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Abstract—Automatic annotation of an audio or a music piece
with multiple labels helps in understanding the composition of
a music. Such meta-level information can be very useful in
applications such as music transcription, retrieval, organization
and personalization. In this work, we formulate the problem
of annotation as multi-label classification which is considerably
different from that of a popular single (binary or multi-class)
label classification. We employ both the nearest neighbour and
max-margin (SVM) formulations for the automatic annotation.
We consider K-NN and SVM that are adapted for multi-label
classification using one-vs-rest strategy and a direct multi-label
classification formulation using ML-KNN and M3L. In the case
of music, often the signatures of the labels (e.g. instruments and
vocal signatures) are fused in the features. We therefore propose
a simple feature augmentation technique based on non-negative
matrix factorization (NMF) with an intuition to decompose a
music piece into its constituent components. We conducted our
experiments on two data sets — Indian classical instruments
dataset and Emotions dataset [1], and validate the methods.
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I. INTRODUCTION

Rapid advancement in the Internet and multimedia tech-
nologies has enabled music listeners to access vast amount
of music. People often listen to music from their personal
collection or through online music services. Online music
streaming services allow listeners to browse and play the music
based on their interests such as genre, artist or album and
provide them the ability to create their own play lists and share
with others. Many cloud based services even allow people for
uploading and sharing their own music. In all such scenarios,
the organization of music collection becomes difficult as the
size of database grows.

One simple way to organize such large collections is by
annotating each music piece with different attributes related to
composition of music such as style, genre, artist, instrument,
mood/emotions, etc. However, manual annotation is a daunting
task for large collection of music as they consume lot of time
and incur cost. Thus, it is very important to develop automatic
methods that perform these tasks.

Automatic annotation of music also helps in providing
many additional services to online users such as searching
music based on categories such as genre, emotions, instrument
rather than primitive searches that rely purely on textual
information such as song titles or artists. Music listeners and
their demands have evolved over time. Online users, nowadays,
want music suggestions that suits their mood or an activity like
jogging, studying, traveling, etc. All such personalized services
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Fig. 1. An illustration of Music Annotation as Multi-label classification.
Every segment of the music can have multiple labels.

require an understanding of the composition of music that can
be addressed to some extent, through automatic annotation of
music data.

In this paper, the task of music annotation is modeled as
a multi-label classification problem i.e given a music piece,
multiple tags are assigned to it. As shown in Fig 1, a music
piece may belong to many different categories with each cate-
gory specifying certain aspect of the given music. The problem
of multi-label classification is significantly different from the
popular single label cases. In the single label classification,
each sample belongs to the positive set only for a single
class. However, in the case of multi-label, each sample can be
positive in multiple classes, and the problem becomes more
challenging. In this work, we formulate the music annotation
problem in nearest neighbour and max-margin frameworks.
In particular, we evaluate the performance of Support Vector
Machine (SVM), K-Nearest Neighbour (KNN), Multi-Label
KNN (ML-KNN) [2] and Max-Margin Multi-Label Classifi-
cation (M3L) [3]. SVM and KNN are adapted for multi-label
classification using one-vs-rest strategy while ML-KNN and
M3L are the direct formulations of multi-label classification.

On a careful analysis of the performance of the classi-
fication methods, we find that the composite nature of the
feature representation is a serious hurdle. We therefore propose
a feature augmenting technique based on non-negative matrix
factorization (NMF) with an intuition that decomposing a
music piece into several components might help in classifica-
tion. Our experiments on Indian classical instruments dataset
and Emotions dataset [1] suggest that all the four algorithms
have reasonably similar performance and are promising for
multi-label annotation of music. We also noticed that the
performance of all these algorithms is further improved by
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a simple feature augmentation procedure based on NMF.

II. RELATED WORK

There are many approaches proposed in the literature of
music classification. Some of these approaches are focused
on single-label classification [4], [5] where a music piece
is assigned a particular label such as male, female, guitar,
flute, crowd, etc. For Indian Classical music, techniques are
proposed in [6], [7], [8] to identify the raga being played in
a music. In the context of multi-label classification, various
techniques are proposed to identify the emotions in music. In
[1], [9], authors survey various machine learning techniques
for identifying the emotions in the music. Similarly, multiple
binary SVM classifiers are trained to tag the emotions in
music in [10]. The decisions are made based on whether each
classifier output exceeds a pre-determined threshold.

Another closely related work is the use of social tags
to annotate the music tracks [11]. A large amount of user
tagged keywords and their tracks were extracted from com-
mercial services such as last.fm and tag-track relationships
are learned using latent semantic analysis (LSA), similar
to term-document relationships in text retrieval. Once such
a co-occurrence matrix is known, it can been applied to
applications such as catalogue organization and to provide a
browse-by-mood interface [11]. A similar use of social tags
for recommendation and music similarity can be found in [12]
where an ensemble based filterboost algorithm is used.

The above methods based on social tags focus only
on social context while ignoring the acoustic content. Few
methods have been proposed that combine the information
from both acoustic content and social context. In [13] timbre
and harmonic features are used to represent acoustic content
while social tags and web documents represent social context.
Similar combining approaches are used in [14] for multi-label
music style classification and in [15] where a track’s significant
musical content or musword is considered along with social
tags.

Multi-label classification is applied in other domains such
as semantic annotation of images [16], [17] where a set of tags
are assigned to an image in the context of scene understanding.
It is widely applicable in the area of text mining as the
textual document can usually belong to multiple categories
(see [18] and references therein). Similarly in the area of
Bio-informatics for protein function prediction [19] and gene
function prediction [20].

III. MULTI-LABEL ANNOTATION OF MUSIC

In this section, we first formulate the problem of music
annotation as multi-label classification. We then describe four
machine learning techniques can be used for solving this.

A. Annotation as Multi-Label Classification

We start with a music composition and annotate the music
as a whole and also in parts. For this, we extract features
for different (overlapping) segments of various lengths. Our
objective is then to classify these feature representations and
assign multiple labels.

Given a training set of instance-label pairs (xi, yi), i =
1, ...,m, where xi ∈ Rn and yi is a vector of 0s and 1s and
of dimensionality the number of possible labels. During the
learning, we are interested in designing a classifier that can
assign multiple labels to a given segment of music.

B. Multiple Single Label Classification: KNN and SVM

We first describe the multiple single label classification as
a solution to the multi-label classification problem.

K-Nearest Neighbor Algorithm (KNN) is one of the sim-
plest non-parametric methods that can be used for classifica-
tion. When a new sample has to be classified, its k nearest
neighbors in the training samples are identified and the class
that is the most common among them is assigned to the new
sample. For multi-label classification, one-vs-rest strategy can
be used to assign multiple labels to the sample.

Support Vector Machine (SVM) is a popular parametric
method that finds the hyperplane defined by parameter w
with maximum-margin between two classes of the training
data. Given a training set of instance-label pairs (xi, ȳi),
i = 1, ...,m, where xi ∈ Rn and ȳi ∈ {1,−1}, SVM solves
the following optimization problem:

min
w,b,ξ

1

2
wTw + C

m∑
i=1

ξi

subject to ȳi(wTxi + b) ≥ 1− ξi, ξi ≥ 0, ∀i (1)

where C is the penalty parameter and b is the bias. ξi are the
slack variables that denote the violations made by the training
points when the data is non-separable. During testing, any
new sample z is classified based on the sign of (wT z + b).
Similar to K-NN, one-vs-rest strategy can be used for multi-
label classification.

C. Multi-Label KNN

Multi-Label KNN (ML-KNN) is the multi-label version
of KNN proposed by Zhang et al. [2]. Similar to KNN, k-
neighbors of new instance are identified and a decision on
whether the instance belongs to each category is made based
on a maximum-a-posteriori (MAP) estimate. Formally, let L
denote the complete set of labels. Given an instance xi ∈ Rn
and its associated labels Yi ⊆ L, let yi be a vector such that
its l-th component yi(l) is 1 if l ∈ Yi and 0 otherwise. Then
yi(l) can be obtained as,

yi(l) = arg max
b∈{0,1}

P (H l
b|El~C(l)

),∀l ∈ L (2)

where ~C(l) denote the number of neighbors of x out of its
k-neighbors that belong to class l. H l

1 is the event when x has
label l and H l

0 is the event when x does not have the label l.
Elj , j ∈ {0, 1, ..., k} denote the event that j out of k-neighbors
of x have label l. yi(l) can be easily computed by expanding
the Eqn 2 using Bayesian rule and estimating the probabilities
P (H l

b) and P (El~C(l)
|H l

b) from the training data.



D. Max-Margin Multi-Label Classification

Max-Margin Multi-label Classification (M3L) [3] can be
viewed as a generalization of SVM formulation for multi-
label classification. M3L aims to learn a function f which
assigns a set of labels to an instance xi. Let ∆ denote the loss
function that imposes different penalties based on the amount
of mismatch between expected and predicted output.

The learning function is defined as f(x, y) = wT (φ(x) ⊗
ψ(y)) where φ and ψ denote the feature and label space
mappings respectively and ⊗ is the Kronecker product. Given
an instance xi ∈ Rn and its associated labels Yi ⊆ L, let yi
be a vector such that its l-th component yi(l) is 1 if l ∈ Yi
and −1 otherwise. M3L is formulated as:

min
f

1

2
||f ||2 + C

n∑
i=1

ξi

s.t. f(xi, yi) ≥ f(xi, y) + ∆(yi, y)− ξi

∀i, y ∈ {±1}|L| \ yi and ξi ≥ 0, ∀i (3)

where ξi are the slack variables as defined earlier and |L|
denote the number of labels. During testing, any new sample z
is classified as y∗ = arg miny f(z, y). The optimization details
of the algorithm are beyond the scope of the paper and we refer
interested readers to [3] for further details.

IV. ENHANCEMENT BY FEATURE AUGMENTATION

Music signals, in real world, are often noisy and composed
from a mixture of sound sources. Decomposing the music
into individual sources, popularly known as Source separation,
often reveals many interesting details about the music. This
gives a more compact and interpretable representation that
could be helpful in many tasks such as pitch estimation
[21], transcription [22], etc. This is usually achieved using
matrix decomposition techniques such as non-negative matrix
factorization (NMF).

In the case of multi-label music classification, the presence
of one source (label) may act as a noise in predicting other
source (label). Thus by having a low rank approximation of the
music for each of these labels and projecting the music into
each of these subspaces, we can hope to get a very compact
and discriminative representation.

More formally, given a set of all possible labels L and
instance-labels pairs (xi, Yi), xi ∈ Rn, Yi ⊆ L. Let M =
[m1,m2, . . . ,mj ], mi ∈ Rp be the set of features extracted
from the training samples [xl1, xl2, . . . , xlj ] that contain the
label l. We perform the matrix decomposition as follows,

{Ŵl, Ĥl} = arg min
Wl,Hl

1

2
||MMT −WlHl||

2

F

s.t Wl ≥ 0, Hl ≥ 0 (4)

where Wl ∈ Rp×q and Hl ∈ Rq×p are the non-negative
matrices and ||.||F denote the Frobenius norm. The final
feature vector for instance xi is obtained as φ(xi) = [hTi mT

i ]T

where hi is the i-th column in Hl. Wl can be viewed as a set
of basis vectors that span the features belonging to label l.
By learning separate basis vectors Wl for each of the labels
and projecting the instances in each of these subspaces, we

TABLE I. COMPOSITION OF INDIAN CLASSICAL MUSIC DATASET

Instrument #Samples
Female Vocals 187
Flute 135
Harmonium 84
Male Vocals 76
Mridangam 301
Shehnai 90
Sitar 58
Tabla 168
Tanpura 156
Violin 275

get a representation which is discriminative and robust to
interference from other labels. It is often difficult to know
aprioiri the lower dimension q and thus is selected through
cross validation.

V. EXPERIMENTS

In this section, we describe the data sets used for experi-
ments, evaluation measures and finally report the results.

A. Datasets

Indian Classical Music dataset consists of 18 Indian
classical tracks. Each track is divided into samples of 5
seconds resulting in a total of 603 samples with a sampling
rate of 22050 Hz. All the samples are manually annotated
with multiple labels from a label set of 8 instruments, male
and female vocals. The number of samples in each of these
categories is shown in Table I.

Emotions dataset [1] consists of 100 songs belonging to
the genres- Classical, Reggae, Rock, Pop, Hip-Hop, Techno
and Jazz. For each song, a period of 30 seconds after the initial
30 seconds are extracted. These clips are then converted into
wav files of 22050Hz sampling rate. All the clips are labeled
into 6 emotional clusters as shown in Table II.

B. Features

For Indian Classical music dataset, we extracted standard
MFCC features using MIRToolbox [23]. We considered only
the top 19 MFCC coefficients. For the emotions dataset, we
used the features provided by the authors of [1]. They extracted
two kinds of features- rhythmic and timbre. 8 features are
derived by extracting periodic changes from a beat histogram.
64 timbre features are derived by extracting the top 13 MFCC
coefficients for each frame and obtaining their mean, standard
deviation, mean standard deviation and standard deviation of
standard deviation. Please refer to [1] for more details on
feature extraction.

C. Evaluation Metric

We use the following evaluation measures for multi-label
classification, similar to [18]. Let L denote the complete set
of labels. Given a set of pairs (xi, Yi), i = 1...m, where xi ∈
Rn, xi denotes the ith music sample and Yi denote a subset
of ground-truth labels (Yi ⊆ L). Let Zi be the set of labels
predicted by multi-label classifier for the instance xi,



TABLE II. COMPOSITION OF EMOTIONS DATASET

Emotion-cluster #Samples
amazed-surprised 173
happy-pleased 166
relaxing-calm 264
quiet-still 148
sad-lonely 168
angry-fearful 189

The Hamming Loss is defined as follows:

Hamming Loss =
1

m

m∑
i=1

|Yi ∆d Zi|
|L|

(5)

where ∆d represents the symmetric difference between two
sets.

Accuracy is defined as follows:

Accuracy =
1

m

m∑
i=1

I(Yi == Zi) (6)

where I(true) = 1 and I(false) = 0.

Precision is defined as follows:

Precision =
1

m

m∑
i=1

|Yi ∩ Zi|
|Zi|

(7)

Recall is defined as follows:

Recall =
1

m

m∑
i=1

|Yi ∩ Zi|
|Yi|

(8)

D. Results

For all the experiments, we randomly divide half of the
data set into training and testing. For reporting the results, we
conducted 10 trials and report the average values. We select
the parameters C for SVM, k for KNN, q for NMF using
cross-validation. Table III and Table IV shows the average ac-
curacy, hamming loss, precision and recall of the classification
algorithms for Indian Classical music and Emotions dataset,
respectively. Overall the performance of these algorithms is
almost similar though KNN performs slightly better for Indian
Classical music dataset while SVM for Emotions dataset.
We also report the results of these algorithms with feature
augmentation using NMF. It can be seen that, the performance
of these algorithms is further improved with feature augmenta-
tion. Table V and Table VI shows the results of the algorithms
for each label on Indian Classical Music dataset and Emotions
dataset, respectively. Again, it can be observed that by feature
augmentation, the performance is improved for majority of the
labels.

VI. CONCLUSION AND FUTURE WORK

In this paper, we considered the problem of automatic
multi-label annotation of a music data. We evaluated the
performance of four machine learning algorithms for this task.
We further proposed a simple feature augmentation technique
based on NMF which further improved the performance of all
these algorithms. Future work will focus on incorporating the
correlations among the labels in classification and on preparing
a comprehensive multi-label classification dataset for Indian
classical music.
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TABLE III. PERFORMANCE OF VARIOUS ALGORITHMS ON THE TWO MUSIC ANNOTATION DATASETS

Indian Classical Music dataset

Method ↓ HammingLoss Accuracy Precision Recall

One-vs-all kNN 0.0748 0.9252 0.8545 0.8506

One-vs-all SVM 0.1139 0.8860 0.8072 0.7250

ML-kNN 0.0833 0.9167 0.8429 0.8255

M3L 0.1119 0.8880 0.8037 0.7362

NMF-SVM 0.1082 0.8917 0.8159 0.7415

NMF-kNN 0.0743 0.9257 0.8548 0.8524
NMF-ML-kNN 0.0814 0.9186 0.8449 0.8313

NMF-M3L 0.1093 0.8907 0.8042 0.7493

TABLE IV. PERFORMANCE OF VARIOUS ALGORITHMS ON EMOTION DATASET

Emotions dataset

Method ↓ HammingLoss Accuracy Precision Recall

One-vs-all kNN 0.3202 0.6798 0.4783 0.2962

One-vs-all SVM 0.3074 0.6926 0.6445 0.0494

ML-kNN 0.0833 0.6859 0.5136 0.1347

M3L 0.3126 0.6874 0.7454 0.0101

NMF-SVM 0.2667 0.7333 0.6827 0.2544

NMF-kNN 0.2893 0.7106 0.5541 0.3710
NMF-ML-kNN 0.2886 0.7113 0.5292 0.2436

NMF-M3L 0.3075 0.6925 0.8000 0.0215

TABLE V. PERFORMANCE OF VARIOUS ALGORITHMS ON EACH LABEL FOR INDIAN CLASSICAL MUSIC DATASET

One-vs-all SVM One-vs-all KNN ML-KNN M3L NMF-SVM NMF-KNN NMF-ML-KNN NMF-M3L
Female 86.7550 92.6159 90.9272 86.0927 87.8808 92.4172 91.3576 87.0861
Flute 96.9536 96.7550 97.9139 97.6821 98.0132 96.7219 98.1126 98.0132
Harmonium 98.9735 99.6689 99.1391 99.3377 99.0066 99.6358 99.2384 99.6689
Male 96.1589 95.0000 95.8609 97.3510 96.3576 95.4636 95.9272 97.0199
Mridangam 72.4503 83.6093 82.9139 69.5364 73.8411 83.8411 83.2450 70.5298
Shehnai 91.9868 94.2384 94.9669 93.3775 93.3113 94.2715 94.7682 93.3775
Sitar 93.5762 95.0662 92.5497 90.3974 93.4437 95.4967 93.0795 90.3974
Tabla 91.6225 95.7285 94.4371 92.7152 91.5232 95.8940 94.6689 92.7152
Tanpura 79.3377 86.8874 84.3709 81.4570 79.3709 86.3245 84.4702 81.7881
Violin 78.2450 85.6623 83.6093 80.1325 79.0066 85.6623 83.7086 80.1325

TABLE VI. PERFORMANCE OF VARIOUS ALGORITHMS ON EACH LABEL FOR EMOTIONS DATASET

One-vs-all SVM One-vs-all KNN ML-KNN M3L NMF-SVM NMF-KNN NMF-ML-KNN NMF-M3L
Label 1 70.7071 69.3266 69.5623 71.0438 74.0067 73.0640 71.6162 71.0438
Label 2 72.0539 67.5421 70.7071 73.0640 71.8855 70.2020 70.0673 73.0640
Label 3 58.1145 60.2357 56.1279 54.8822 67.6768 63.6700 63.8384 57.9125
Label 4 74.9832 74.5118 75.0842 75.0842 79.8316 77.8114 78.4512 75.0842
Label 5 71.7508 68.1818 71.2121 69.3603 74.0741 71.0101 72.9293 69.3603
Label 6 67.9798 68.0808 68.8552 69.0236 72.5253 70.6397 69.9327 69.0236


