the interface cells and running it only for them.

5.6 Using Multiple GPUs

We use two GPUs on the same system to further scale the
problem. We divide the data for each GPU by slicing the
grid along the z-axis. We do not choose the y-axis because
bulk of the fluid is present at the bottom of the grid, which
would lead to uneven distribution of the filled and interface
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Figure 8: Performance of the Dam Break Experiment on
various GPUs

cells among the two GPUs. The x-axis is not chosen to
exploit the spatial locality along it.

The cells on the boundary of the dividing slice need the
data from the neighbouring cells which reside on the other
GPU. So, in each iteration, the slice of data on the boundary
is transferred to the other GPU.

Each GPU needs to transfer the current DFs and state of
the boundary cells to the other GPU. As evident from the
pipeline shown in Figure 7, the DFs are available as soon
as collision step is completed and are not required until the
next iteration. So, we do an asynchronous transfer to the
other GPU to overlap it with the computation. Similarly,
the states are transferred as soon as they are reinitialised.

6. RESULTS

In this section, we show the results of our GPU imple-
mentation using dam break, falling drop, flow between two
parallel plates, flow of a non-Newtonian fluid through a tube
of varying cross section and flow of Newtonian and non-
Newtonian fluids through a slit. The experiments discussed
below are performed on the NVIDIA Tesla K20c, unless
stated otherwise. We refer the reader to the supplementary
videos for the simulations resulted out of the experiments.

6.1 Performance

The performance for the dam break experiment on various
GPUs and grid sizes is given in the Figure 8. The perfor-
mance is measured in Million Lattice Updates Per Second
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Figure 9: Relative Time Taken by each kernel on K20c for
Dam Break on a 128% grid
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Figure 10: Performance of the Dam Break Experiment on
single and multi-GPUs

(MLUPS), which is the number of grid points processed per
second. The optimal block size for all the GPUs is experi-
mentally found to be 256, except for NVIDIA GeForce GTX
280, for which, it is 128. At these block sizes, the blocks fill
up the GPU, giving close to 100% occupancy on most ker-
nels.

Figure 9 shows relative percentage of time taken by each
kernel for 1000 LBM iterations of the dam break experiment
on a 1283 grid. As expected, the collide step takes the most
amount of time because it is run for both filled and interface
cells and updates their DFs after computing u and p.

The performance of multi-GPU implementation is shown
in Figure 10. Since on larger grid sizes, both GPUs are well
occupied, it performs much better than a single GPU.

6.2 Visualisation

The visualisation of the fluid surface is done using march-
ing cubes algorithm, with each frame rendered after 50 LBM
iterations. We have taken 50 iterations per frame to main-
tain a significant visual difference between two frames.

Figure 11 shows the dam break experiment for a Newto-
nian fluid on a 128% grid. The fluid has w equal to 1.85. It
initially runs at 5.5 frames per second, which drops to 4.3
frames per second when the fluid splashes around, giving an
average of 5 frames per second. For a grid size of 64°, the
same experiment runs at an average of 27 frames per second.

The intermediate frames Figure 14 show the interactive
simulation. Here, the user can add drops of fluid interac-



Figure 11: Intermediate frames for Dam Break Experiment for a Newtonian Fluid on a 128% grid, running at an average of 5

frames per second with 50 LBM iterations per frame

(c) Shear thickening

(a) Shear thinning (b) Newtonian
Figure 12: Comparison between shear thinning, newtonian
and shear thickening fluid

tively by clicking, while the simulation is going on. It runs
on an average of 6.6 frames per second. The same simulation
runs at an average of 30 frames per second for a 64% grid.

To test the visual accuracy of our model we simulate the
flow of a shear-thinning fluid through a tube of varying cross
section. Neumann boundary conditions were used to drive
the flow, which is tracked by virtual dye. The dye parti-
cles change colour according to the change of viscosity of
the fluid. As time progresses variable shear rate is experi-
enced by the fluid due to the varying cross section of the
tube. This leads to the formation of concentric regions in
the tube with varying viscosity with the outermost region
having the lowest. We display the simulation result in the
supplementary video provided.

Figure 12 shows comparative snapshots of a shear-thinning,
Newtonian and shear-thickening fluid respectively. Trun-
cated power law gives the relation between shear stress ()
and rate of shear (§) as 7 = m4"~ . We compare three flu-
ids with same values of m and different n being poured from
a height on to a flat horizontal base. (a) is shear-thinning
with n < 1, (b) is Newtonian with n = 1 and (c), shear-
thickening with n > 1. As can be seen in the figure, (a)
displays more fluidity (decrease in viscosity) upon impact
with the ground whereas (c) displays folding on itself signi-
fying greater resistance (increase in viscosity) on impact.

6.3 Correctness

To evaluate the correctness of the method, we look at the
velocity profile for Newtonian and non-Newtonian fluids as
they are made to pass between two parallel plates. It is
assumed that the plates have a large area so that the fluid
flows just between them and not around. A motion parallel
to the two plates is induced in the fluid. The fluid lamina
in contact with the two plates will not move on account of
its viscosity. As we move further away from either of the

o 10 20 330 40 50 60 70

Vertical Displacement from the bottom plate

Figure 13: Comparison between flow curves of Newtonian
(blue) and non-Newtonian (green) fluids

two plates the velocity of each fluid lamina increases, until
we reach the center, where, due to symmetry the velocity is
expected to be the maximum.

Analytical calculations augur a parabolic velocity profile
for a Newtonian fluid. For a non-Newtonian fluid, the profile
will be more complex since shear between laminae will give
rise to changes in viscosity. These changes in viscosity corre-
spondingly would affect the velocity of the laminae. Indeed,
for a pseudo-plastic fluid, it has been shown by [3] that a
parabolic curve which is plateaued (flattened) in the center
is to be expected. Figure 13 shows the normalised velocity
profiles obtained from our experiment. It can be seen that
whereas the Newtonian fluid curve follows a parabolic path
the non-Newtonian fluid curve flattens on approaching the
center of the channel. The experimental results therefore,
conform to the analytical expectation.

7. CONCLUSIONS & FUTURE WORK

We presented a system to simulate and visualise Gener-
alised Newtonian Fluids accurately and quickly in this pa-
per. Using boundary conditions such as no-slip reduces the
accuracy from its inherent second order, although it is still
as good as other conventional methods. Also, size of the
channel matters. As the tube becomes thinner and thin-
ner particular nature of the flow becomes prominent. These
factors need to be studied to make the algorithm more com-
prehensive. We have dealt with laminar fluids in this work.
A study of turbulent fluids using LBM is an interesting area
for further development.

Interactivity in realtime as shown in our simulations on
64> domain can be utilised in areas ranging from education
to games on mobile platforms. We are working towards en-
hancing the visual quality of our simulations by ray-tracing
them. As with any GPU based method, we were limited by



Figure 14: Intermediate frames for interactive simulation of a Newtonian Fluid on a 1282 grid, running at an average of 6.6
frames per second with 50 LBM iterations per frame. The user can add fluid drops while simulation is running.

memory constraints. Out of core grids (size 512 and above)
require data transfer between host and device which slows
the simulation down considerably. We want to enhance our
method further to result in real time or near-realtime simu-
lation over larger (and consequently) more detailed grids.
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