
Currency Recognition on Mobile Phones

Suriya Singh1 Shushman Choudhury2

1CVIT, IIIT Hyderabad, India

Kumar Vishal1

2IIT Kharagpur, India

C.V. Jawahar1

Abstract—In this paper, we present an application for
recognizing currency bills using computer vision techniques, that
can run on a low-end smartphone. The application runs on the
device without the need for any remote server. It is intended
for robust, practical use by the visually impaired. Though we
use the paper bills of Indian National Rupee (|) as a working
example, our method is generic and scalable to multiple domains
including those beyond the currency bills. Our solution uses a
visual Bag of Words (BoW) based method for recognition. To
enable robust recognition in a cluttered environment, we first
segment the bill from the background using an algorithm based
on iterative graph cuts. We formulate the recognition problem
as an instance retrieval task. This is an example of fine-grained
instance retrieval that can run on mobile devices. We evaluate
the performance on a set of images captured in diverse natural
environments, and report an accuracy of 96.7% on 2584 images.

Keywords—Instance retrieval, currency recognition, indexing
and retrieval, mobile vision.

I. INTRODUCTION

Visual object recognition on a mobile phone has many
applications. In this paper, we focus on the problem of
recognition of currency bills on a low-end mobile phone.
This is an immediate requirement for the visually impaired
individuals. There are around 285 Million people estimated to
be visually impaired worldwide, out of which 39 Million are
blind and 246 Million have low vision [1]. The differences
in texture or length of currency bills are not really sufficient
for identification by the visually impaired. Moreover, bills are
not as easy to distinguish by touch as coins. Certain unique
engravings are printed on the bills of different currencies but
they tend to wear away.

We adopt an approach based on computer vision on mobile
devices, and develop an application that can run on low-
end smartphones. We consider the bills of Indian National
Rupee (|) as a working example, but the method can be
extended to a wide variety of settings. Our problem is chal-
lenging due to multiple reasons. We want all the computations
to happen on the phone itself and this requires appropriate
adaptation of the recognition architectures to a mobile device.
(For example Panda et al. [2] carry out a scalable retrieval on a
mobile phone by appropriately modifying a retrieval solution.)
Since our application is desired to be usable in a wide variety
of environments (such as in presence of background clutter,
folded bills etc.), we need a robust recognition scheme that
can address these challenges. Also, visually impaired users
may not be able to cooperate with the imaging process by
realizing the environmental parameters (like clutter, pose and
illumination).

The problem of currency recognition using computer vision
techniques has been studied in the past. Neural networks have

Fig. 1: The top row shows a typical use case of our currency
recognition app. Our application recognizes a bill from an
image with many distracting objects and speaks it out. The
last two rows show images from the dataset for Indian National
Rupee (|), with bills in varying illumination and background.

been used for recognition [3], [4]. Hidden Markov Model has
also been exploited using texture characteristics of the bills as
a feature [5]. Local Binary Patterns (LBP) have been utilized
as a feature, by [6], along with a two-phase classification
scheme using template matching. Adaptive boost or AdaBoost,
along with weak classifiers have been used by [7] and [8].
While most of the above work has shown high accuracy for
classification, the test cases have usually consisted of scanned
or carefully captured bills. These test cases lack variations in
illumination, environment, texture and dimension. Our problem
setting is similar to [9], which has considered a variety of
imaging conditions.

Most of the previous methods formulate the solution as one
which gets trained offline with enough positive and negative
examples. However, our approach is based on the formulation

as an instance recognition under clutter. We are able to use
a thin index structure to make the application efficient and
compact. Also note that our problem is considerably different
from typical image instance retrieval (e.g. buildings). Firstly,
the instances of interest are very similar to each other. The
retrieval must be particularly discriminatory in choosing the
correct result. Secondly, the real-world usage by the visually
impaired introduces challenging queries in terms of the image
quality, the portion of the bill visible, illumination and clutter.
To deal with this, a fair amount of computation is spent on
image pre-processing to reduce the effect of outliers. Also, an
extensive database with bills of varying quality is compiled
and used for instance retrieval.

Many of the methods discussed above (e.g. [3]–[6]) are
intended for desktop systems; however there are commer-
cial as well as non-commercial currency recognition applica-
tions available for mobile devices. Examples include LookTel
Money Reader [10] and IDEAL Currency Identifier [11]. The
LookTel Money Reader, though accurate, requires a high
quality camera and a lot of light to properly recognize cur-
rency [10]. The IDEAL Currency Identifier requires the bills
to be placed on a flat surface, in a horizontal position, in good
lighting. It fails to recognize wrinkled and worn out bills [12].
These applications are computationally intensive and intended
for high-end smartphones.

We have been motivated by a lot of work that has been
done recently on computer vision for mobile phones, and
its various applications. Robust detection and recognition of
objects of interest has been one major area of study. Most of
these applications use a server-client model and an Internet
connection for communication. In this architecture, the client
mobile system acts as the input/output device while performing
minimal tasks [13]–[15]. Work that has involved processing
solely on the mobile phone primarily focuses on robust detec-
tion and recognition of objects [2], [17], 3D reconstruction [18]
and Augmented Reality. Applications have also been targeted
for visually impaired users as well [19].

II. DESIGN AND CHALLENGES

Working on a mobile platform brings with it a number
of unique challenges that need to be taken care of. Primarily,
the restrictions are in the memory, the application size, and
the processing time. Currently, the average size of an iOS
application is 23MB, while the RAM limit for a Windows
phone application is 150MB. For an application to run on a
mobile phone without affecting the others, it should not use
more than 100MB of storage and 50MB of RAM.

Our application recognizes the bills in two major steps.
First we segment the bill from the clutter. Then we look
at the most similar bill in the database. Though both these
problems can be solved with good performance using many
state-of-the-art computer vision algorithms, they are not really
mobile friendly. The recognition model and other necessary
information for our application would typically require more
than 500MB of storage and 200MB of RAM with a direct im-
plementation. This exceeds practical limits by a large amount.
To be practically useful, the application’s response time should
not be more than 4 seconds keeping in mind that the current
average response time is 3.28 seconds.

Fig. 2: A schematic of the high-level control flow diagram
of the currency recognition application intended for a visually
impaired user.

The target audience being the visually impaired introduces
additional challenges. The user is unaware of the condition
of the surrounding environment — other objects, lighting,
contrast, and even whether the bill is properly placed in the
field of view of the camera or not. The system should be
robust towards a wide variety of images that are likely to
be captured by the target user. Using the application should
be simple and intuitive for a person who cannot see (refer to
Figure 2 for the architecture of our solution). It should have
a custom camera that once started requires no input from the
user. In short, the problem at hand requires innovative modules
that can recognize the bill in diverse environments reliably,
robustly and efficiently.

III. METHOD

A. Segmentation

As illustrated in Figure 1, the images might be captured in
a wide variety of environments, in terms of lighting condition
and background while the bill in the image itself could be de-
formed. Image segmentation is important not just for reducing
the data to process but also for reducing irrelevant features
(background region) that would affect the decision-making.

We start with a fixed rectangular region of interest (ROI)
which is forty pixels smaller from all four sides than the image
itself. We assume that a major part of the bill will be present
inside this region. Everything outside this ROI is a probable
background. Once this region is obtained, it must be extended
to a segmentation of the entire object.

Let x be an image and let y be a partition of the image into
foreground (object) and background components. Let xi ∈ R3

be the color of the ith pixel and let yi be equal to +1 if the pixel
belongs to the object and to -1, otherwise. For segmentation
we use a graph cut based energy minimization formulation.
The cost function is given by

E(x, y) = −
∑
i

log p(yi|xi) +
∑

(i,j)∈E

S(yi, yj |x)

The edge system E determines the pixel neighborhoods and
is the popular eight-way connection. The pairwise potential
S(yi, yj |x) favours neighbor pixels with similar color to have
the same label. Then the segmentation is defined as the mini-
mizer arg miny E(x, y). We use the GrabCut algorithm [20],
which is based on iterative graph cuts, to carry out fore-
ground/background segmentation of the images captured by
the user.

Fig. 3: Segmentation on a currency bill. The first and second
rows show successful segmentation results while the last row
shows segmentation failure where center region is marked as
foreground.

The system should be able to segment the foreground
object correctly and quickly without any user interaction.
Whenever the foreground area is smaller than a pre-decided
threshold, a fixed central region of the image is marked as
foreground. This is illustrated in Figure 3 which shows correct
segmentation as well as the failure cases.

B. Instance Retrieval

We use an instance retrieval pipeline to classify the bill in
the image. We follow the instance retrieval approach of [21],
the summary of which is illustrated in Figure 4.

1) Building a Visual Vocabulary: We first locate keypoints
in the foreground region of the image (obtained from segmen-
tation) and describe the keypoint regions, using any descriptor
extractor like SIFT, SURF or ORB-FREAK. We obtain a set
of clusters of features using hierarchical K-means algorithm.
The distance function between two descriptors x1 and x2 is
given by d(x1, x2) =

√
(x1 − x2)>Σ−1(x1 − x2), where Σ

is the covariance matrix of descriptors. As is standard, the
descriptor space is affine transformed by the square root of Σ
so that Euclidean distance may be used. The set of clusters
forms the visual vocabulary of images.

2) Image Indexing Using Text Retrieval Methods: For every
training image, after matching each descriptor to its nearest
cluster, we get a vector of frequencies (histogram) of visual
words in the image. Instead of directly using visual word fre-
quencies for indexing, we employ a standard ‘term frequency -
inverse document frequency’ (tf-idf) weighting. Suppose there
is a vocabulary of k words, then each image is represented
by a k-vector Vd = (t1, . . . , ti, . . . , tk)>, of weighted word
frequencies with components

ti = nid

nd
log(N

ni
).

Here nid is the number of occurrences of word i in document
d, nd is the total number of words in the document d, ni

is the total number of occurrences of term i in the whole
database and N is the total number of documents in the whole
database. The weighting is a product of two terms: the word
frequency nid

ni
, and the inverse document frequency log(N

ni
).

However, retrieval on this representation is slow and requires
lots of memory. This makes it impractical for applications

Fig. 4: The full pipeline of visual Bag of Words instance
retrieval illustrating both the training module and the query
module for test images.

on mobile phones. Therefore, we use an inverted index for
instance retrieval.

3) Retrieval Stage: At the retrieval stage, we obtain a
histogram of visual words (query vector) for the test image.
Image retrieval is performed by computing the normalized
scalar product (cosine of the angle) between the query vector
and all tf-idf weighted histograms in the database. They are
then ranked according to decreasing scalar product. We select
the first 10 images for further processing.

4) Spatial re-ranking: The Bag of Words (BoW) model
fails to incorporate the spatial information into the ranking
of retrieved images. In order to confirm image similarity, we
check whether the keypoints in the test image are in spatial
consistency with the retrieved images. We use the popular
method of geometric verification (GV) by fitting fundamental
matrix (adopted from [16]) to find out the number of keypoints
of the test image that are spatially consistent with those of the
retrieved images.

5) Classification: In the voting mechanism, each retrieved
image adds votes to its image class (type of bill) by the
number of spatially consistent keypoints it has (computed in
the previous step). The class with the highest vote is declared
as the result.

C. Adaptation to Mobile

We were able to adapt the above solution to a mobile envi-
ronment by making very significant reductions in complexity,
as much as possible, without sacrificing the effective accuracy.
This allows us to achieve the best possible performance, given
the severe restrictions in various aspects of the pipeline that
we have to contend with.

Segmentation using iterative graph cuts is generally slow
and typically takes more than 1 second for a 800×600 image
on a 2.2 GHz Dual Core processor. We overcome this problem
by performing segmentation at 1/5th of the original image size,
thus taking 0.12 seconds. The mask boundary is not accurate
as it has to be interpolated to the original scale, but we are
still able to remove much of the background in most cases
(see Table I (a)).

The recognition model needed for retrieval cannot be
used directly on a mobile phone because of the memory
requirement. A vocabulary of size 1000K used for instance
retrieval along with an inverted index requires approximately

TABLE I: The results of mobile adaptation (a) show the
proportion of the different kinds of segmentation that can arise
and (b) show the final storage and memory requirements for
the application on the mobile phone.

(a)

Segmentation Output Share

Accurate segmentation 76%
Central region marked as foreground 14%
Less than 15% of background removed 7%
Currency bill marked as background 3%

(b)

Component Size
RAM use (on average) 23.5MB
Inverted index 20.5MB
Vocabulary (10K) 5.3MB
Keypoints location 11MB
Annotations 6.9KB

2.4GB of storage space and 1.5GB RAM. We perform vocab-
ulary pruning on a 10K vocabulary (adopted from [2]) to make
it feasible to run on mobile phones without affecting accuracy.
This entails removing less significant and less discriminating
visual words from the vocabulary. The pruned vocabulary
along with the inverted index being used requires merely
27MB of space (see Table I (b)), which without pruning would
require 158MB. Instead of using a flat vocabulary, we use
a vocabulary tree built with hierarchical K-means clustering,
which highly expedites the assignment.

IV. EXPERIMENTS

A. Dataset

The various denominations of Indian Rupee bills differ in
size and color, apart from the printed denomination and other
texts which makes for easy visual identification. However, for
the visually impaired, text and color do not help at all and size
can lead to confusion because of the similar dimensions of the
various bills.

There is currently no available dataset of images of Indian
Rupee bills in various configurations that would be suitable for
the possible use cases of a visually impaired user. Therefore,
part of our work involved creating such a collection (Figure
1). Figure 5 shows statistics of this dataset. The images are
captured using popular mobile phone cameras, with different
resolutions, viz. VGA, 1.3 megapixels (MP), 2 MP and 5 MP,
all on default settings. For each bill, there are 4 different half-
folds and 2 full-length configurations. For each denomination
we consider at least 12 different bills, across 6 different
indoor environments and 7 different outdoor environments,
while collecting the dataset. This introduces many variations in
illumination, background and pose in the dataset. The dataset
contains images of both new and worn out bills, as well as
bills with scribbles on them.

B. Implementation

An Android application is designed to run on versions
2.3 and above. It requires a camera of at least 1.3 MP

Fig. 5: Various statistics that reflects the dataset’s comprehen-
siveness.

Fig. 6: A conceptual schematic of the back-end of the appli-
cation; this shows the sequence of processing steps going into
decision-making.

with an autofocus feature. We have utilized the OpenCV
library for computer vision and image processing related tasks.
While the camera interface is coded in Java, the language of
Android, the image processing in the application is done in
native C++ code.

Since the application is intended to be a stand-alone one
that works upon installation, the various resources required are
packaged with the application installation file. They include
three files — the vocabulary of visual words, the inverted
index, and the annotations. They are saved into the internal
memory the first time the application is used, and are loaded
into RAM each time it starts. Another resource is the spatial
coordinates of all the keypoints. This need not be in the RAM,
unlike the others, so we keep it in the phone memory. By doing
this, though we sacrifice speed to some extent, we reduce the
RAM requirement.

The working of the application is simple and intuitive for
a person who cannot see. Once the application has started, so
does a camera preview. The preview continues until the user
holds the phone still for around 3-4 consecutive seconds, after
which it focuses and takes a picture. This gives the user ample
time to align and position the bill correctly.

When the picture is captured, the preview freezes while
the result is processed. In a few seconds, an audio message
is played which has either the denomination of the bill, or a
message asking the user to capture the image again. Once the
message has been received, the user can close the application
by touching the screen, or if he/she needs to continue, the
device needs to be shaken 3-4 times and the preview will restart
(Figure 2).

Our application recognizes the bill in two major steps (see
Figure 6). First, the application removes the background of the
image captured by the user as mentioned in Section III. Then it
detects SIFT keypoints inside the foreground area of the image.
If there are not enough keypoints, it rejects the image and asks
the user, via audio message, to capture the image again. The
128-bit SIFT descriptors for the test image are then quantized
into visual words using the vocabulary. The application then
does a quick tf-idf based scoring of all the images in the dataset
using the inverted index and finds ten best matches from the
database. These images are spatially verified and re-ranked.
The audio message corresponding to the final result is then
played. However, if the result is ambiguous, the application
again asks the user to capture another image, but the result is
not discarded and is used in subsequent decision-making.

TABLE II: Classification Accuracy using SIFT, SURF and
ORB-FREAK as the feature, with segmentation, for various
sizes of the vocabulary.

Feature
Vocabulary Size

2K 5K 10K 50K 100K 500K 1000K

SIFT 81.2% 87.6% 87.8% 93.9% 96.1% 96.3% 96.7%

SURF 68.7% 71.4% 72.8% 79.6% 84% 92% 92.4%

ORB-FREAK 49.8% 55.8% 56.6% 65.2% 66.1% 69.3% 71.1%

C. Evaluation

For the purpose of evaluating our approach, we have
divided our dataset into two parts — one for training, and
the other for testing. We measure the performance in terms of
the classification accuracy over 510 test images.

The decision of classifying a test image is done by voting.
We retrieve the top 10 most similar images (as described
earlier) from the database and perform geometric verification.
Each retrieved image votes for its class by the number of spa-
tially consistent keypoints it has. The class with the maximum
votes is then declared as the response by the system. If the
number of votes is less than a threshold, the image is marked
as ambiguous, and the user is asked to take the image again.

D. Results and Discussions

We have experimented with the accuracy tests for var-
ious feature detectors and extractors like SIFT, SURF and
ORB-FREAK. ORB-FREAK is faster for mobile applications
because it is the least computationally intensive among the
above-mentioned ones. However, SIFT is far better in terms
of accuracy, with 96.7% of the responses being correct using
a vocabulary of size 1000K, while still not being infeasible
in terms of time. For the same vocabulary size, SURF was
able to correctly recognize 92.4% of the test cases whereas
for ORB-FREAK it was only 71.1% (see Table II). Moreover,
we also see that for precision at 10, SIFT is better than the
other alternatives (see Figure 7 (a)). This makes SIFT the most
suitable choice for our application.

Using segmentation with instance retrieval clearly improves
retrieval performance. In our case, segmentation helps in
removing irrelevant keypoints which results in faster retrieval
as well as a reduced error rate (Figure 7 (b)). However, a wrong

(a) (b)

Fig. 7: (a) Precision at 10 using each of SIFT, SURF and
ORB-FREAK as a feature with segmentation for various sizes
of vocabulary. (b) Comparison between accuracy of SIFT BoW
+ GV retrieval pipeline and that of segmentation followed by
SIFT BoW + GV retrieval pipeline.

TABLE III: Time analysis for currency recognition application
on a mobile phone with 1.2 Ghz CPU and 1GB RAM.

Module Time in seconds
Read data and load application (one time) 2.4 s

Module
SIFT BoW+GV Time in seconds

without segmentation with segmentation
Segmentation - 0.27 s
SIFT keypoints detection 0.25 s 0.25 s
SIFT descriptor extraction 0.27 s 0.13 s
Assigning to vocabulary 0.01 s 0.01 s
Inverted index search 0.12 s 0.12 s
Spatial re-ranking 0.61 s 0.31 s
Total Recognition Pipeline 1.26 s 1.09 s

segmentation (marking the note as background) may result in
a classification error.

Although the difference in recognition accuracy between
both the pipelines viz, SIFT BoW + GV retrieval pipeline and
segmentation followed by SIFT BoW + GV retrieval pipeline,
is very less for larger vocabulary (around 2%), we see that
segmentation helps in reducing the processing time (Table III)
in consecutive steps while increasing the accuracy by some
amount (see Figure 7 (b)). This is due to fewer keypoints being
considered for description and geometric verification, which
takes longer than segmentation.

With our approach we have been able to report a recog-
nition accuracy of 96.7% on our dataset of Indian Rupee (|)
while the average processing time remains 1.09 seconds on a
typical smartphone with 1.2 Ghz CPU and 1GB RAM running
on the Android operating system. Furthermore, we have no-
ticed that the detection (0.25 seconds) and description (0.3 to
0.6 seconds) of SIFT keypoints takes the most time, followed
by the step of geometric verication. For the complete time
analysis, see Table III. For an illustration of the application in
action, see Figure 8.

We also try to provide insight on why our system fails
in certain situations (see Figure 9 for failure cases). On the
obverse (front) side of each bill (see Figure 9), the image of
Mahatma Gandhi is imprinted. There are very few distinguish-
ing features if that half-fold of the bill is considered, less so if
the fingers of the user cover some of the surface area. Color
being highly sensitive to illumination and fading cannot serve
as a reliable feature in such a case. Therefore, such positions
often lead to incorrect/ambiguous results. When there are bills
of multiple denominations in the view of the camera, the result
is bound to be ambiguous. Since the user may be unaware of

Fig. 8: Currency recognition application at work in various
configurations and environments. The application gives a cor-
rect result for all the cases.

Fig. 9: First row: Failure cases. On the left and middle, the bill
occupies less than 40% of the image, leading to a segmentation
failure and incorrect response. On the right, the image captured
is highly blurred. Second row: The obverse (front) side of bill
showing the portrait of Mahatma Gandhi which is common in
every denomination. There are very few distinguishing features
on this side.

the surroundings, we have no workaround for this situation.

Another case where failure is common, is when the autofo-
cus has not functioned properly, or the phone has been shaken
or moved while capturing the image. This results in an image
being blurred or the bill being out of focus. In cases where
the image is blurred and the system fails to detect keypoints,
the image is rejected. However, when the bill is not in focus,
the result is either ambiguous or incorrect.

Numerous experiments have been conducted with bills held
at different distances and positions relative to the device’s
camera. They show that strong results are usually reported if
the image of the bill spans at least 40% of the total area of
the captured image, or if the bill is at a distance of not more
than 1 foot or 1 arm’s length from the camera for the full
configuration (1/2 foot for other configurations). Furthermore,
at least 50% of the area of the bill that has been captured, in
whatever configuration, should be in the image, to boost the
chances of correct recognition.

We have performed various tests to analyze the sensitivity
of recognition to segmentation failure. There are two kinds of
segmentation failures, one where the background is not fully
removed and another where the bill has been wrongly marked
as the background. The first type of failure leads to many false
positive keypoints, and generally results in an answer of less
confidence, which is sometimes incorrect. The second type of
failure is more serious. It rejects a number of true keypoints
while adding many false positives, often leading to an incorrect
result. We have no way of retrieving the former, but we can
use a distance threshold to reject the latter while assigning the
keypoints to the vocabulary.

V. CONCLUSION

We have succeeded in our aim to develop a system that
can be used to recognize currency for a visually impaired user.
We have ported the system to a mobile environment, working
around difficulties like limited processing power and memory,
while still achieving high accuracy and low reporting time.
Currency retrieval and thereafter recognition is an example of

fine-grained retrieval of instances which are highly similar.
This requires segmentation for removal of clutter. Through
our experiments, it has been established that segmentation is
helpful for the retrieval process as it reduces the chance of
reporting erroneously as well as the overall processing time,
and also that the instance retrieval method ensures results
swiftly. The methods used work well on noisy images captured
from a mobile phone. We expect our system to easily adapt
to other currencies of the world as well as a collection of
various currencies simultaneously while keeping a similar level
of accuracy and speed.

REFERENCES

[1] Visual impairment and blindness fact sheet, World Health Organisation,
2013. http://www.who.int/mediacentre/factsheets/fs282/en/

[2] Jayaguru Panda, Michael S. Brown, and C. V. Jawahar. Offline mobile
instance retrieval with a small memory footprint. ICCV, 2013.

[3] K.K. Debnath, J.K. Ahdikary, and M. Shahjahan. A currency recog-
nition system using negatively correlated neural network ensemble.
International Conference on Computers and Information Technology,
2009.

[4] Ebtesam Althafiri, Muhammad Sarfraz, and Muhannad Alfarras.
Bahraini paper currency recognition. Journal of Advanced Computer
Science and Technology Research, 2012.

[5] Hamid Hassanpour and Payam M. Farahabadi. Using Hidden Markov
Models for paper currency recognition. Expert Systems with Applica-
tions: An International Journal, 2009.

[6] Junfang Guo, Yanyun Zhao, A. Cai. A reliable method for paper cur-
rency recognition based on LBP. Conference on Network Infrastructure
and Digital Content, 2010.

[7] Hai-dong Wang, Leye Gu, and Linping Du. A paper currency number
recognition based on fast Adaboost training algorithm. International
Conference on Multimedia Technology, 2011.

[8] Xu Liu. A camera phone based currency reader for the visually
impaired. ASSETS, 2008.

[9] F.M Hasanuzzaman, Xiaodong Yang, and YingLi Tian. Robust and
effective component-based banknote recognition for the blind. Annual
Wireless and Optical Communications Conference, 2011.

[10] http://www.looktel.com/
[11] http://www.wirelessrerc.org/node/160
[12] https://play.google.com/store/apps/details?id=org.ideal.currencyid
[13] http://www.google.com/mobile/goggles/
[14] D.M. Chen, S.S. Tsai, R. Vedantham, R. Grzeszczuk, and B. Girod.

Streaming mobile augmented reality on mobile phones. International
Symposium on Mixed and Augmented Reality, 2009.

[15] B. Girod, V. Chandrasekhar, D. M. Chen, N. man Cheung, R.
Grzeszczuk, Y. Reznik, S. Tsai, G. Takacs, and R. Vedantham. Mobile
visual search. IEEE Signal Processing Magazine, 2011.

[16] Jayaguru Panda, Shashank Sharma, and C V Jawahar. Heritage App:
Annotating Image on Mobile Phones. Indian Conference on Vision,
Graphics and Image Processing, 2012

[17] Wei Di, Catherine Wah1, Anurag Bhardwaj, Robinson Piramuthu, and
Neel Sundaresan. Style Finder: Fine-grained clothing style detection
and retrieval. CVPR Workshops, 2013.

[18] Petri Tanskanen, Kalin Kolev, Lorenz Meier, Federico Camposeco,
Olivier Saurer, and Marc Pollefeys. Live metric 3D reconstruction on
mobile phones. ICCV, 2013.

[19] Rabia Jafri, Syed Abid Ali, and Hamid R. Arabnia. Computer vision-
based object recognition for the visually impaired using visual tags.
IPCV, 2013.

[20] C. Rother, V. Kolmogorov, and A. Blake. GrabCut: interactive fore-
ground extraction using iterated graph cuts. SIGGRAPH, 2004.

[21] J. Sivic and A. Zisserman. Video Google: A text retrieval approach to
object matching in videos. ICCV, 2003.

