Coherent and Importance Sampled LVC BDPT on the GPU

Srinath Ravichandran*
IIIT - Hyderabad

(a) Bedroom (1.8M tris)

(b) Whiteroom (574K tris)

P J Narayanan®
IIIT - Hyderabad

(¢) Monkeybox (196K tris)

Figure 1: Scenes of varying geometric complexity with complex lighting and multi-layered materials. All the scenes were modelled with lights
inside fixtures. All the scenes were rendered using CIS-LBDPT. Images 1a and 1b were rendered at 1980x1080 resolution for 256 iterations
with 4 spp per iteration. Image 1c was rendered at 1024x1024 resolution for 128 iterations using 8spp per iteration.

Abstract

Bidirectional path tracing (BDPT) can render highly realistic scenes
with complicated lighting scenarios. The Light Vertex Cache (LVC)
based BDPT method by Davidovic et al. [Davidovi¢ et al. 2014]
provided good performance on scenes with simple materials in a
progressive rendering scenario. In this paper, we propose a new
bidirectional path tracing formulation based on the LVC approach
that handles scenes with complex, layered materials efficiently on
the GPU. We achieve coherent material evaluation while conserv-
ing GPU memory requirements using sorting. We propose a mod-
ified method for selecting light vertices using the contribution im-
portance which improves the image quality for a given amount of
work. Progressive rendering can empower artists in the production
pipeline to iterate and preview their work quickly. We hope the
work presented here will enable the use of GPUs in the production
pipeline with complex materials and complicated lighting scenar-
ios.

CR Categories: 1.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Raytracing;

Keywords: Raytracing, Graphics Processors, Parallel Processing

1 Introduction

Light transport algorithms enable photorealistic rendering of
scenes. Raytracing is the predominant method used in production
rendering of movies and visual effects. Production rendering is
characterized by scenes involving complex materials and heavy ge-
ometry. Bidirectional light transport algorithms are more efficient

*e-mail:srinath.ravichandran @research.iiit.ac.in
Te-mail:pjn @iiit.ac.in

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed for
profit or commercial advantage and that copies bear this notice and the full citation on the
first page. Copyrights for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on
servers or to redistribute to lists, requires prior specific permission and/or a fee.

Request permissions from Permissions @acm.org.

SA'15 Technical Briefs, November 02 — 06, 2015, Kobe, Japan.

© 2015 ACM. ISBN 978-1-4503-3930-8/15/11...$15.00

DOI: http://dx.doi.org/10.1145/2820903.2820913

to render such scenes than path tracing. Commercial production
renderers are primarily path tracers running on CPU render farms.
GPUs and bidirectional path tracing on them have not made inroads
there due to the higher memory requirments. Recent GPUs do pro-
vide sufficient promise for the use of BDPT for quick preview and
render in production scenarios.

Bidirectional path tracing (BDPT) [Lafortune and Willems 1993]
with the CPU generating the camera and light subpaths and the
GPU computing combinatorial connections in parallel was devel-
oped by Pajot et al. [Pajot et al. 2011]. van Antwerpen presented
a BDPT running on the GPU [van Antwerpen 2011]. These meth-
ods required large amounts of memory to store all vertices on the
GPU. Davidovic et al. use a Light Vertex Cache (LVC) to store
the light-path vertices, reducing memory requirements [Davidovic¢
et al. 2014]. We modify this method to handle complex materials
efficiently by employing material sorting to improve runtime per-
formance. We also employ an importance based sampling of LVC
vertices to get better quality images.

Laine et al. discussed efficiency issues associated with large mono-
lithic kernels for path tracing on the GPU, particularly when the
cost of shading was high [Laine et al. 2013]. They showed that
smaller kernels utilized GPU resources better. They used queues
to handle per material evaluations in separate kernels. We follow a
similar approach in which separate kernels are employed for mate-
rial evaluation and traversal. We use material sorting to bring more
coherence to the simpler kernels as queues are inefficient on the
GPUs. We present two ideas in this paper to exploit GPUs effi-
ciently in such settings, over the Light Vertex Cache based BDPT
(LVC-BDPT) [Davidovic et al. 2014] method.

1. We use a sorting-based parallel material evaluation method
to bring more coherence to the evaluation of complex mate-
rials. This step is designed with GPU architecture in mind,
where sorting is efficient and incoherence is costly. Complex
layered materials increase execution incoherence and sorting
brings greater coherence and helps reduce the material evalu-
ation time greatly.

2. We present a new sampling method to connect a camera sub-
path vertex to promising light subpath vertices. Our method
prefers connections that are likely to contribute more to the
final image. This is achieved by sampling the light vertices

based on their contribution for the final image. This results in
better image quality for a given number of visibility evalua-
tions.

2 Bidirectional Path Tracing

The path integral formulation of light transport [Veach 1998] mod-
els how light moves within a scene and is recorded by a sensor
within the scene. Each measurement recorded by the sensor can
be written in the following form I; = [, f;(Z)du(Z) where Q is
the set of all light transport paths of all possible lengths, u is the
measure on this space of paths, and f; is called the measurement
contribution function. Each path Z of length k is composed of ver-
tices (xo, 1, ..., Tx—1). Vertex xo sits on a light source, the vertex
xr_1 on the camera sensor, and the intermediate vertices on other
surfaces of the scene.

The measurement contribution function [Veach 1998] can be ex-
pressed as

fj (5) = Le(mo — Z‘l)G(JZQ <~ $1)Wg (CE}C71 — xk72)
k—2
H fs(m¢71 — Ti — Z’Z'Jrl)G(l'i < :L'7;+1)

=1

where L. is the radiance emitted from xo to z1, G the geometry
term between vertices, f the BRDF term and W the sensor impor-
tance function. In Monte Carlo light transport algorithms, the path
 is created using local path sampling and can be sampled start-
ing from a light source (light tracing), the camera (path tracing),
or both (bidirectional path tracing). Unidirectional tracing methods
have difficulty in finding paths that successfully transfer radiance
from the light to the camera for certain lighting situations. Bidirec-
tional path tracing methods can find more effective paths in such
scenarios.

BDPT first creates samples from both the camera and the light and
then generates the camera and light subpaths separately by tracing
rays. When the paths terminate due to Russian roulette or fixed
depth clamping, campera path vertices are are connected to light
path vertices by shadow rays. Valid (i.e., visible) connections will
contribute to the pixel colour by shading the materials. The first
BDPT implementation on the GPU used fixed depth clamping [van
Antwerpen 2011] because of the limited memory model of early
generation GPUs. Davidovic et al. presented a Light Vertex Cache
Bidirectional Path Tracing (LVC-BDPT) [Davidovi€ et al. 2014].
A coarse light prepass phase was used to determine the average
path length of light subpaths. Based on this, memory was allo-
cated to store the light subpath vertices for all the light samples.
The intermediate subpath vertices were stored in memory as LVC
during light traversal phase. All paths were terminated forcefully
when memory was full. During the camera traversal, each camera
subpath vertex sampled N vertices from the LVC randomly. Con-
nections of the camera vertex with each light vertex were evaluated
and the camera buffer was updated appropriately. They presented a
single kernel variant (LVC-BDPTsk) and multikernel variant (LVC-
BDPTmKk) of their method.

3 Coherent and Importance Sampled LVC
BDPT (CIS-LBDPT)

We propose two modifications to the LVC-BDPT scheme to im-
prove speed and quality in the presence of complex materials. The
first involves material sorting and the second involves importance
sampling of LVC vertices.

sampleids[0 [1 [2[3[a[s[6[7]8[o]w0[n][12[13]1a]15]

Material Keys [A1 | B1 | A2 | B2 | C1 | A2 L

2 | c1[as|a1|B2[maB|c2a]

Sort by Material Keys

sampleids[0 [10] 2 [s [o[12[1[13|3[u[a[s[1a][15]6[7]

Material Keys [A1 [A1 [A2 [A2 [A3] A4 81 [B1]B2[B2[c1|c1[c2]c3]i
L ') ')L ') _1_1

Material Type Material Type Material Type Material Type
w e «© o

Figure 2: Sorting of samples based on material keys. Each 32 bit
key is composed of the first 8 higher order bits representing the
material type(represented by alphabets A,B,C and D) and the re-
maining bits indicating the id of a particular material applied to a
primitive(represented by the numeral).

3.1 Sorting and Evaluation of Complex Materials

We employ a layered material system [Pharr and Humphreys 2010]
to create materials of varied complexity. Materials in our system
can have upto four independent layers. At each shading point,
a material stack composed of the individual BSDFs is generated.
We support a variety of BSDFs such as lambertian, specular re-
flection, specular transmission, Oren-Nayar, and microfacet models
with a variety of distribution and geometric functions. Efficiency on
the GPUs critically depends on coherent instruction execution and
memory access. In a scene containing complex materials, rays in
later bounces will hit different materials. This can result in thread
divergence and degraded performance. This is more acute on lay-
ered materials with different types of BSDFs.

Laine et al. enhanced material coherence for path-tracing by placing
each material-intersection request into a per-material queues [Laine
et al. 2013]. We bring coherence to BDPT using material sorting in
place of the use of queues. Queues have several disadvantages in a
GPU setting. Queue management typically involves irregular com-
putations that are not efficient on the GPUs. Queues also require
atomic operations and wastes memory as memory needs to be pre-
allocated to each based on the potential maximum length. Queues
may additionally be overrun if their sizes are not estimated properly
and are in general underutilized. Queue buffer overrun presents a
problem in a bidirectional path tracing scenario where the number
of rays are typically much larger than path tracing.

We use in-place sorting of the intersection points based on mate-
rial ids during each step of the algorithm to enforce execution as
well as data coherence. Every primitive in the scene is assigned
a unique 32 bit composite key composed of the first 8 higher order
bits representing the material type with the rest of bits employed for
assigning a unique material id. During traversal phase each thread
handling a sample creates a tuple of the composite key and sam-
ple id in a global list. This list is sorted on composite key using
an efficient Thrust sort primitive, before material evaluation is per-
formed. Only the sample id list is sorted and not the actual ray data.
Sorting has several advantages. The GPUs have fast radix sorting
primitives. Sorting uses memory efficiently; space for only the total
number of samples is needed in any step with no wastage. Sorting
brings all samples of same material together (Figure 2). We then
evaluate materials using a single kernel which operates with more
execution coherence since threads in a warp now handle sorted ma-
terial types. Our material evaluation kernel is kept lean currently.
However should the need arise to handle extremely complex mate-
rials, we can add a separate kernel to handle only those materials
within the current framework. We demonstrate the computational
advantage brought by sorting in the results section.

Light vertices
Light vertices o

BSDF BSDF

‘Camera Vertex Shading Point
(b) Scenario 2: Visibility test
fails for the light vertices chosen
thereby adding no contribution to
the image

Camera verexShadingPine
(a) Scenario 1: Poor BSDF con-
tribution at the camera vertex for
the light vertices chosen.

Figure 3: Two scenarios indicating how a particular choice of light
vertices might result in poor contribution.

3.2 Importance Sampling of LVCs

The connection term between a light path of length s and a camera
path of length ¢ is given by

Cs,t = fs(ys—Z — Ys—1 — yt—l)fs(zt—Q — Zt—1 — ys—l)
G(Ys—1,2e-1)V (Ys—1, 2t-1),

where fs terms are the BRDFs evaluated at the camera and light
vertices for the connection direction, G the geometry term and V'
the visibility term. Depending upon the scene, estimation of these
factors can be costly and bad a choice of LVC can result high vari-
ance. For example, a scene in which the light and camera subpath
vertices both have high subpath contributions but have a failed vis-
ibility (Fig 3b) will result in the estimator being zero, while in-
curring an expensive shadow ray traversal. Even among visible
LVC vertices, low product of BRDF values can also result in wasted
computations (Fig 3a). The number N of samples will have to be
increased to reduce the variance of the estimator in such scenarios.

We propose a different sampling scheme aimed at improving the
quality of the rendered images. Our method is similar to the
sampling-importance-resampling method used to reduce number of
visibility tests based on the product of the BRDF and the incoming
radiance terms [Burke et al. 2005]. Our scheme starts with sam-
pling a larger number M of vertices from the LVC. We then com-
pute a distribution over the potential contribution of the selected
vertices by evaluating the product of the BSDF terms at the cam-
era and light vertices. We then sample NN light vertices using the
distribution thereby choosing vertices that provide a higher contri-
bution with a higher probability without introducing any bias into
the computation. The IV vertices are sent for visibility evaluation
and image updation, if found visible. On complex scenes, visibility
tests can dominate the render time. Preferring more promising ver-
tices for visibility and discarding less promising ones will enhance
the quality of the rendered image. We compare our new connection
method against the original LVC-BDPT method by comparing the
RMSE values obtained by iterative rendering of different scenes.
We show that our algorithm is able to provide lower RMSE values
for the same number of samples per pixel traced. Our method also
provides lower RMSE values for a given total rendering time, as
can be seen in the results section.

The pseudocode for the light tracing and camera tracing schemes of
our Coherent and Importance-Sampled LVC BDPT (CIS LBDPT)
method is given in Algorithms 1 and 2. We employ a multikernel
approach for different tasks such as direct lighting computation, ray
traversal, material evaluation and modified connection evaluations

Algorithm 1 Light Pass

1: procedure LIGHT TRACE

2 Create LightSamples in parallel

3 while #LightSamples != 0 do

4: Trace all rays in parallel

5: Sort rays on intersected material id.

6: Evaluate materials in parallel

7 Store vertices in LVC in parallel

8 Compute next bounce rays in parallel
9 Compact rays to remove dead samples

Algorithm 2 Camera Pass

1: procedure CAMERA TRACE

2 Create CameraSamples in parallel

3 while #CameraSamples != 0 do

4 Trace all rays in parallel

5: Sort rays on intersected material id.

6: StreamO - Evaluate direct lighting in parallel

7: Stream1 - Evaluate modified connections in parallel
8 Stream?2 - Compute next bounce rays in parallel

9 Trace connection shadow rays in parallel

0 Compact rays to remove dead samples.

(Line 6, 7, 8 in Algorithm 2). We employ the multi stream launch
capabilities of the latest GPU hardware to launch all these kernels
in parallel and collect their results. In our experiments, we use
M = 10 (#samples generated by our scheme) and N = 5 (#sam-
ples used to update the image by our and LVC-BDPT schemes) un-
less otherwise specified. Given the available memory on the GPU,
our implementation is able to generate and trace 4 samples per pixel
simultaneously on 1980 x 1080 images in parallel (That is, it pro-
cesses 8.5 million camera rays at a time.). With increase in GPU
memory we can accomodate even more sample resolutions. An it-
eration of our algorithm involves tracing these samples to comple-
tion. Subsequent iterations will increase the number of samples per
pixel but tracing another 8.5 million rays. This can be thought of
as progressively adding 4 samples for each pixel in each iteration.
Every subsequent iteration performs both the light pass followed by
the camera pass from the beginning thereby effectively flushing the
LVC and utilizing a new set of light vertices for connection.

4 Implementation, Results and Analysis

We implemented our algorithms on a machine containing a corei7-
4790K processor and a Nvidia GTX Titan GPU having 6GB of
video memory. We used CUDA 7.0 and the Thrust libraries for
sort and compaction. We created three different scenes with vary-
ing levels of geometric and material complexity to test the perfor-
mance of our algorithm. All the scenes were designed with compli-
cated lighting conditions by placing the light sources inside fixtures.
The reference images used for computing RMSE values were pro-
gressively generated using a naive GPU-BDPT method till they had
very little noise visible in them.

Sorting for Coherence: We compare the runtime performance
of our algorithm against LVC BDPTmk algorithm that does not
employ sorting to handle all the materials scenes having varying
material and geometric complexity. Table 1 shows the running
times for different scenes as the number of samples per pixel in-
creases. These numbers are a good indicator of the performance
of the CIS-LBDPT algorithm in the presence of complex materials.
Good speed up is achieved across the board. The benefits obtained

by having coherent work chunks that can be handled by the GPU is
very evident from the numbers themselves.

Effective LVC- CIs-
SPP BDPTmk | LBDPT | Speedup
(ms) (ms)
8 18237 14228 1.28x
16 39534 31376 1.26x
MonkeyBox 24 61867 46169 1.34x
32 84471 64214 1.31x
40 104630 78082 1.34x
4 34890 24780 1.48x
8 68011 48988 1.38x
Whiteroom 12 105419 76138 1.38x
16 145022 106276 1.36x
20 182498 126046 1.44x
4 31595 20374 1.48x
8 67509 46053 1.46x
Bedroom 12 103618 70717 1.46x
16 141286 94269 1.49x
20 179323 122053 1.46x

Table 1: Comparison of execution times for LVC-BDPTmk and
CIS-LBDPT methods. The Monkeybox scene was rendered at
1024x1024 resolution with Sspp per iteration. The Whiteroom and
Bedroom scenes were rendered at 1980x1080 resolution with 4spp
per iteration.

Performance Results: Table 2 shows the quality comparison of
rendered image as the rendering progresses. The plot of RMS er-
ror against iteration number shows for all the three scenes show
the quality advantage of our improved sampling scheme. The error
is lower for images rendered using our scheme than using LVC-
BDPT which does only random sampling. The plot of RMS error
against run time shows clearly that for a fixed time budget, the CIS-
LBDPT achieves better rendering quality across the board. The
quality gains are likely to be even more if larger values of M and
N are used.

Limitations: Our method employs a new sampling scheme of
choosing LVC vertices during the camera pass. It is performed
with the goal of decreasing the variance by choosing good sam-
ples as well as reducing the number of shadow ray computations
which would be required otherwise for sampling a larger pool of
vertices for attaining the same quality. Even though method shown
here handles fairly complex materials, the cost of evaluating ex-
tremely complex materials can become very high thereby increas-
ing the computation time. This can hence reduce the performance
gained in sorting the vertices for improved material coherence.

5 Conclusion

We presented a Coherent and Importance Sampled approach to per-
form LVC based BDPT efficiently on the GPU. Sorting provided
coherence to material evaluation and an improved sampling method
enhanced the rendering quality. Our work should inspire further im-
provements that will eventually place the GPU in the middle of a
production rendering pipeline in the near future. For future work
we would like to investigate out of core rendering of scenes with
complex materials using our method.

Acknowledgements: We would like to thank Jay-Artist for the
white room scene and other artists of the models used in the test
scenes. All the models were downloaded from the blendswap web-
site and are covered under the creative commons license.

Monkeybox Monkeybox

o 1 2 3 4 5 6 0 10000 20000 30000 40000 50000 60000
Iteration Runtime(ms)

-+~ LVC-BDPTmk CIS-LBDPT -+ LVC-BDPTmk CIS-LBDPT

Whiteroom Whiteroom
2 2
30 30
22 220
10 10
0 o
0 1 2 3 a s 6 0 40000 80000 120000 160000 200000
Iteration Runtime(ms)
-~ LVC-BDPTmK ——CIS-LBDPT -~ LVC-BDPTmK ——CIS-LBDPT
Bedroom Bedroom
2 2
30 30
20 20 -
2 H

10 10

0 1 2 3 4 B 6 0 40000 80000 120000 160000 200000
Iteration Runtime(ms)

-+~ LVC-BDPTmk ——CIS-LBDPT -+~ LVC-BDPTmk ——CIS-LBDPT

Table 2: Comparison of performance of LVC-BDPTmk and CIS-
LBDPT methods. The left and right side graphs indicate how the
RMSE values for the both methods decrease with increasing itera-
tions and time respectively.

References

BURKE, D., GHOSH, A., AND HEIDRICH, W. 2005. Bidirectional
importance sampling for direct illumination. In Proceedings
of the Sixteenth Eurographics Conference on Rendering Tech-
niques, Eurographics Association, EGSR ’05, 147-156.

DAVIDOVIC, T., KRIVANEK, J., HASAN, M., AND SLUSALLEK,
P. 2014. Progressive light transport simulation on the gpu: Sur-
vey and improvements. ACM Transactions on Graphics (TOG)
33,3, 29.

LAFORTUNE, E. P., AND WILLEMS, Y. D. 1993. Bi-directional
path tracing. In Proceedings of Third International Conference
of Computational Graphics and Visualization Techniques (Com-
puGraphics’ 93), 145-153.

LAINE, S., KARRAS, T., AND AILA, T. 2013. Megakernels con-
sidered harmful: Wavefront path tracing on gpus. In Proceedings
of the 5th High-Performance Graphics Conference, 137-143.

PAJOT, A., BARTHE, L., PAULIN, M., AND POULIN, P. 2011.
Combinatorial bidirectional path-tracing for efficient hybrid
cpu/gpu rendering. Computer Graphics Forum 30, 2, 315-324.

PHARR, M., AND HUMPHREYS, G. 2010. Physically Based
Rendering, Second Edition: From Theory To Implementation,
2nd ed.

VAN ANTWERPEN, D. 2011. Improving simd efficiency for parallel
monte carlo light transport on the gpu. In Proceedings of the
ACM SIGGRAPH Symposium on High Performance Graphics,
41-50.

VEACH, E. 1998. Robust Monte Carlo Methods for Light Transport
Simulation. PhD thesis, Stanford, CA, USA. AAI9837162.

