
Unsupervised Feature Learning for Optical Character
Recognition

Devendra K Sahu and C. V. Jawahar
Center for Visual Information Technology, IIIT Hyderabad, India.

Abstract—Most of the popular optical character recognition
(OCR) architectures use a set of handcrafted features and a
powerful classifier for isolated character classification. Success of
these methods often depend on the suitability of these features for
the language of interest. In recent years, whole word recognition
based on Recurrent Neural Networks (RNN) has gained popular-
ity. These methods use simple features such as raw pixel values
or profiles. Success of these methods depend on the learning
capabilities of these networks to encode the script and language
information. In this work, we investigate the possibility of learning
an appropriate set of features for designing OCR for a specific
language. We learn the language specific features from the data
with no supervision. This enables the seamless adaptation of the
architecture across languages. In this work, we learn features
using a stacked Restricted Boltzman Machines (RBM) and use it
with the RNN based recognition solution. We validate our method
on five different languages. In addition, these novel features also
result in better convergence rate of the RNNs.

Keywords—Word Prediction, OCR, RNN, Feature Learning.

I. INTRODUCTION
Learning appropriate representation for characterizing im-

ages have gained lots of attention in the recent years with deep
and rich representations [1, 2]. In this work, we investigate the
possibility of learning features for OCRs. We are especially
interested in the recognition solutions based on Recurrent
Neural Networks (RNN) which has emerged as the state of
the art for recognizing printed [3], handwritten [4] and natural
scene text [5]. This is especially relevant since the RNN based
recognition schemes have been using mostly simple features
such as profile representations. In this work, we learn a set
of features and demonstrate more than 50% reduction in error
rates for five different languages.

Conventional solutions to the OCR problem often demands a
set of handcrafted features based on the shape of the characters
and properties of the characters in the languages. Charac-
terizing the shape or appearance with the help of statistical
or structural features is very popular in literature. However,
engineering the appropriate set of features have remained as
more of an art than science. Handcrafting features for OCRs
is a script-dependent process, which can be tedious. On the
other hand, RNNs suffer from the burden of simplistic features.
RNNs are a multilayer architecture where each layer “abstracts”
out useful information from the previous layer. Thus, when
presented with simplistic features, extracting complex concepts
from them require the use of multiple layers. This leads to
two problems with their training. First, having multiple layers
increases the amount of data required to train RNNs, since
naturally more data is required to get better estimates of huge
number of parameters. Second, each iteration of the training is
longer since information has to be propagated through a bigger
network. In this work, we try to bridge these two different
attempts by learning a set of features that are compatible with

the word prediction architectures based on RNNs. To alleviate
problems with both these approaches, we explore creating a
representation that is not handcrafted but learnt from data.
Such an approach simultaneously increases the portability of
OCR architectures to multiple languages while reducing the
time required for training the word recognition engine.

We use Restricted Boltzman Machines (RBMs) for learning
features in an unsupervised manner. We start with a simple
representation and learn the language specific features by find-
ing the compact low-dimensional representation using RBMs.
We learn a hierarchical representation by stacking RBMs with
compressive architecture. The choice of RBM is supported by
its attractive properties. First, it is an unsupervised feature
learner and has an expressive representation. Second, it can
be trained efficiently using contrastive divergence [6, 7]. It is
also possibile to stack them so that they can learn hierarchical
organization of explanatory factors in the data. Stacked RBM
fits in our setting because we do not have well segmented la-
belled character windows for word prediction in OCR problem.

There have been many previous attempts in learning the
feature representations for OCRs. Use of Principal Component
Analysis (PCA) for creating a set of data specific basis vectors
is a well known technique in OCRs. PCAs are linear and do
not encode the nonlinear relationships in the data. RBMs, on
the other hand, have the inherent capability to capture the
nonlinear relationships. For the word prediction problem, an
alternative to RNNs have been Hidden Markov Models (HMM).
HMMs, which are popular for speech recognition had also
seen the benefits of feature learning in offline handwriting
recognition [8]. Chandra et al. [9] proposed a mixture model
K-RBM, to learn feature representations on image patches and
demonstrated its performance on object recognition.

In this work, we demonstrate our method on five different
languages: English, Marathi, Telugu, Kannada and Malayalam.
In all these cases, our feature learning method consistently
improves the accuracy over profile features [10] which is
a typical example of a hand crafted feature for the word
recognition. Other advantages include that the learnt features
will be of lower dimension and therefore are compact, efficient
and takes smaller training time. We also demonstrate that, this
results in faster convergence of RNN, which implies that the
learnt features are more appropriate for the problem of interest.

II. FEATURE LEARNING FOR WORD PREDICTION
We propose a framework for word prediction for printed

text where instead of using features like profile [10], we
give learned representations to the predictor. Our proposed
pipeline is a cascade of two models namely a stacked RBM
for learning representations followed by a RNN which is
used as a word predictor (Figure 1a). The aim is to give
compact, rich and expressive features to the word predictor

(a) Word prediction pipeline (b) Symbolic Pipeline

Fig. 1: Word Prediction Pipeline. (1a) Pictorial pipeline and
(1b) Symbolic pipeline. Input image Ĩi is converted to bina-
rized image Ii, which is converted into a sequence by running
a sliding window. Each vector in the sequence goes through a
non-linear transformation f = f2f1 using stacked RBM. These
encoded windows collected in transformed sequence Zi which
is then given to BLSTM predictor p which outputs string Yi.

which is learnt from the data in an unsupervised manner. Our
representations are fairly adaptable to change in languages
(shown in section III) which can have varying structural and
statistical properties in their symbol set. Stacked RBMs also
give compact and expressive representations because of being
multi-layered distributed representations [11].

We start with a printed text image with variable width across
samples. We first convert the image into sequential data by
extracting a sequence of windows from the image by a sliding
a window of fixed width and vectorize each window in that
sequence by stacking all the pixels. Here each window might
contain a partial, full or combination of multiple characters.
The dimensionality of this data is reduced using stacked
RBMs. Stacked RBM are unsupervised feature learners and
need no supervision while learning. This is important because
we do not have segmented characters. We also preferred an
unsupervised setting as labels for partial character windows
is difficult to obtain and are not unique. It also gives explicit
non-linear projections which is desirable due to that fact that
once learning is done we only need the learnt parameters to
describe the model unlike kernel projection methods. Once
parameters of RBM is learnt, we only need to do a matrix vector
multiplication followed by a non-linearity for each layer to
obtain our non-linear projection which can be done efficiently.

Let {Ĩi, Yi}Ni=1 be our dataset and image Ĩi lies in RH×Wi

where H is word image height common for all images and

Wi is the width of ith word image, Yi = {y1, y2, ..., yMi} be
the corresponding label which is a sequence of Mi unicode
characters. Let {Ii, Yi}Ni=1 be the set obtained by binarizing
all images {Ĩi}Ni=1. We represent Ii as a sequence Xi =
{x1, x2, ..., xLi

} of Li vectors lying in {0, 1}dv by running
a sliding window of dimensions wh × ww with a step size of
s and unrolling the windows obtained into a vector of length
dv = wh × ww. Here, wh is the height of the sliding window
and is equal to the image height H , ww is the width of the
sliding window and dv is the length of vectors in sequences
after unrolling the window into a vector.

A. Feature Learning using Stacked RBM
Let {Xi}Ni=1 be the unlabelled dataset used for training

stacked RBM and Xi be a vector sequence of ith printed
word image obtained by sliding a window over corresponding
Ii. Unsupervised feature learning in stacked RBM can be
seen as learning a non-linear projection f : x → z |
x ∈ {0, 1}dv , z ∈ Rdh . Therefore, we project our dataset
{Xi = {x1, x2, ..., xLi

}}Ni=1
f−→ {Zi = {z1, z2, ..., zLi

}}Ni=1
using the learned non-linear projection f . Here, Zi’s are
vector sequences where each vector in the sequence is a
learnt compact and expressive representation. In the following
paragraphs we focus on non-linear projection f using stacked
RBM and RBM is trained on a sampled subset from collection
of all vectors in all sequences Xi.

Now we briefly review Restricted Boltzman Machines
(RBM) which is the core component used in our feature
learning step. An RBM defines a distribution over (v,h) ∈
{0, 1}nv×nh , v being visible variables and h being hidden
variables. Here, v ∈ {0, 1}nv corresponds to each vector
xj | j ∈ {1, 2, ..., Li} in each sequence Xi and h ∈ {0, 1}nh

corresponds to learned representation from corresponding RBM
in stack. It can be observed in stacked RBM block in Figure 1a,
any two consecutive layers constitute an RBM, like (v,h1) and
(h1,h2) are two RBMs stacked to form a two layer stacked
RBM. Equation 1, 2, 3 and 4 describe the energy function,
probability distribution, and the conditional distribution of
random variables of one layer conditioned on the other and
vice versa respectively.

E(v,h) = −vTWh− bT v− cT h (1)

P (v,h) =
e−E(v,h)∑
v,h e

−E(v,h) (2)

P (hj = 1|v) = sigmoid(WT v + c)j (3)

P (vi = 1|h) = sigmoid(Wh + b)i (4)

Here W ∈ Rnv×nh nv , nh are number of visible and number
of hidden nodes respectively in the RBM. Wi,j is symmetric
weights between vi and hj . W , b, c are the parameters of the
model and needs to be learned from the data by maximizing
the log likelihood of the data with respect to parameters.
The learning can be efficiently done by contrastive divergence
(CD)[6]. Lets consider a two layer stacked RBM as shown in
stacked RBM block of Figure 1a, Here for first RBM, nv = dv
and nh = nh1

and for last RBM in stack nv = nh1
and

nh = dh.
Now we stack RBMs to build our projection f . We achieve

this by cascading a series of RBMs and learning a series of
latent intermediate representations, for example: x

f1−→ z1
f2−→

First layer Second layer Third layer Fourth layer

Fig. 2: Visualizing hidden layers in original image space using two methods of visualization, (First Row) Linear combination of
previous layers (Second Row) Sampling.

z2
f3−→ z in 3 layer stacked RBM. Here, f can be seen as cas-

cade of three projections f = f3f2f1 and each f1, f2, f3 can
be learned by an RBM which gives f some characteristics like
efficient, compact, non-linear and hierarchical representation
[2]. We learn the intermediate latent representation z1 using
our dataset {Xi}Ni=1 as input to RBM and the intermediate
projection of dataset {Xi}Ni=1 be {Z1i}Ni=1. We now get next
intermediate representation z2 by using {Z1i}Ni=1 as dataset
for next RBM in cascade and keep repeating this till we get
our final representation z. These representations can be used
to represent the whole dataset {Xi}Ni=1 as {Zi}Ni=1 which is
input to Recurrent Neural Network(RNN) as discussed below.

B. Recurrent Neural Network(RNN)
We obtain a dataset {Zi, Yi}Ni=1 from projecting {Xi, Yi}Ni=1

using stacked RBM as discussed earlier. Zi and Xi are cor-
responding vector sequences of dimensionality dh and dv
respectively, given sequence length remains same. We want
to learn a mapping p : Zi → Yi from the data {Zi, Yi}Ni=1.
The predictor p can be seen as a mapping which tries to map
each Zi

p−→ Yi. Our choice for this predictor p is Bidirectional
LSTM(BLSTM) which is a Recurrent Neural Network(RNN).

LSTM networks can remember long range context over
several timesteps in the sequence. The output layer of our
preferred network is Connectionist Temporal Classification
(CTC) layer[12] which allows the network to handle a sequence
of unsegmented features and perfectly match our requirement
i.e. we learn features on set acquired from sliding windows
which are not well segmented symbols. This enables us to
use segmentation free model. LSTM networks are also easily
trainable unlike general recurrent neural networks.

A BLSTM network contains two LSTM networks in which
one network takes input from beginning to the end while other
network takes the input from end to beginning. The activations
from both networks are then used to predict the final output
which is done using Connectionist Temporal Classification
(CTC)[12]. CTC layer directly outputs the probability distri-
bution over label sequences. The CTC objective function is
defined as the negative log probability of the network correctly
labelling the entire training set. Details for BLSTM and CTC
algorithm can be found in [4, 12]. The measure of performance
for word prediction is label error rate and sequence error rate.
Label error rate is ratio of sum of insertions, deletions and

substitutions relative to length of ground truth and sequence
error rate is the ratio of number of words misclassified to total
number of words.

C. Visualization
In Figure 2, we show qualitative interpretation of high level

features represented by stacked RBM. Here, the goal is to
visualize hidden nodes in arbitrary layer of a deep network
in image space. We use two visualization methods as also
discussed in [13], namely by sampling and linear combination
of previous units. These visualizations also help to appreciate
hierarchical representations from deep networks and help us
understand what models have learned. It is not surprising that
the visualization associated with hidden nodes in first hidden
layer are the weights itself but we want to visualize higher
layers, tools for which is described in [13]. We use two visu-
alization techniques, namely sampling and linear combination
of previous units as described below. Our observations also
suggest that sampling methods produce better visualization
than linear combination method for this application as shown
in Figure 2.

1) Linear combination of previous units: Simplest possible
way to visualize hidden units of stacked RBM is by linearly
combining of features of hidden units of previous layers. In
order to visualize nl hidden units of lth layer, we plot feature
maps formed by F = W1W2 · · ·Wl ∈ Rdv×nl where each
column of F can be formed into wh×ww feature maps to be
visualized. First row in Figure 2 shows visualizaton of hidden
units of different layers. This method is simple but looses non-
linearly and is inferior to other alternatives to visualization as
mentioned in [13].

2) Sampling: RBMs can be stacked to form a Deep Belief
Network (DBN), as these models are associated with generative
process, we can use visualization to get an insight as to what
individual hidden units represent in image space. In order
to visualize higher layers, consider a DBN with j layers. In
particular, layers j − 1 and j form an RBM from which we
can sample using block Gibbs sampling, which successively
samples from P (hj−1 | hj) and P (hj | hj−1). Here, the
conditionals are same as Equations 3 and 4 with v replaced
with hj−1 . hj is binary vector of units from layer j. In order
to visualise the hidden node hij , we clamp this unit to 1 and
perform gibbs sampling for layer j and j−1. Then we perform

TABLE I: Comparison of RBM and Profile features of OCR
Corpus for RBM(160-90) & BLSTM(50-50-50). The numbers
indicate number of hidden nodes in each layer.

Languages LabelError(%)
Profile

LabelError(%)
RBM

SeqError(%)
Profile

SeqError(%)
RBM

English 0.84 0.22 2.84 0.65
Kannada 4.82 2.82 18.23 10.81
Malayalam 1.38 0.66 9.11 3.78
Marathi 3.79 1.43 13.40 5.68
Telugu 5.78 2.27 22.67 10.02

ancestral top down sampling in DBN from layer j− 1 to input
layer. This produces a distribution pj(v | hij = 1) which
is used to characterize hij . Here, pj(v | hij = 1) is the
distribution over random variable v when ith hidden unit in
layer j is clamped to 1. This can be done by either by sampling
from this distribution or by summarizing the information by
computing the expectation E[v | hij = 1]. Second row in
Figure 2 shows visualization of hidden nodes for each layer
using sampling method. We can observe that as we move from
layer 1 toward layer 4 the visualization are more abstract and
each node has more sense of the structure in the data. We
can also observe in Figure 2 second row fourth layer, the
visualization looks like parts of characters of english. We can
see the higher layers has more sense of global structure of
data.

D. Discussions
Given a dataset {Xi, Yi}Ni=1 where Xi is the input sequence

and Yi is the ground truth output string. We are trying to
achieve the mapping m = pf : Xi

f−→ Zi
p−→ Yi by

learning intermediate compact representation Zi in hope that it
would give compact and expressive representation to sequence
predictor p. The mapping m = pf can be seen as getting the
output word prediction by transforming to multiple interme-
diate representations in hope that the feature presented to the
predictor p would be compact, expressive and hierarchical in
representation. We can also interpret learning f as learning a
non-linear operator {f : x → z | x ∈ {0, 1}dv , z ∈ Rdh}
through a combination of series of non-linear operators {f =
f3f2f1 : x → z1 → z2 → z}, each f1, f2, f3 can be learned
by an RBM which gives f some characteristics like efficient,
compact, non-linear and hierarchical representation [2].

III. EXPERIMENTS & DISCUSSION
A. Dataset and Implementation Details

We choose five languages for comparison, namely English
Kannada, Malayalam, Marathi and Telugu with 295K, 171K,
65K, 135K and 137K samples respectively. Four Indian lan-
guages namely Kannada, Malayalam, Marathi and Telugu are
taken from OCR corpus [14] and English is taken from nine
books of our internal dataset.

All images are binarized using otsu thresholding. We resize
all word images to a height H = wh = 30 pixels while
maintaining the aspect ratio. We extract sequence of vectors
for each word image by running a sliding window of width
ww = 10 pixels and step s = 3 pixels and unrolling it into
a vector. BLSTM classifier has a constraint that number of
windows in an image should be greater than ground truth
sequence length and our chosen window width and step
size does satisfy this for all languages. Then we perform
unsupervised feature learning using a stacked RBM. We use

TABLE II: Measure of statistical significance of performance
gain using paired t-test.

Languages Mean
Performance

Gain(%)

Standard
Deviation(%)

t statistics p value

English 0.75 0.0603 25.05 1.39e−04
Kannada 2.62 0.4340 12.08 1.20e−03
Malayalam 0.80 0.1433 11.16 1.50e−03
Marathi 2.98 0.5289 11.27 1.50e−03
Telugu 3.28 0.4542 14.45 7.17e−04

around 200K windows for each language to train stacked RBM.
All the vector sequences are encoded with stacked RBM and a
BLSTM model is learned on these encoded vector sequences.
Learning rate and momentum for RBM was set to 0.1 and 0.9
respectively. For BLSTM, learning rate and momentum was set
to 0.0001 and 0.9 respectively. For fair comparison between
profile features and RBM features, everything is kept fixed
which includes word image height, windows size, step size
for sliding window, BLSTM architecture. We tuned the hyper-
parameters by measuring performance on validation set. In our
experience momentum value of 0.9 or 0.95 works well for
many different applications but training is very dependent on
learning rate.

B. Results
The main purpose of presentation is comparison between

hand engineered profile features[10] and features learned from
data using stacked RBM. We show that features learned by
using stacked RBM are compact, expressive and performs
better than profile feature[10] for many languages. For all
experiments we perform validation by three way data split,
60% for training, 20% for validation and 20% for testing.
Figure 2 shows visualization of feature maps learned at first
four layers. Each feature map is associated with a hidden
unit. We visualize the higher layer as linear combination of
feature maps of previous layers or by sampling particles in
visible space given a specific hidden nodes being activated
in a DBN. We observe that the learnt feature maps look like
region detectors to partial alphabets in English language as we
move from first layer towards fourth layer. Also all windows
in data can be represented by a cascade of linear combination
of feature maps followed by non-linearity.

We performed statistical testing of performance gain using
paired t-test. We set our critical value(significance level) α =
0.05. For each language we create experiments by randomly
sampling 1.0, 0.9, 0.8 and 0.6 of training population ratio and
perform paired t-test on these generated populations. Table II
shows mean performance gain, standard deviation, t-statistic
and p-value for each language. p-value is less than α for all
languages. Hence, stacked RBMs give statistically significant
performance gain as compared to profile features.

Table I shows comparison of profile features[10] and stacked
RBM features. We can clearly notice that RBM performs sig-
nificantly better than profile features[10] in all five languages
with respect to label error rate and sequence error rate. Table
III shows the distribution of label errors into four bins. We can
see that performance of stacked RBM features is much better
as compared to profile features and it makes very few label
error even in bin 1-2 with respect to profile features which
shows that the learned representations as expressive. The data
in bar graph is composed of four languages.

0 10 20 30 40 50 60 70
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of Epochs

E
rr

o
r

Label Error RBM
Label Error Profile
Seq Error RBM
Seq Error Profile

(a) Kannada

0 10 20 30 40 50 60
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of Epochs

E
rr

o
r

Label Error RBM
Label Error Profile
Seq Error RBM
Seq Error Profile

(b) Malayalam

0 5 10 15 20 25 30 35 40 45
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of Epochs

E
rr

o
r

Label Error RBM
Label Error Profile
Seq Error RBM
Seq Error Profile

(c) Marathi

0 10 20 30 40 50 60
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of Epochs

E
rr

o
r

Label Error RBM
Label Error Profile
Seq Error RBM
Seq Error Profile

(d) Telugu

Fig. 3: Error convergence comparison of RBM (160-90) vs Profile feature for different languages. This figure demonstrates that
stacked RBM features makes learning stage of BLSTM predictor converge faster in comparison to profile features. So stacked
RBM features show better convergence rates.

TABLE III: Number of Sequences v/s Edit Distance. The
table shows a comparison of number of sequences having edit
distance in specific bin. We can see lower errors for RBM.

Edit Distance 1-2 3-4 5-6 7-10
Profile[10] 46299 4535 1264 1001
RBM 18402 1867 695 725

The convergence comparison is done in Figure 3 which
highlights that with respect to number of epochs stacked
RBM features show better convergence rates compared to
profile features. Stacked RBM supports the BLSTM network
in converging faster in comparison to profile features and can
be observed in Figure 3.

C. Discussions
Stacked RBMs are feature learners which disentangle hidden

factors of variations. For example, for natural scenes first layer
can learn edge detectors, next layer can learn composition of
features learnt from previous layers i.e. next layer can learn
corner detectors. We can observe in second row of Figure 2 that
features learnt at fourth layer look like partial characters of En-
glish. Also input image can be reconstructed by combination of
those feature maps. Therefore, as we visualize higher layers we
reach toward more abstract concepts like moving from pixels
to small regions. Another advantage of using stacked RBM with
bottleneck architecture is that it reduces the dimensionality of
input and can speed up computation compare to raw features.
We can also see that even if dimensionality of stacked RBM
features have increased compared to profile features. This
could be compensated to some extent by faster convergence
rates and better performance but time taken per epoch is higher
than profile features which is not surprising as profile features
have much lower dimension. We also observe that with same
architecture our proposed method performs better than RAW
features for english but further experimentation is required for
other languages.

IV. CONCLUSION
We proposed a framework for word prediction for printed

text where learned feature representation are obtained by
stacked RBM and a sequence predictor BLSTM. The framework
is segmentation free and does not depend on hand engineered
features. We investigate the expressiveness of the stacked RBM
features which were learned in an unsupervised fashion. We
demonstrate better results compared to hand engineered profile

features which had worked well in similar settings in past.
Stacked RBM features were expressive across many languages
which has variation in structural and statistical properties of
symbols. Our experiments show that stacked RBMs can learn
feature representations from data and perform better than
profile features in generic settings. It also have better empirical
convergence rates. Unsupervised feature learning is applicable
to script identification and script specific learning problems.

REFERENCES
[1] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet

classification with deep convolutional neural networks,” in NIPS,
2012.

[2] Y. Bengio, A. C. Courville, and P. Vincent, “Representa-
tion learning: A review and new perspectives,” CoRR, vol.
abs/1206.5538, 2012.

[3] T. Breuel, A. Ul-Hasan, M. Al-Azawi, and F. Shafait, “High-
performance ocr for printed english and fraktur using lstm
networks,” in ICDAR, 2013.

[4] A. Graves, M. Liwicki, S. Fernandez, R. Bertolami, H. Bunke,
and J. Schmidhuber, “A Novel Connectionist System for Uncon-
strained Handwriting Recognition,” IEEE Trans. Pattern Anal.
Mach. Intell., 2009.

[5] B. Su and S. Lu, “Accurate scene text recognition based on
recurrent neural networks,” in ACCV, 2014.

[6] G. E. Hinton, “Training products of experts by minimizing
contrastive divergence,” Neural Comput., vol. 14, no. 8, pp.
1771–1800, Aug. 2002.

[7] T. Tieleman, “Training Restricted Boltzmann Machines using
Approximations to the Likelihood Gradient,” in ICML, 2008.

[8] Y. N. Hammerla, T. Plotz, S. Vajda, and G. A. Fink, “Towards
feature learning for hmm-based offline handwriting recognition,”
in International Workshop on Frontiers in Arabic Handwriting
Recognition, 2010.

[9] S. Chandra, S. Kumar, and C. V. Jawahar, “Learning multiple
non-linear sub-spaces using k-rbms,” in CVPR, 2013.

[10] P. Krishnan, N. Sankaran, A. K. Singh, and C. V. Jawahar,
“Towards a robust ocr system for indic scripts,” in DAS, 2014,
2014.

[11] Y. Bengio, “Learning deep architectures for ai,” Foundations
and Trends in Machine Learning, vol. 2, 2009.

[12] A. Graves, S. Fernández, F. Gomez, and J. Schmidhuber,
“Connectionist temporal classification: Labelling unsegmented
sequence data with recurrent neural networks,” in ICML, 2006.

[13] D. Erhan, Y. Bengio, A. Courville, and P. Vincent, “Visualizing
higher-layer features of a deep network,” University of Montreal,
Tech. Rep. 1341, Jun. 2009.

[14] C. V. Jawahar and A. Kumar, “Content-level Annotation of
Large Collection of Printed Document Images,” in ICDAR,
2007.

