Learning Clustered Sub-spaces for Sketch-based Image Retrieval
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Abstract

Most of the traditional sketch-based image retrieval sys-
tems compare sketches and images using morphological
features. Since these features belong to two different modal-
ities, they are compared either by reducing the image to a
sparse sketch like form or by transforming the sketches to
a denser image like representation. However, this cross-
modal transformation leads to information loss or adds un-
desirable noise to the system. We propose a method, in
which, instead of comparing the two modalities directly, a
cross-modal correspondence is established between the im-
ages and sketches. Using an extended version of Canoni-
cal Correlation Analysis (CCA), the samples are projected
onto a lower dimensional subspace, where the images and
sketches of the same class are maximally correlated. We test
the efficiency of our method on images from Caltech, PAS-
CAL and sketches from TU-BERLIN dataset. Our results
show significant improvement in retrieval performance with
the cross-modal correspondence.

1. Introduction

Facebook, Instagram and Flickr recently announced in press
reports that users upload and share 350M, 40M, 1.83M im-
ages daily to their servers, respectively. Organizing and re-
trieving this humongous amount of image data is a challeng-
ing task but unlike document retrieval, content based image
retrieval (CBIR) still dwells at an infantile stage in terms
of both usability and performance, which makes it an active
and interesting area of research.

Existing CBIR systems can be broadly categorized into
three divisions: text-based, example-based and sketch-
based. In text-based query image search, similar keywords
from meta data space (tags and annotations) associated with
images are searched. But the meta data is generally not reli-
able as it may not represent the actual content in the image
or it could be misleading. Apart from that, pertaining to per-
ceptual variability, different users may use entirely different
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queries to search for the same images which require NLP
techniques for correct interpretation. On the other hand, in
case of the query by example paradigm, example images are
not always available at hand, in fact their absence being the
reason for a search. Sketch-based interfaces can be effec-
tively used in such scenarios.

For example, as shown in Figure 1, if a user needs to search
for the image of a car from the front-view , a sketch as in
Figure 1(a) could be a very convenient way to frame the
query. Unlike text, it is more intuitive to the user and con-
tains information regarding the shape, position and orienta-
tion of the object, concisely. With all the information em-
bedded in the query itself, images like in Figure 1(b) are
more likely to appear as results. On the other hand, “car”
as a text-query might retrieve random diverse images of cars
and their associated entities, as shown in Figure 1(c).

A problem with Sketch Based Image Retrieval (SBIR) is
that existing approaches rely on edge and shape based sim-
ilarity between sketches and images. But this fundamental
assumption about the similarity between these two modal-
ities is often violated since most humans are not faithful
artists. Instead, people use shared, iconic representations
of objects (e.g., stick figures for humans) or they make
dramatic simplifications or exaggerations (e.g. pronounced
ears on rabbits). According to Li et al. [12], a simple sketch
is a high level sparse representation of the object/scene
being searched for. Yong er al. [20] found that because
of this sparsity, when a sketch is presented as a query to
Clarifi [21], cartoon images, which resemble the sketches
markedly, are retrieved. So, instead of a direct comparison,
in this work we try to learn a cross-modal correspondence
between the two modalities. To retrieve an image based on
a sketch, our algorithm tries to understand the sketch and
the image independently and then compare them using the
learned correspondence.

Our contribution in this paper lies in modelling the corre-
spondence between the images and sketches belonging to
the same category using a modified version of Canonical
Correlation Analysis (CCA). CCA operates on two vector
spaces and maps both of them to a lower dimensional sub-
space such that the correlation between them is maximized.



(a)

Figure 1. (a) A sketch of a car from a front-view (b) Search results which are more accurate to the query in terms of Orientation, Shape and
View. (c)Image Search results based on a text query ”Cars”. Note the variety of related entities to cars that appear as results.

We use Cluster-CCA, which is a modified version of the
standard CCA, to create a class wise correspondence be-
tween the two modalities instead of a point to point corre-
spondence as in standard CCA.

Our work is inspired from and spans across multiple do-
mains. It is closely associated with object and sketch classi-
fication, both of which are two classical problems in Com-
puter Vision and one finds a plethora of sophisticated tech-
niques for each of these tasks. We pose this problem as a
cross-domain retrieval task which is a comparatively lesser
explored domain.

Traditional techniques like SIFT [14] and HOG [2] and
Fisher vectors [15] perform well for image classification
tasks. Convolutional Neural Networks also have been
around for a while, being first introduced by Lecun et
al. [11]in 1989, but have recently become popular with the
success achieved by Krizhevsky et al. [10]

On the other hand, in the last two decades, sketch recog-
nition has been mainly limited to understanding gestures,
mathematical symbols, alphabets and digits [18, 7] . A
more generic sketch recognition framework was proposed
by Eitz et al. [3], where they extracted SIFT-like features
from sketches. Cao et al. [1] used a symmetry aware flip
invariant descriptor. Li ez al. [13, 12] suggested similar so-
lutions using star-graphs and multi-kernel feature learning.
Rosalia ef al. [17] encoded sketches as Fisher vectors which
performed well. Recently, Yang et al. [20] designed a Deep
Neural Network architecture on sketches.

Cross-modal retrieval has been an active area for research
for quite sometime. CCA was introduced by Hotelling et
al. [9] to find relation between two sets of variates. Rasiwa-
sia et al. [16], modified the standard version of CCA which
finds point-to-point correspondence across two modalities,
and proposed Cluster-CCA, which finds cluster to cluster
correspondence.

2. Proposed Approch

In this section, we formulate our problem as a cross-
modal retrieval task . In Section 2.1, we state the problem
formally. In Section 2.2, we briefly explain CCA and it’s
modified version Cluster-CCA.

2.1. Canonical Correlation Analysis (CCA)

In cross-modal retrieval systems, the query space and the
search space are disjoint. In our problem, given a set of im-
ages, [ ={I{ ..., I} ,I?,...,I2 ......... I . IS Y,
where 7 is ¢'" sample belonging to category p,
where there are C' categories and each category con-
tains ni,n9,...,nc samples, respectively. Simi-
larly, we have a set of hand-drawn sketches, hav-
ing the identical number of object categories, S =
{S%,...,S#I,Sf,...,wa ......... Sf...,sgc}. We
would like to find a correspondence between the two sets
I and S, and project each of them into a different subspace,
such that, they are mapped closely. To achieve this we
choose CCA [8], which, given two sets A, and A,, tries
to find two projection matrices W, € R, and W, € R,
such that the correlation between P, = (W,, A;) and
P, = (W,, A,) is maximized. Mathematically,

= P, P,
p=Joax corr(Py, Py)

= max 7<P$’Py> €))

Wo, Wy || P[] By |
where p is the maximum canonical correlation coefficient.

However, this standard form of CCA finds a point to
point correspondence between two sets agnostic to class
differences and hence not applicable in our case. Instead,
we use a modified version, Cluster-CCA [16], which
establishes a one to one correspondence between all pairs
of data points in a given class. We explain it in detail in
Section 2.2.

2.2. Cluster-CCA

Rasiwasia et al. [16] introduced and used Cluster-CCA
for cross-modal retrieval tasks with image and text as two
modalities. As derived in [8], Equation 1, reduces to the
following form
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and the covariance matrix of (A,, A,) given by:
Covgy
Covy,
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where Cov,, and Cov,, are intra-set covariance matrices
and C'ovy,, is the inter-set covariance matrix. But as we pre-
viously mentioned in Section 2.1, sets I and S do not have
a direct correspondence to each other. Instead we would re-
quire a one-to-one correspondence between all pairs of data
points in a given class across the two sets I and .S. Thus for

categorical data, Equation 2 can be modified to the follow-
ing form,
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where the new covariance matrices are defined as follows,
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where M = Zle |T¢]|.5¢], is the total number of pairwise
correspondences across C classes. Hereafter, the optimiza-
tion problem in Equation 4 can be formulated and solved as
an eigen value problem as in [8].

To summarize, in this section we explained, how a mod-

ified version of the standard CCA can be used to create a
one-to-one correspondence between samples belonging to
the same category but to two different modalities, image
and sketch. We projected each modality, having different di-
mensions, into two lower dimensional subspaces, such that
they are maximally correlated.
Please note that this method is different from other state-of-
the-art dimensionality reduction techniques like PCA and
LDA. Apart from finding basis vectors along the most vari-
ant directions, it operates jointly on both of them. It en-
hances the association between the sets by projecting them
into the new sub spaces.

3. Experiments

In this section, we quantitatively evaluate the perfor-
mance of our proposed approach. We use three datasets,
PASCAL VOC 2007 [4] and CALTECH-256 [5] for images
and TU-BERLIN [3] dataset for sketches. We divide the
TU-BERLIN dataset into training and testing sets and use

the training set to create the correspondence with images.
As already discussed, CCA projects the sketches and im-
ages to two new subspaces, having same dimensions. Once
we get W and Wy as explained in the previous section,
we can project any query from the test set of TU-BERLIN
dataset to the new subspace Pg and retrieve k-nearest neigh-
bours from Py, as illustrated in Figure 2. We use PR curves
and M AP values as quantitative measures.

3.1. Datasets

TU-BERLIN is a well known benchmark dataset for evaluat-
ing sketch recognition systems with 250 object categories,
each containing 80 sketches. This dataset was annotated
by humans with an accuracy of 73%. The best recognition
accuracies reported till date is 72.2% by Yang er al. [20]
and 68% by Rosalia et al. [17]. PASCAL VOC 2007 dataset
contains 5011 training images and 4952 test images divided
into 20 classes with some images containing multiple la-
bels and serving as text annotations. In our experiments,
we have used the entire dataset except class sofa, for which
there was no corresponding sketch category in TU-BERLIN
dataset. CALTECH 256 dataset consists of 256 classes con-
taining 30, 607 images. However, some categories in this
dataset did not belong to the TU-BERLIN dataset and vice
versa. Hence, we selected a subset of this dataset, which
contained 105 classes, containing 14, 231 images.

3.2. Features

Given an image [ and a sketch .S, it is imperative to obtain
suitable features which can be used downstream for Cluster-
CCA. The rationale behind choosing the features was the
assumption that the features which performed well in clas-
sification tasks could also perform well in our case. Hence
we tried some state of the art features which perform well
in recognition and classification. We experiment with local
SIFT features, global HOG features, as well as Fisher vec-
tors and features obtained from convolutional networks. We
list the set of features used in our experiments in Table 1.
The features are available for download and can be found
online on our website”
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Table 1 : Summary of Features

Feature Dimension Source
CALTECH - SIFT 1000 Vl-Feat. [19]
CALTECH - HOG 20000 Vl-Feat [19]
CALTECH - CNN 4096 Krizhevsky et al. [10]

PASCAL - SIFT 1000 Guillaumin et al. in [6]
PASCAL - HOG 20000 Vl-Feat [19]
PASCAL - CNN 4096 Krizhevsky et al. [10]
TU-BERLIN - SIFT-Like 501 Eitz et al. in [3]
TU-BERLIN - HOG 20000 Vl-Feat [19]
TU-BERLIN - Fisher 250000 Rosalia et al. [17]
TU-BERLIN - CNN 4096 Yang et al. [20]
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Figure 2. Proposed pipeline : It involves two stages. (a) In the training stage inputs from two modalities are provided to the system. Features
are extracted from both the sketches and images and passed to the Cluster-CCA module which projects the inputs onto a lower subspace
in such a way that they are maximally correlated. It returns the projection matrices Ws and W7r. (b) In the testing phase, the projection
matrices W and W7y, transform a new input sketch and the database of images onto the lower dimensional maximally correlated subspace.

Finally, a K-NN search is performed and the top-k results are retrieved.

Table 2: Mean Average Precision (MAP) for Image-Sketch feature combinations

Dataset | SIFT-SIFT | SIFT-HOG | SIFT-Fisher | HOG-SIFT | HOG-HOG | HOG-Fisher | CNN-CNN
Caltech 0.06 0.03 0.20 0.14 0.02 0.01 0.20
Pascal 0.13 0.12 0.05 0.18 0.09 0.06 0.06

3.3. Results

Mean Average Precision (MAP): Table 2 shows the

MAP values for all the feature combinations.

It can be

Table 3: Performance improvement in mAP values

Dataset Features Before CCA | After CCA
Caltech | SIFT-Fisher 0.01 0.20
Caltech | CNN-CNN 0.01 0.20
Pascal | HOG-SIFT 0.01 0.18
Pascal SIFT-SIFT 0.06 0.13

seen that in case of Caltech dataset, the SIFT features give
best results. On the other hand HOG features perform better
with PASCAL. Such results can be attributed to the fact that
the images in Caltech are of single objects. Dense SIFT fea-
tures are known to be very good descriptors for single object
classification. However, in case of PASCAL, the images are
much more complicated and consist of multiple labels. The
images are of scenes rather than of single objects. HOG
descriptors capture the global information better than the
other features. Hence they perform better on the PASCAL
dataset. However, the performance of the sketch-features
was not very consistent across these two datasets, but we be-
lieve more sophisticated feature learning techniques could
alleviate this problem.

In order to validate the impact of Cluster-CCA , we com-
pared the performance of the best four feature combina-
tions, with and without doing Cluster-CCA. The effective-
ness of our method can be observed from Table 3 where the
performance of all the feature combinations significantly
improve.

Precision Recall: The PR curves in Figure 3 are suggestive

of the greater complexity of the PASCAL dataset in com-
parison with Caltech. The poor PR curves indicate that the
correspondence doesn’t work well with complex images. In
Figure 4, we provide results from two example queries for
airplane and backpack.
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(a) Airplane
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Figure 4. (a) Success : We observe that airplanes of various shapes and orientations are retrieved which shows that our model learns about
objects instead of doing a simple shape based comparison. Interestingly, the last image, which is of a camel, resembles an airplane because
of the background. (b) Failure : We observe that it was able to retrieve two backpacks and other random objects. However, a closer look
reveals structural similarity between the results, and explains the cause of the failure.

4. Conclusion

In this paper we have proposed a system which performs
cross-modal image retrieval, where the query is given in the
form of a sketch. We try different state-of-the-art feature
combinations for sketches and images and compare the re-
sults in an exhaustive manner. Our method learns a projec-
tion from a higher dimensional subspace to a lower one us-
ing a modified version of Canonical Correlation Analysis.
We show that the mAP values increase significantly after
the features are correlated using CCA.

Our approach is limited by the fact that it is trained on single
objects. In real world scenarios, we look for a scene or a col-
lection of objects. An efficient SBIR system should be able
to capture the semantics of a sketch and encode the same
in the query. Moreover in our experiments we found that
Cluster-CCA cannot be generalized to unknown objects.
However, to the best of our knowledge, our proposed system
is the only one till date which deals with sketches coming
from a wide range of classes. Most of the existing SBIR sys-
tems, uses edge and color based features from sketches and
then match them directly with the features extracted from
images. In our approach, we have used a very simple query
format, where each sketch is a single channel sparse image.
Then, instead of a direct comparison, we learn lower dimen-
sional subspace where associated points are much closer to
each other than in the original space.

This is an interesting problem and there are a lot of ar-
eas which can be explored in future. One such imme-
diate direction might be extending this idea to complex
scenes. Another interesting area might be finding repre-
sentations which are generic enough to retrieve unknown
classes.
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