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ABSTRACT

Annotated data is critical for the development of many com-
puter assisted diagnostic (CAD) algorithms. The process of
manual annotation is very strenuous, time-consuming and an
expensive component in CAD development. In this paper,
we propose the idea of an interactive Assistive Annotation
System (AAS) aimed at helping annotators by automatically
marking possible regions of interest for further refinement by
an annotator. We propose an unsupervised, biologically in-
spired method for bright lesion annotation. The performance
of the proposed system has been evaluated against region-
level ground truth in DiaretDB1 dataset and was found to
have a sensitivity of 60% at 7 false positives per image. Pre-
liminary testing was also done on public datasets which do
not provide any lesion level annotations. A visual assessment
of the obtained results affirm a good agreement with lesions
visible in images. The system with a simple modification is
shown to have the potential to handle dark lesion annotation,
which is a significantly more challenging problem. Thus, the
proposed system is a good starting point for exploring the
AAS idea for retinal images. Such systems can help extend
the use of many existing datasets by enriching the image-level
annotations with localised information.

Index Terms— Groundtruth annotation, color fundus im-
ages, assistive annotation, GMP.

1. INTRODUCTION

Ground truth (GT) annotations of medical images play a key
role in CAD systems development. Most CAD systems are
supervised and hence require considerable amount of an-
notated data for training and validation. Unavailability of
enough annotated data for training may lead to overfitting of
the system leading to poor cross-training performance.
While image-level annotations are comparatively easy,
acquiring structural annotations for medical landmarks and
abnormalities is often a tedious enterprise. It requires pre-
cious time of multiple medical experts to provide a consensus
based gold standard. While the nature and quality of these
annotations fundamentally affect the design and validation
of CAD systems, the task, due to its fully manual nature, is
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prone to human errors resulting in inconsistencies and large
inter-observer variance.

To overcome the above difficulties, we envision an Assis-
tive Annotation System (AAS): a fast, simple and interactive
semi-automatic system that generates annotations with mini-
mal False Positives (FP) in real time and allows manual an-
notators to further refine the annotations based on specialized
domain and case-specific knowledge. AAS is not aimed at
substituting human annotators but rather assisting them. An
accurate AAS can significantly reduce the burden on human
annotators by making their task more of verification and less
of annotation. It can expedite the annotation process thereby
allowing annotation over larger datasets and an efficient use
of experts time.

While the computer vision community has invested ef-
forts for developing automatic and semi-automatic GT gener-
ation tools, similar efforts in medical image analysis domain
have been limited [1, 2, 3]. One obvious reason lies in the
need for specialized medical domain knowledge required for
the annotations.

To the best of our knowledge there have not been any at-
tempts at developing effective AAS systems. From an im-
age analysis perspective, this task seems similar to candidate
extraction for lesions. However candidate extraction stages
in retinal CAD systems do not exhaustively focus on perfor-
mance levels suited for annotation assistance and usually re-
sult in very high FPs [4].

In this paper, we propose a novel framework for anno-
tation of bright and dark lesions in fundus images. Bright
lesions (BL) such as hard exudates and drusen are associ-
ated with diabetic retinopathy (DR) and age-related macular
degeneration, respectively[5]. Dark lesions such as haem-
orrhages and microaneurysms are also of great significance
as they are early indicators of DR. Grading of DR severity
is evaluated based on the number, type and location of these
lesions necessitating accurate lesion-level GT for proper diag-
nosis. We propose a fast, unsupervised, biologically inspired
method for lesion annotation that extends the Generalized
Motion Pattern (GMP) [6] image representation. While GMP
has been shown to be effective in detection of lesion at an
image level, we extend it for the task of lesion localization
and detection by aggregating evidence from multiple local-
ized GMPs. The proposed method has been validated against
manual markings on the public dataset of DiaretDB1 [7].
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Fig. 1. Proposed AAS pipeline (with intermediate results) for generating annotations for bright lesions.

We also show a qualitative results on images from other un-
marked datasets to demonstrate its effectiveness.

The proposed AAS pipeline (see figure 1) for detecting
bright lesions is as follows: The input image, which is as-
sumed to be labelled as abnormal, is preprocessed to handle
non-uniform illumination [8] and extend the circular field of
view [9] to avoid artifacts that occur due to the circular mask.
Subsequent processing is limited to the green channel of the
input image as it has the best contrast for both dark and bright
lesions. A rotational motion is induced in the preprocessed
image about a set of randomly chosen pivot points to derive
an ensemble of GMPs (section 2.1). These are integrated to
obtain two maps: an interference pattern map and a map of
variance of pixel values across the GMPs (section 2.2). Lo-
cal maxima are found (at multiple scales) in these two maps
and combined to obtain the final soft map in which high pixel
values indicate lesion locations (section 2.4). Detection of
dark lesions proceeds in a similar manner. These steps are
described in detail next.

2. PROPOSED METHOD

2.1. Random GMP Ensemble

Given an image I, its GMP representation /g s p is defined
as

Iomp(F) = F{I(T;(M)|1 < j < N})) 1

Here 7 denotes a pixel location, 7" denotes a set of N rigid
transformations applied to I to produce a set of N resultant
images {I(T;(7)[1 < j < N}. Finally, these images are
combined into the GMP signature using a coalescing func-
tion f(.) that maps the set of pixel intensities at each location
7 across the set of transformed images to a scalar value.

Ensemble GMP generation: For a given image I, we de-
note the GMP generated by inducing a rotation motion about a

pivot Py as I 8334 p- An ensemble of GMPs is generated when

K pivots are chosen: C = {Iékjeﬂp\l < k < K}. In our work,

each [ gc])w p was generated using eq. 1, with T" as rotation by

an angle in the range [—6, 0] degrees in steps of 1deg. The
coalescing function f was chosen as max. Since the GMP
generation process serves to spatially extend a lesion along
the direction of motion which is now along an arc, the value
of 6 determines the length of the arc over which it is extended.
We now define two quantities fundamental to our design : i)
an Interference map I;,, which is derived by combining K
GMPs generated with different pivots. ;. £ > 6L ékg/[ p and
ii) a Variance map 1,4, = Var(C), where Var denotes the
variance of pixel values across the GMPs in the ensemble C.
These two maps capture complementary information essen-
tial to the detection of lesions as explained next.

1. At true lesion locations, the pixel value will be high in
every I é% p € C. Hence I;;,; will be a maximum and
I Will be a minimum at such locations.

2. Atlocations not in the neighbourhood of any lesion, the
pixel value will be low in every I, (ija[ p € C. Hence,
both I;,,; and I, will be low at such locations.

3. At locations within the neighbourhood of any lesion,
the pixel value can be high in every I, éklz/[ p € C de-
pending on the lesion configuration in the given image.
Hence, I,,, will be high at such locations. It should
be noted that the neighbourhood size over which this
holds will depend on the angle of rotation 6.

Figure 1 illustrates these observations.

2.2. Evidence Gathering and Aggregation

As discussed above, bright lesions are characterized by local
maxima in /;,; and local minima in /,,,-. In our work, these
extrema were found using a multi-scale (8 dyadic scales),
center-surround difference operation [10]. The derived ex-
trema maps O;,,; and O, capture evidence for the presence
of lesion in a given location. They are aggregated into an Ev-
idence map I for lesion as:

IE £ Oint X Ovar (2)

I will have a strong response at lesion locations. While the
multiplication operation effectively suppresses the response at



Fig. 2. Sample results on image patches from Diaretdbl. Left
to right: original; original with AAS results overlaid (blue and
green colours denote bright and dark lesions, respectively);
GT markings for bright and GT markings for dark lesions.

Fig. 3. Annotations generated by AAS on 3 sample images
from DMED (left), DiaretdbO (middle) and Messidor (right)
datasets.

false locations, further post-processing is done to i) suppress
the Optic Disc (OD) as it shares similar features as bright le-
sions and ii) remove pixels of value less than 0.1 from the
normalized /g and finally iii) smoothen with a Gaussian filter
to obtain a softmap.

3. EXPERIMENTS AND RESULTS

The proposed AAS was evaluated on several public datasets,
of which only one [7] provided regional markings for lesions
from 4 experts. Even though the proposed AAS was designed
for bright lesions (BL), we also investigated its potential for
handling dark lesions (DL) by making simple modifications
to the proposed method: the input image was complemented
and vessels were masked out. Fig. 2 shows obtained annota-
tions on sample regions with lesions from Diaretdbl. More
sample results are provided in Fig. 5. A comparison with
GT in the last column indicates a high level of agreement. It
should be noted that AAS was not explicitly designed to seg-
ment the lesions, which explains the variable level of overlap
between the annotations and the GT. Fig. 3 shows annotations
obtained for sample images from public datasets (DiaretdbO
[11], Messidor [12], DMed [13]) for which no regional mark-

ings are available. Results show that despite intra-image
variations and the unsupervised setting, the proposed AAS
produces very good estimates of the regions which contain
BL or DLs. Some false annotations for DL appear on vessel
segments (Fig 3, column 2) highlighting the need for a more
precise vessel map for masking. Nevertheless, the results are
encouraging as the AAS designed for BL is also able to locate
DLs after a simple modification.

Next, we analysed the influence of the parameter settings
on the derived annotations, namely, N, the number of pivot
points and 6, the angle of rotation. The Positive Predictive
Value (PPV)) is the fraction of overlap, at a pixel level, be-
tween the GT and annotations. This is plotted against ¢, the
threshold used to binarise /r and obtain annotations in Fig.
4 (a) and (b) for Diaretdbl. The former shows the effect of
varying N with § = 10deg. A high value of N will sta-
tistically boost the evidence gathered in I, and I;,; albeit
at an increased computational cost. The plots indicate that
for N > 50, the improvement in PPV is only marginal. In
Fig. 4 (b), the effect of varying 6 is studied for N = 150.
A low 6 will result in a low spatial extension of a pixel and
cannot adequately smooth out the background tissues while a
high value will lead to excessive spatial extension and overlap
across multiple lesions affecting the lesion localization in /.
The plots in Fig. 4 (b) are consistent with this expectation as
the PPV is lowest for § = 20deg for all ¢. Thus, we con-
clude that the choice of 6 is more critical than N, when N is
sufficiently large. A maximum PPV value of 0.65 is obtained.
This translates into a huge savings in the effort to generate an-
notations. The question that remains is if this savings is at the
cost of FPs which will have to be removed by manual inter-
vention. This was examined by plotting the sensitivity (SIV)
of our AAS against FPs per image (fppi) or the FROC curve.

Since Diaretdbl has GT from 4 experts, a majority con-
curred (3 out of the 4 experts) on lesion presence with > 50%
confidence. The evaluation was performed for different ex-
tents of spatial overlap = between the result and GT. A GT
region was declared to be detected (TP), if at least one con-
nected component in our result had more than % overlap
with it, else it was declared as a False Negative (FN). All con-
nected components in our result that did not have at least a
x% overlap with the GT markings were taken as FP. § and N
were assigned their optimal values (10 and 150 respectively).
FROC curves (Fig. 4(c)) for different = were obtained for BL
by plotting SN = TPZ_% against the average fppi by vary-
ing t. In addition to the trade off between the SN and fppi,
the plots indicate that when maximal overlap is desired, the
number of correctly marked annotations will be low as SN
falls sharply for  90%. For a moderate overlap setting (black
curve), 60% of the BLs are correctly identified by the system
for an fppi of 7. These results establish the applicability of the
proposed system for assistive annotation.
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Fig. 4. Annotation evaluation: (a) PPV vs different N, (b) PPV vs 6 and (c) FROC plot for bright lesions.
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Fig. 5. Additional results on image patches from
DiaretDB1[7]

4. CONCLUSION

A simple and biologically inspired method for building an
AAS is proposed for assisting human experts in annotating
retinal lesions. The time for annotating an image from Di-
aretdbl is 50 seconds with an unoptimised, MATLAB im-
plementation on a ¢7 processor with 8 cores. Qualitative re-
sults of evaluation of AAS show a good performance across
labeled and unlabeled images. Quantitative results of also
demonstrate the potential savings to be had by experts in the
annotation process with the AAs. We argue that an fppi <
10 that was shown to be attainable is acceptable since they
can be manually removed whereas the alternative is to de-
rive all the annotations manually which is also not guaran-
teed to be 100% accurate as can be generally seen from the
inter-observer variations in GT markings. The methodology
presented here paves the way to work towards building anno-
tation assistance systems which can be readily used by human
annotators to reduce the burden of large-scale annotations.
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