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PATH PLANNING FOR VISUAL
SERVOING AND NAVIGATION USING
CONVEX OPTIMIZATION
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Abstract

Exploiting visual cues to control systems for robotic applications
is a promising idea. Practically, they are usable only if the end
result accedes to the restrictions of the specific environment. These
restrictions are like the limited field of view of the camera and
physical constraints of the workspace of the robot. Hence, there is
a need for a general framework that can be used adaptively across
various environments. We develop such an algorithmic framework
that is flexible to accommodate various kinds of constraints and
generate a solution that is optimal in the sense of the considered
error measure. We perform a constrained optimization on the
error in a convex domain considering all the necessary constraints
using convex optimization techniques and further extend it to non-
convex domains. We utilize branch-and-bound algorithm to divide
the problem of optimizing over a range of rotations into simpler
problems and solve for the optimal rotation. We demonstrate the
performance of the algorithm by generating control signals in a
simulated framework for visual servoing and in a real-world for robot

navigation.
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1. Introduction

Vision-based control for robotics draws inferences from
visual cues in the environment to generate appropriate
control signals for robot motion [1]. The goal is to gener-
ate control signals while taking into consideration various
possible restrictions or constraints that are introduced by
the environment. Restrictions could be in the form of
mechanical constraints of the robot, physical constraints
by various obstacles in the workspace, limitations of the
sensor like the field of view of the camera, limitations of
the designed control algorithm like local minima problem
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or view planning for active reconstruction. The solution
to this problem is visual path planning strategy [2]. This
solution is a path that satisfies all the necessary conditions
instead of designing the control algorithm [3], [4]. This
path is the optimal path with respect to the given restric-
tions and objectives. This paper aims at achieving this
goal of finding the optimal path through the constrained
region using convex optimization techniques.

Recently, Kazemi et al. proposed in [3], [5] a planner
that explores the camera state space (i.e., a space of
camera poses and velocities) for permissible trajectories
by iteratively extending a search tree in this space and
simultaneously tracking these trajectories in the robot con-
figuration space (i.e., joint space). The planned camera
trajectories are then projected into the image space to ob-
tain desired feature trajectories. Searching for global path
planning methods that satisfy the given constraints of the
sensor, robot and environment has recently motivated the
utilization of convex optimization in visual path planning
methods.

Optimization techniques aimed at finding the optimal
path with respect to various cost functions and constraints
such as distance from the image boundary, straightness
and length of the camera/robot path and smoothness of
the path and energy [2]. Most of them are not suitable for
real-time path planning and do support the representation
of only a few constraints [6]. Moreover, most optimization
techniques are local that lead to incomplete path [4]. The
most common path planning optimization method is the
projected gradient (potential field method) [6]. It suffers
from the local minima problem when the repulsive and
attractive filed are equals. In contrast, our method is
formulated as a convex optimization problem. Hence,
it ensures the globality of the solution and supports the
representation of unlimited number of constraints as well.

The initial attempt to the visual motion planning as
a convex optimization problem is presented in [7], [8].
However, these methods return a path that satisfies a few
constraints such as joint limits and workspace but not
necessarily the shortest possible one. In this paper, we
use convex optimization to plan the path that ensures
the global optimality, i.e., the shortest possible path for
which various constraints are met. We build further on [7],



which attempted to perform path planning as a convex
optimization process where the whole path was planned by
optimizing in the translation space.

Convex optimization [9], most importantly, does not
have the pitfall of local minima assuring that the achieved
solution always happens to be the most optimal. The
advantages of optimality and efficiency make the convex
optimization highly preferable when compared to the tradi-
tional methods of modelling and optimization. Application
of convex optimization for computer vision has been exten-
sively explored and surveyed in [10]. A wide variety of vi-
sion problems have been reformulated as convex optimiza-
tion problems and solved efficiently [11], [12]. In this work,
we follow the approach of [11], [12] in using the branch-and-
bound algorithm to search in solution space for the most
appropriate rotation within a tolerance limit. Optimality of
the solution is also guaranteed following the proof from [11],
[12] (also see [9]). The proof is outlined in Section 3.

The contribution of this paper is a convex
optimization-based visual path planning algorithm that
produces an optimal camera and image trajectory sub-
ject to sets of visibility and workspace constraints with
application to robot visual navigation and control. The
translational part of the camera pose is optimized by
directly solving a convex optimization problem. The
rotational part is optimized by solving a set of convex
feasibility problems with the help of a branch-and-bound
search algorithm running over the rotation space. In this
work, (i) we show a general framework for path planning
involving multiple constraints, both in the image space
and physical workspace, (ii) we specifically extend the
work of [7] to optimize for poses along the path over the
set of rotations and (iii) we evaluate and demonstrate our
proposed method on visual servoing and robot navigation
tasks with camera visibility constraints.

2. Problem Formulation and Modelling

Path planning comprises the computation of the interme-
diate poses between the initial and desired poses. Each
of these intermediate camera poses is calculated by an op-
timization process subject to necessary constraints. The
end result should be a path through the constrained region
from the initial to the destination pose that is optimal
in the sense of considered error measure. Figure 1 de-
picts the planning strategy followed in this paper, which is
mathematically formulated below.

Let the points in the feature set to be used as cues
be denoted by M, which are tracked along the path by
the camera. The camera pose vector X; describes both
the position and the orientation of the camera. The
pose vector X;=(r; ;)T is a 6 x 1 vector where t;3x1)
gives the translation and r;3x1) = (ay, Bi,v:)T gives the
rotation, with « being roll, 8 being pitch and ~ being
yaw of the camera. Let the initial camera frame be Fj
and the destination camera frame F, and F; any arbitrary
intermediate camera frame on the path of the camera.

We aim at constructing a path, which is in the form of
a sequence of camera poses

L=1{X]i=1,..,C-1) (1)

Object

Figure 1. An illustration of the path planning process. M
is a set of points belonging to the target object. The
frame F; is the frame attached to the camera at arbitrary
intermediate pose X; that belongs to the path £ between
frames Fy and F.

such that it is optimal in the sense of the given error
measure, while satisfying the given constraints. Beginning
with Fy over various iterations F; it should gradually
converge to F,. Along with the initial and destination
poses the path consists of C' + 1 steps.

2.1 Trajectory in the Cartesian Space

Let E:{Xi}ggfl) describe a trajectory or an ordered
sequence of (C' — 1) intermediate camera poses X; in the
3D Cartesian space. In each iteration the camera moves
towards its destination pose in terms of its translation and
rotation parameters. Each camera frame F; is defined by
transformation [R;,t;], where ¢; is the translation vector
and R; is rotation matrix (computed from roll, pitch and
vaw (g, B, i) angles of the camera) with respect to a
reference frame F'. The resulting path £ made by putting
together the result of each iteration should minimize an
error measure.

Consider the shortest possible path between the initial
and destination poses. The shortest possible path would
obviously be a straight line path Lg={X"= (7 r?) |
i=1,...,C — 1} between the two poses. The iterative
process that generates intermediate poses for the straight
line path Lg can be given by a simple linear equation

X8 —x8

S _ S * i—1
Xi _Xi_1+77||XS—stlH’ 7720 (2)

* 11—

However, the straight line path is not always acceptable
due to various constraints as described in Section 2.3.
Figure 2(a) shows a straight line path from an initial to
a destination pose generated by (2), and Fig. 2(b) shows
the corresponding image trajectory where feature points
leave the camera field of view, which is not acceptable for
various applications such as robot localization. As in this
case if the straight line path does not fall completely in
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Figure 2. The unconstrained path: (a) a straight line path and (b) the corresponding image trajectory.

the constrained region, an alternative path needs to be
planned by minimizing an error function.

For this paper we consider the deviation in the trans-
lation space from the straight line path between the initial
and destination poses as the error function. However, any
meaningful convex function might be used in this frame-
work for a measure of error in the general case.

2.2 Trajectory in the Image Space

The image trajectory is defined at each intermediate pose
X; by the image projections {m} = [p’, qu'_]T};V:1_ These are
the perspective projections of the N different 3D points
{M; = [Xj,Yj,Zj]T};.V:l in the object frame to the image
at the pose X;. The projection to the image space is done
using a perspective camera model with internal parameters
IC as follows:

m}; = KT}, M,

where the transformation 77 is defined by the rotation
R, and translation ¢, between the object frame F, and
the current camera one F;. In our algorithm, the current
transformation T7 is a function of the current planned pose
X; of the camera with respect to the reference frame.

The trajectory in the image space is given by the
sequence {sl |i=1,...,C— 1}. Each s* is the feature
2N-vector, i.e.,

However, it is important that the image trajectory does
not contain any large discontinuities, which is ensured by
limiting the variation of the feature points across consec-
utive frames so that the corresponding camera motion is
also small.

2.3 Constraints in Path Planning
2.8.1 Visibility Constraints

Visibility of the features is necessary for various appli-
cations in different ways. Some applications require the
whole object to remain in camera field of view at all times.
For a m x n image, the jth image point (p;(v)q;(¥))T is
constrained to lie mg pixels from the border along the
width of the image and ng pixels along the height. These
form the following linear constraints:

pi(v) =mo, —p;(¥) +(m—mo) 20
3)
3;(v) = mno,  —q;(¥) + (n—ng) 20
As shown in Fig. 3, the margins from the corresponding
image boundaries are represented in the figure by the
margins mg,ng respectively. This problem is a convex
quadratic problem and can be solved efficiently using
SOCP techniques.
In the above equations, if optimization is done
only over translation parameters keeping rotation fixed,
then v=(¢t). If rotation is also allowed to vary, then

V= (taa7ﬁ57)‘
2.8.2 Workspace and Mechanical Constraints

Every workspace has a number of obstacles that the robot
has to avoid for proper navigation. They could be simple
planar constraints of the form II(v) > a like the boundaries
of the pathway that do not affect the convexity of the
domain of the robot. The same applies for mechanical
constraints such as the length of the arm of the robot
limiting the reachable points in space. Similarly, a camera
fixed on the top of a mobile robot has restrictions on its
motion like it does not move in the direction perpendicular
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Figure 3. The image space with a resolution of m x n.
The shaded region represents the visibility margin of the
features with dimensions mg X ng.

to the ground. Such information can be translated to
constraints on the free variables in the optimization. They
can be any set of convex constraints in general. In some
complex cases, however, where the constraint is non-convex
we will need to break the domain, say .S, into convex regions
{Sa|a=1,2,..., A} with Ule Sq =98 and reformulate
the problem appropriately such that all the constraints are
convex in each of the considered domains. The algorithm
is then run independently for each of the subsets S,.

Algorithm 1. Summary of the proposed algorithm

Input: Initial and desired camera poses A and &, 3D in-
formation of the model M and the set of convex constraints

C(v).
Initialize £, Lg, L1, P to empty sets.
forie{l,...,C -1} do

Find the next straight line camera pose X;° using (2);
Ls—Ls+ {X5}.

Invoke the branch and bound procedure.

a. Solve for X! as in minimization problem in (6);
Lr—Lr+ {X]}; initialize P= {D} with eight
cuboid D7, where U; Dj=D. P={D}.

b. For each D’ € P, branch the search space D7 into
smaller disjoint pieces ), Dj = D7 and remove it
from the considered rotation space P «— P — {Dj }

c. For each Dy, solve the feasibility problem described
in (8).

If infeasible then remove Dy; else P«— P+ {Dy};
update bounds of t;.
d. If required accuracy is reached then
return X; = (¢;,7;)
else go to step 4-b.

end for
Output: L={X;|i=1,2,...,C —1}.

2.8.8 Smoothness Constraint

The smoothness of the camera path in the Cartesian space
can be enforced by forcing the variation of the correspond-
ing image points to be small as discussed in Section 2.2.

T
Let m;(v) = (Zg; ZEZ;) be the image of a point after

moving the camera, which was initially at m? = (p? ¢?)7.
The variation of the image point can be limited to § pixels
by the following second-order cone constraint

Imi(v) =mi|l <6 (4)

For simplicity of notation we use C(v) to represent the set
of all constraints on the system.

3. Convex Optimization Path Planning Algorithm

The proposed algorithm aims at generating the optimal
path w.r.t. the given constraints, i.e., the set of poses
L= {Xi}ggl_l). This path can be mathematically de-
scribed for each pose X; with error function described in
Section 2.1 and constraints from Section 2.3 in the follow-
ing way:

X; = argmin||t; — tf||
v

(5)

subject to C(v) with v = (7, a7, 8,~7)

K2

Here, t; is the translation of the straight line path produced
using (2), while v is the set of variables over which the
objective is optimized subject to the constraint set C.

This problem would have been a convex formulation
had translation variables been the only free variables, i.e.,
v=(t7). As the rotation variables are also allowed to vary
freely this problem is non-convex in v and hard to solve
by normal convex optimization algorithms. The details
of the branching procedure and the bounding function are
described in the next section.

3.1 Overview of the Algorithm

We initially present an overview of the proposed algorithm
and then get into its details in the subsequent subsections.
The algorithm, as mentioned earlier, attempts to find an
alternative to the unconstrained straight line path so that
the final path lies in the constrained region. The whole
algorithm can be simply put into three steps as follows:

1. First, we generate a straight line path as given by (2)

and depicted in Fig. 2.

Ls={X’|i=1,2,...,C -1}

2. We then initialize each of the poses in Lg by a pose
in the constrained region by which we get the path of
initialization:

Lr={xl|i=1,2,...,C -1}

In this path, each pose has the same rotation as in the
unconstrained path L£g but with some change in the
translation.



3. Finally we optimize the path £; to achieve the optimal
path £ of (1). This is done by searching the rotation
space using the branch-and-bound algorithm to find a
rotation with minimal translation in pose.

The algorithm hence traces from Lg— Ly — L. We now
present the details of each of the latter two steps while the
first step is already explained in Section 2.1.

We use optimality to mean the shortest path to the
destination from the current position without violating
any of the given constraints. The resulting path could
be different from a straight line path depending on the
constraint set. The optimality of the procedure can be
proven following the work of [11], [12]. The proof is outlined
below. For detailed proof readers are referred to [11], [12].

3.1.1 Outline of the Optimality Proof

We initialize a straight line path that might not satisfy
the necessary constraints. We then update each pose
along the path for an improved estimate of rotation and
translation such that the constraints are met. Search
for best rotation is complicated by the complex nature
of the Lie Algebraic manifold. Following [11], [12], we
use a parameterization of the rotation matrices that can
be described by a cuboid. Each point in the cube is a
possible candidate for the solution. We define a bound on
the smallest possible error from among all rotations within
any given cuboid. We use this bound to prune the search
space by recursively branching the cuboid of rotations.
All cuboids with minimum error above our required error
tolerance are removed from further search. This process
is repeated until we find a required solution for all the
poses. The described procedure completely searches the
space to find a solution within the specified tolerance limit.
Hence, for a sufficiently small error, it will deliver the most
optimal solution.

3.2 Initializing the Path with Translational Con-
strained Poses

The process of initialization for the path can be done by
picking any acceptable pose point in the feasible region
for each of the points in Lg :{Xf}ﬁﬁ;”. This is done
by using the method proposed in [7]. It generates each
of the pose points of £; ={X/}'V solving the following
minimization over t,

Xl =t r)), (6)

?

where (r!) = (r?

7) and t! is solution of:

i = argmin|t — 7|

subject to C(v) with v = (¢, a?, 37, 47)
Note that the minimization is only over the translation ¢.
This is to say that the rotation angles are fixed and
optimization is done on translation parameters alone. This
is a convex optimization problem and can be solved using
convex optimization techniques. The sketch in Fig. 4
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Figure 4. Camera cones that keep the features visible. The
frame Fj is attached to the camera at a pose X from
the unconstraint path. In the Initialized path the frame
F; is replaced by the frame Fj;, which is attached to pose
Xil . One may note that frames F; and Fjp; have the same
rotations and different translations.

explains the process. All the feature points can be seen
from the camera pose X, but when the camera moves to
its current pose X; some of the points on the object move
out of camera’s field of view. Hence, the translation t7
are corrected to t! to get the alternative camera pose from
which all the feature points are visible.

3.3 Searching the Rotation Space using Branch and
Bound Algorithm

The problem described in (5) being non-convex we
use branch-and-bound algorithm for further optimiza-
tion over both translation and rotation variables. The
space of rotation makes a cuboid D of dimensions
(g — ) X (Bu— B1) X (Yu — 1) =Aa x AB x Ay, where
the subscripts u and [ indicate the corresponding upper
and lower limits, respectively. We need to solve for each
X; = (t;,r;) of (1) by searching the rotation space for better
bounds on our variables till we acquire sufficient accuracy.

The actual problem described in (5) can now be rewrit-
ten for a space of rotation S as a feasibility problem of the
following form:

Find ¢;,r;, €8 (7)
st ||t —t7] < e
subject to C(v) with v = (t;,1;)

where € is the tolerance limit on the deviation in the
translation values. In this manner, we find a pose whose
translation is the nearest to t7 and whose rotation belongs
to the rotation space S=D. Ideally, this problem needs
to be solved for each of the points r in the rotation space
S=D till the required accuracy is achieved, which is
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Figure 5. (a) The camera trajectory using our algorithm and using IBVS algorithm. (b) The image trajectory using IBVS.
(c) The image trajectory when the camera path is straight line. (d) The image trajectory using our path planning algorithm.

Target positions of the image features are marked by “+7.

practically impossible. So, we modify the above problem
to something that has the same solution as the above one
but is still computationally tractable.

Over the given rotation space D the branch-and-bound
algorithm is applied by dividing the rotation space D into
eight cuboids, then checking on the feasibility of problem
given in (7) with respect to translation ¢ and rotation r
defined at the centre of each cuboid. This feasibility means
there is a better bound on our variables.

The problem that can explain whether a better bound
exists than the current one for the problem described in
Equation (7) in a given search space S as used in step (3)
in section 3.1 is as follows:

Find t;,r=29 (8)
st [t~ 6] < ()
subject to C(v) with v = (¢)

S is the value of r corresponding to the centre of the
cuboid S and C(v) is the set of constraints C(v) modified
appropriately. In addition € is a similar modification in the
corresponding norm constraint.

This problem can be solved similar to the problem in
(6) because the only varying variable is ¢, as r is fixed at
the centre of the cuboid, S. We need to rewrite constraints
C(v) such that the problem described in (8) is feasible for
all cases where problem given in (7) is feasible. The branch-
and-bound algorithm is summarized in Algorithm 1.

As we are looking only at rotation values fixed at the
centre of the search space to ascertain if the whole space D’
possibly has any solution, we need to accommodate for the
extreme case of the solution existing at one of the corners
of DJ. This is done by making appropriate relaxations in
the constraints to reflect this possibility. Let the search
space S have edges of lengths (Aa, AS, Ay)=Ar. Then,
a function of the form f(rv)>0 in C(v) is rewritten as



fv)+ %%(:)Ar >0 in C(v). This can be done with all the
constraints presented in Section 2.3. This is particularly
simple for visibility and workspace constraints that are
linear functions. However, the smoothness constraint is a
second-order function and can be relaxed further as

Imi(v) —=mi|l < 8+ p) (9)

where p is the maximum possible variation in pixels, which
resulted from the maximum possible rotation variation Ar.

However, the solution is the optimal rotation value that
provides a constraint satisfaction with shortest translation
vector. This produces a path that is as near to the straight
line path as possible.

4. Experimental Evaluation

We demonstrate the flexibility of the algorithm, which
makes it applicable to problems in various domains. We
discuss application of the algorithm to image-based visual
servoing IBVS. We then discuss the performance of our
algorithm when used for autonomous robot navigation.

4.1 Visual Servoing

Visual servoing is the use of visual information to close the
control loop in robot control system [13]. Visual Servoing
has a control part and a feature tracking part. The feature
tracking part is necessary to measure the image points
of the features in the current frame, which are used in
planning the appropriate trajectory. Recent visual servoing
algorithms such as [14] proposed to merge both stages into
one. Path planning methods that deal them independently
are quite efficient at handling various complex situations.
The constraints address the feature tracking part but as our
algorithm returns only the path to be tracked we further
need to generate control signals such that the robot traces
the actual path. We use an IBVS controller for the control
part of the servoing process. The usual complexities and
problems that occur with IBVS controls do not show up in
such small motions.

First, we show a positioning task when it is carried
out using image-based servo control [15], where the error
between the current image features s; and the image fea-
tures in the destination image s. is regulated to zero in
the image space. The image trajectory is almost a straight
line subject to errors in the internal camera parameters
(see Fig. 5(b)) while the 3D camera trajectory as shown in
Fig. 5(a) is a complex path to trace. When unconstrained
path planning or PBVS algorithms like [16] are used the
3D camera trajectory is a straight line but some feature
points move out of the camera’s field of view as in Fig. 5(c).

Results from our algorithm are also shown in Fig. 5.
One may clearly see that our algorithm outperforms the
previous two algorithms: IBVS and PBVS. The camera
trajectory as shown in Fig. 5(a) is a straight line when the
constraints are satisfied (see Fig. 5(d)) and deviates from
the straight line only when constraints could have been
violated. The straight line portion of the camera trajectory
belongs to the first step of the algorithm where a straight

Figure 6. Top view of the 3D path between the selected
two key images for the visual navigation example. The
camera is mounted on mobile robot. We assume the height
of the camera is constat along the path. Pose of the camera
at each of the nodes while capturing the key frames in
Fig. 7(a—f).

line camera path is generated. In second and third stages
of the algorithm the camera’s position is modified to the
nearest position that satisfies the set of constraints. In
other words, we can say that our algorithm, after planning
the straight line path, searches for the nearest camera
pose to the straight line path that satisfies the set of
constraints. Should the straight line path completely lie
in the constrained region, the algorithm would return the
same result as [16] and produce a perfectly straight camera
trajectory.

4.2 Visual Navigation

Autonomous vision-based navigation is the ability of a
robot to move one position to another with the aid of
the visual information. The robot’s knowledge about the
environment is available as a visual knowledge base, i.e., as
a set of key images in both appearance-based and model-
based approaches. This information is used for localization
and navigation.

We carried out our experiments by manually building
a map of the environment (see Fig. 6). Travelling from
from one end of the room to the other end while tracking
an object within the room has been set as the goal of the
robot. Hence, the room is the domain of the robot.

The domain of the robot is clearly non-convex with no
single object that can be tracked from node 1 on one end
to node 3 on the other end. Hence, the space has been split
into two convex sets as described in Section 2.3 with nodes
1 and 2 making the first set and nodes 2 and 3 making
the second set each of which is convex. Node 2 serves as
a link between the two sets. A set of key images is made
from images of the objects O; and Os captured from the
nodes (see Fig. 7). The tracked feature points of both
objects are shown on black patches in all the images. The
robot used has a camera mounted on its top with three
degrees of freedom: two for position on the floor plane
and one for pan angle of the camera. The restriction that
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Figure 7. The object Oy is shown in (a) and (b). It consists of the corners of a book, a toy and the tip of a bottle. The object
Os, shown in (c¢) and (d), consists of the four corners of the book and tip of another bottle. All the corresponding features are
marked with black patches. The key frames shot from each of the nodes are shown. As node 2 is the linking node it captures
images of both O and Os: (a) image of Oy from node 1; (b) image of O; from node 2; (c¢) image of O from node 2; and

(d) image of Os from node 3.

(b)

(d)

Figure 8. Images of the objects captured while the camera traversed the designed path. The corresponding camera positions
on the path are shown in Figure 6; (a) Oy from a; (b) O; from b; (¢) O; from ¢; (d) O; from d; and (e) O from e. (f) Oz from f.
In each of the above images the objects are completely visible while the robot traverses through the constrained region.

All the corresponding features are marked with black patches.

the camera height remains fixed has also been used as a
constraint. Visibility and smoothness constraints are used
as mentioned in Section 2.3.

We then ran the robot between the nodes on the path
generated using the proposed algorithm to traverse from
node 1 to node 3 through node 2. Alternative positions
were solved for each position lying outside the constrained
region by optimizations performed using optimization tools
SeDuMi [17] and YALMIP [18]. Figure (6) shows a top view

of the path generated by our algorithm. The navigation
problem is divided into two: (1) from node 1 to node 2
and (ii) from node 2 to node 3. Images captured at
different positions on the path while traversing are shown
in Figure (8) with the corresponding camera positions
marked in Figure (6) by letters a, b, ¢, d, e and f. Evidently,
the objects that are being tracked are completely visible
all along the path for proper localization of the robot
and minimize mechanical errors while travelling along the



designated path. One can note that the path starts as
straight line from node 1 towards node 2. It starts deviating
from the straight line path at position a to satisfy the
visibility, and other workspace and mechanical constraints.

5. Conclusion

In this paper we have shown that the proposed framework
considers the generic case and is promising for practical
applications. It is suitable for different systems with vari-
able structure while leaving us with choice on accuracy
and computational complexity. A trade-off can be found
between accuracy and complexity as the later is inversely
proportional to the selected accuracy. However, results
shown good accuracy in association with the real appli-
cation like hardware and sensors’ errors. This is due to
many aspects. One of them is the path is finally produced
in the image space, and image-based visual servo control
law is used, which is know as robust odometry and sensory
errors, to track the path.

However, the branch-and-bound algorithm discussed
here is computationally expensive and can slow some real-
time applications. In such cases, we will need to investigate
more efficient ways to quickly eliminate irrelevant parts of
space efficiently. This is a future direction that is worthy
of investigation.
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