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Abstract—The mismatch between the training data and the
test data distributions is a challenging issue while designing many
practical computer vision systems. In this paper, we propose an
unsupervised domain adaptation technique to tackle this issue.
We are interested in a domain adaptation scenario where source
domain has large amount of labeled examples and the target
domain has large amount of unlabeled examples. We align the
source domain subspace with the target domain subspace in
order to reduce the mismatch between the two distributions. We
model the subspace using Locality Preserving Projections (LPP).
Unlike previous subspace alignment approaches, we introduce a
strategy to effectively utilize the training labels in order to learn
discriminative subspaces. We validate our domain adaptation
approach by testing it on two different domains, i.e. handwritten
and printed digit images. We compare our approach with other
existing approaches and show the superiority of our method.

I. INTRODUCTION

Dataset shift is a scenario when the training set and the
test set do not follow the same underlying distribution [1].
It is is a serious concern while designing computer vision
algorithms for real world applications. For example, an OCR
system trained on a few fonts might perform badly on a novel
test font if the distribution of the characters in the test font is
very different from that of the training fonts. The problem is far
more challenging when one is interested in adapting a classifier
trained on a printed data set to a handwritten character data set
like MNIST [2]. In this paper, we address this specific domain
adaptation problem.

We first conduct a toy experiment to motivate how the
performance of the simple k-nearest neighbor based classifier
degrades in the presence of dataset shift. For this experiment,
we consider the task of classifying digit images in presence of
dataset shift. The two domains we consider for the experiment
are handwritten and printed digits. In order to classify test
images from the target domain, we determine the nearest
neighbors from the labeled source domain images based on
their Euclidean distance to the test image. The test image
is then assigned the majority label of the k nearest source
domain images. Few of the test images and their corresponding
nearest neighbors has been shown in Figure 1. We observe that
for the majority of cases, the source domain samples would
misclassify the target domain test image. Hence, in presence of
dataset shift, a source domain classifier might perform badly
on the target domain.

Machine learning algorithms which are designed with
mechanisms for tackling the dataset shift are called Domain
Adaptation (DA) algorithms. In most of the DA algorithms,
following scenario is assumed:
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Fig. 1.  Test images from target domain and the corresponding nearest
neighbors from the source domain are shown. Acronym hw stands for
handwritten domain and p stands for printed domain. The source and target
domains are p and hw for the results on the left; hw and p for the results on
the right. Nearest neighbor classifier performs poorly at both the cross domain
classification tasks.

1)  The training dataset (source domain) has plenty of
labeled examples.

2)  The learned model has to be tested on a test dataset
(target domain) which may have a different distri-
bution. Sufficient amount of unlabeled target domain
data is available, apart from this few labeled exam-
ples from the target domain may be available while
learning the model.

DA algorithms can be broadly categorized into two types:
classifier adaptation based or feature adaptation based. Clas-
sifier based DA techniques such as [3] and [4] use plenty
of labeled data from source domain and some labeled data
from the target domain to learn a classifier which performs
well on the target domain. Feature based DA approaches such
as [5] and [6] try to reduce intraclass variations across the
source and target domains. The feature based approaches can
be further divided into two categories, semi-supervised or
unsupervised, depending on whether few labeled examples
from target domain are available or not. A review of different
DA approaches for statistical classifiers can be found in [7].

Subspace based DA techniques such as [8], [9] and [10] are
becoming a popular means of doing unsupervised DA. Recently



a subspace alignment based unsupervised DA approach has
been presented in [11]. The central idea of their work is to
align the source and target subspaces and then project all
the data points to their respective aligned subspace before
the classification. They model the source subspace by the
eigenvectors obtained by doing PCA over the source domain
and similarly for the target subspace. They align the source
subspace with the target subspace by learning a transformation
matrix. In their approach, however, label information present
in the source domain is not being utilized while learning
the subspaces. Also, PCA aims at maximizing the variance
of the projected data but does nothing to preserve the local
neighborhood inherent in the original space. Keeping in mind
these two facts, using PCA for modeling subspaces might lead
to less discriminative subspaces.

Our current work is an unsupervised subspace alignment
based DA approach, similar to [11]. We use Locality Pre-
serving Projections (LPP) described by Niyogi and He [12]
for modeling the subspaces. LPP builds an adjacency graph
using neighborhood information from the data set. Once the
adjacency graph is formed, LPP finds those projection direc-
tions which keep the connected points in the graph as close
as possible. This technique preserves the local neighborhood
information present in the original space. Note that while
forming the adjacency graph, LPP uses closeness of points
based on Euclidean distance. Hence, it does not utilize any
label information while finding the projection directions. To
effectively use the labels to obtain a discriminative subspace,
we use a supervised version of the LPP for learning the
source subspace. As labeled examples are not available in
the target domain, we use the original version of the LPP for
learning the target subspace. Once the source and the target
subspaces are obtained, we align the two subspaces by learning
a transformation. The data points are then projected to their
respective subspace before doing classification. Following are
the highlights of our subspace alignment based DA approach:

1)  We use label information from the source domain
while learning the subspaces. This results in basis
vectors which are discriminative in nature and hence
more suitable for the classification task.

2)  We use LPP for modeling the subspaces. This pre-
serves the local neighborhood of the data points from
the original space to the projected subspace.

3) The subspaces can be learned directly by solving a
generalized eigenvalue problem.

4)  We introduce a dataset comprising of two domains for
validating our DA approach. The dataset has sufficient
number of examples for each category.

For validating our DA algorithm, we pick the task of
classifying digit images in the presence of dataset shift. The
two different domains we use in our experiments are printed
digits and handwritten digits. Handwritten digits are obtained
by randomly sampling a subset of images from the MNIST
database [2]. For the printed domain, we create a dataset of
printed digits consisting of 300 fonts. Now, our DA problem
can be stated as: Given labeled digit images from one domain
and unlabeled digit images from another domain, classify the
unlabeled images.

II. RELATED WORK

A lot of work has been done in the natural language
processing community regarding DA for various tasks such as
sentiment classification, statistical machine translation, parts
of speech tagging etc [13], [14], [15], [16], [17]. DA is also
relevant for a number of Computer Vision tasks. There has
been a lot of interest in DA techniques after the seminal work of
Saenko et al. [5] in the area of object recognition. The authors
present a supervised DA approach where corresponding image
pairs across the two domains are used to learn a transformation
to map points from the source domain closer to the same
category points in the target domain. Kulis e al. [6] describe
another supervised approach based on similar ideas. Gopalan
et al. [8] present an unsupervised DA approach where source
and target subspaces are points on a Grassmann manifold. They
sample points along the geodesic between the source subspace
and the target subspace to obtain intermediate subspaces. The
data points are projected along all the intermediate subspaces
to obtain a domain independent representation. Gong et al. [9]
propose a geodesic flow kernel based approach and instead
of sampling finite number of subspaces along the geodesic
from source subspace to target subspace, they integrate over
infinite number of intermediate subspaces. Ni er al. [10]
present an unsupervised DA approach based on sparse coding
where several dictionaries are learned staring from a dictionary
learned from the source domain. Here each of the dictionary
represents an intermediate domain between the source and
the target subspace. Then the data points are projected over
all the intermediate subspaces using these dictionaries. Qiu
et al. [18] learn aligned dictionaries from multiple domains.
This is a supervised approach as they use correspondence
information across domains. Jhuo er al. [19] present a low
rank reconstruction based DA strategy where source data points
are transformed to an intermediate domain where they can
be represented as a linear combination of the target domain
data points. The intermediate representation is then used to
transform the source domain data points to the target domain
data points. In [20], [21], the difference between the source
and target distributions is reduced by learning a latent feature
representation. Yang et al. [3] learn a SVM classifier on source
domain and adapt it for the target domain using some labeled
data from the target domain.

III. DOMAIN ADAPTATION USING ALIGNMENT OF
LOCALITY PRESERVING SUBSPACES

To obtain source and target domain subspaces, we use
Locality Preserving Projection (LPP) [12]. In its original form,
LPP does not use any label information. Hence to utilize
the label information present in the source domain to obtain
a discriminative subspace, we use a supervised version of
the LPP. We describe LPP and a supervised version of LPP
in Section III-A. This supervised version of LPP has been
proposed in [22]. We refer to the supervised LPP as SLPP.
Once the source domain and target domain subspaces are
obtained using sLPP and LPP respectively, we align these two
subspaces by learning a transformation matrix. The alignment
technique has been discussed in Section III-B. In Section III-C,
we describe our DA approach.



A. Locality Preserving Subspaces

Given a dataset with m vectors x1, 22, ..., T, in R™ and
their corresponding labels y1,yo, ..., Ym, LPP finds a set of
basis vectors A (each column of A is a basis vector) so
that the neighborhood of each of the m points is preserved
after the transformation z; = AT z;. Note that LPP does not
use the labels while finding the basis vectors. To obtain the
transformation matrix A, first an adjacency graph G = (V, E)
with m nodes is formed. Nodes 7 and j of G are connected
by an edge if the vectors x; and x; are close to one another.
Here, x; and x; are considered to be close based on either of
these two conditions :

o ||z —x;||* < e where € € R.

e z; and x; are among the k£ nearest neighbors of one
another.

The edge strength W;; between connected nodes % and j can
. [lei—=;112 .

be defined to be either e= ¢ or simply 1, here ¢t € R.

W;; is assigned a value of O if the nodes 7 and j are not

connected. The columns @ of the matrix A can be found by

solving the following generalized eigenvalue problem:

XLXTa=XXDX"a (1)

where " column of X is z;, D is a diagonal matrix such

that Dy; = > W;j and L = D — W is the Laplacian matrix.

J
Solutions of this equation are the eigen vectors that form the
columns of the transformation matrix A.

a) Supervised LPP:: Clearly LPP in its original form
does not use any label information. Hence, if two vectors z;
and z; belonging to different classes are close in original space
R™, their closeness would be preserved after the transformation
also. Such scenarios would clearly have a negative impact on
classification in the transformed space. To tackle this issue, we
also consider the label of points x; and x; while forming the
adjacency graph G. Hence the label aware closeness conditions
can be given as:

o \|xi—:cj|\2<eand y; = y; ; where € € R.

e 1x; and z; are among the %k nearest neighbors of one
another and y; = y;.

here y; and y; are labels of x; and x; respectively. The
remaining steps of sLPP are same as that of LPP. Clearly, sLPP
would only preserve the intra class neighborhoods.

B. Aligning subspaces

Assume that both the source domain and the target domain
data points lie in R". The mg data points from source domain
are arranged as column vectors of the n X mgs matrix X
and similarly the m, data points from the target domain are
arranged in the n X m; matrix X;. The ms dimensional column
vector Y, contains the labels of each of the source domain
examples. Also, assume that the subspaces corresponding to
the source domain and the target domain are known and each
of the subspaces are represented using k basis vectors. Let the
source subspace be represented by the n x k& matrix A; whose
columns are the source domain basis vectors obtained by solv-
ing the generalized eigenvalue problem given in Equation 1.

Algorithm 1 Locality Preserving Subspace Alignment(LPSA)

Input: source vectors X, source labels Yy, target vectors X4,
constant 3
Output: transformed vectors Z,, Z;
Ag + sLPP(Xy)
Ay < LPP(Xy)
M + AAT(ALAT + 817t
727 « ATMTX,
zl « AT X,

Similarly, the target subspace can be represented by the n x k
matrix A; whose columns are the target domain basis vectors.
We want to find a transformation which aligns A, with A;. We
model the transformation using a n x n matrix M. To obtain
M, we minimize the following objective:

IMAs = Al + BIIMII% @

where the first term tries to align the two subspaces, the second
term is a regularizer and S is a constant. Solution to this
equation can be obtained in closed form as:

M = A AT (A AL + 1)~ 3)

here I is an identity matrix. M A, is the transformed source
domain subspace which is aligned with the target domain
subspace.

C. DA by aligning subspaces

In [11], an unsupervised domain adaptation technique is
presented where the source and the target subspaces are
aligned and the samples are then projected to their respective
subspaces. In unsupervised scenario for domain adaptation, we
have plenty of labeled data available in the source domain
whereas only unlabeled data is available in the target domain.
However, such an approach does not utilize any label informa-
tion present in the source domain. Our unsupervised domain
adaptation method, described below, uses labeled data from the
source domain as well as unlabeled data from the target domain
for learning the source and target subspaces respectively. The
authors used eigenvectors induced by doing a PCA as the basis
vectors of the subspaces. Although the eigenvectors obtained
by PCA maximizes the overall variance of the data, they do
not preserve the local neighborhood of the data points. Hence
we use LPP for obtaining the source and target subspaces.

b) DA by aligning LPP subspaces:: The goal of our
DA approach is to use such subspaces where neighborhood of
data points in the original space is preserved in the transformed
space and also to utilize the label information present in the
source domain while learning the source subspace. We describe
our algorithm for doing these in Algorithm 1. Let X be
the n X m, matrix containing the source domain examples,
where n is the dimension of each example and there are mg
such examples. Let Y; be a ms dimensional column vector
containing the labels of the source examples. Also, X; contains
the target domain examples. The Algorithm 1 takes as input
the source domain points X, target domain data points X; and
the labels of source domain data points Y and outputs the data
vectors in the respective aligned subspaces, i.e. Z; and Z;. In
order to utilize the source labels, the algorithm uses SLPP to
learn the source subspace Ag. Target subspace A, is learned



by LPP. Once A and A; are obtained, the two subspaces are
aligned using the technique mentioned in Section III-B. The
source and target domain data points are now projected over
the respective aligned subspaces represented by M A and A,
respectively as Z1 = (M A)T X, and Z] = AT X,.

D. Discussion

Most of the subspace based domain adaptation techniques,
for example [8], [9], [11] and [10] are unsupervised in nature.
A majority of these techniques ([8], [9], [10]) share a common
theme wherein they try to obtain the representation of the data
points across the intermediate subspaces between the source
and the target subspace. This helps in obtaining a domain
invariant representation of the data points. The work of [11]
is different from these approaches as they do not obtain the
intermediate representations of data points, but rather align
the source and target domain subspaces and subsequently
each data point is projected to a single subspace. All these
approaches do not utilize the label information present in
the source domain. Hence the subspaces over which they
project the data points may not be discriminative enough for
the classification task. Our approach, however, utilizes the
source domain labels and finds such a source subspace which
preserves the intra-class neighborhoods. Hence the source
subspace in our approach is discriminative in nature. We find
the target subspace and align it with the source subspace. Our
approach preserves the geometry of data points from both
the source and the target domains and also utilizes the label
information from the target obtain to obtain discriminative
subspaces which are suitable for classification.

IV. DATASET AND EXPERIMENTS

In this section, we give details about the datasets used
for the experiments and the features used for representing the
images. We also validate our domain adaptation technique by
doing nearest neighbor based classification experiments and
compare our approach with related approaches.

A. Dataset and Representation

For our experiments, we use digit images (0 — 9) from
two domains, i.e. printed and handwritten. Handwritten digits
are obtained by randomly sampling 300 images of each of
the digits from the MNIST database. These images are equally
subdivided into three sets, i.e. Train, Test and Validation set.
All the images are binarized using the thresholding technique
given in [23]. For printed digits, we obtained 300 different
fonts from the internet and generated binary images of the
digits in each of the fonts. To keep the image size same across
both the domains, all synthetic images were generated in the
same size as the images in the MNIST database, i.e. 28 x 28.
Again, the synthetic dataset was equally subdivided into Train,
Test and Validation sets.

For image representation, we use histogram of oriented gra-
dient features (HOG) described by Dalal et al. [24]. The reason
for using gradient features instead of raw pixel representation
is that these features have been shown to give better results
in handwritten digits classification task [25]. HOG features are
obtained by dividing an image into square cells and computing
a histogram of edge orientations for the pixels within each

TABLE 1. TABLE SHOWS CLASSIFICATION ACCURACIES FOR CROSS
DOMAIN EXPERIMENTS. DECREASE IN PERFORMANCE WHEN THE SOURCE
AND THE TARGET DOMAINS ARE DIFFERENT(NON-DIAGONAL ENTRIES IN

THE TABLE)IS CLEARLY VISIBLE FROM THE TABLE.

Handwritten Printed
Handwritten 89.0 48.8
Printed 70.0 87.1

TABLE II. CLASSIFICATION ACCURACIES FOR DA EXPERIMENTS ARE
SHOWN. HERE, HW IS ACRONYM FOR HANDWRITTEN DOMAIN, NA REFERS
TO NO ADAPTATION SCENARIO, PCA (SOURCE) REFERS TO PROJECTING
ALL THE SAMPLES TO THE SOURCE DOMAIN PCA SUBSPACE, SIMILARLY
PCA (TARGET) REFERS TO PROJECTING ALL THE SAMPLES TO TARGET
DOMAIN PCA SUBSPACE. PCA COMBINED REFERS TO PROJECTING TO THE
COMBINED SOURCE AND TARGET PCA SUBSPACE. THE TABLE SHOWS
RESULTS RESULTS FOR THE CASE WHEN THE SOURCE AND TARGET
DOMAINS ARE HANDWRITTEN AND PRINTED RESPECTIVELY.

Source Target Method Accuracy
HW Printed NA 48.8
HW Printed PCA (source) 55.9
HW Printed PCA (target) 56.5
HW Printed PCA (combined) 56.5
HW Printed [11] 57.0
HW Printed Ours 64.8

cell. We used the cell size 8 for our experiment. The HOG
feature of each cell was concatenated to obtain a column vector
representation for each image. All the feature vectors were
normalized to have zero mean and unit variance.

B. Experiments

As described in Section IV-A, data from both the domains
has been divided equally into Train, Test and Validation
sets. For all the subsequent experiments, Train set examples
are used as labeled source domain examples and Test set
examples are used as unlabeled target domain examples. The
optimal values for subspace dimension and [ are learned
by doing classification on the validation set. We conduct a
cross domain classification experiment to observe how the
classification accuracy of a nearest neighbor based classifier
decreases in presence of dataset shift. In this experiment, we
classify target domain samples using labeled examples from
the source domain. We present the results in Table 1. We
observe that accuracy is high when training and test set belong
to same domain. Also, the classification accuracy decreases
when training and test sets are from different domains. In
Table II, we compare our subspace based DA approach with
existing techniques for the cross domain classification task. For
the no adaptation case, we directly classify the target domain
test points using labeled examples from the source domain.

We also show results for the trivial projection cases when
samples from both of the domains are projected to a common
subspace. We consider three common subspaces, source PCA
subspace obtained by doing PCA for the source domain data
points, target PCA subspace obtained by doing PCA of target
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The plots for classifcation accuracy as a function of subspace dimension has been shown. Here, we compare our subspace alignment approach with

the PCA subspace alignment approach proposed by [11]. Plot (a) corresponds to the case when source domain is Printed, target domain is handwritten. For Plot

(b), source domain is handwritten and target domain is printed.

TABLE III. CLASSIFICATION ACCURACIES FOR DA EXPERIMENTS ARE
SHOWN. HERE, HW IS ACRONYM FOR HANDWRITTEN DOMAIN, NA REFERS
TO NO ADAPTATION SCENARIO, PCA (SOURCE) REFERS TO PROJECTING
ALL THE SAMPLES TO THE SOURCE DOMAIN PCA SUBSPACE, SIMILARLY
PCA (TARGET) REFERS TO PROJECTING ALL THE SAMPLES TO TARGET
DOMAIN PCA SUBSPACE. PCA COMBINED REFERS TO PROJECTING TO THE
COMBINED SOURCE AND TARGET PCA SUBSPACE. THE TABLE SHOWS
RESULTS RESULTS FOR THE CASE WHEN THE SOURCE AND TARGET
DOMAINS ARE PRINTED AND HANDWRITTEN RESPECTIVELY.

Source | Target Method Accuracy
Printed HW NA 70.0
Printed HW PCA (source) 68.1
Printed HW PCA (target) 68.9
Printed HW PCA (combined) 70.2
Printed HW [11] 70.6
Printed HW Ours 73.2
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Fig. 3. Qualitative comparison of nearest neighbor classifier for No
Adaptation case with our DA approach. Here LPSA is acronym for locality
preserving subspace alignment. The source and target domains are printed
and handwritten respectively. The figure shows test image from target domain
and corresponding nearest neighbors from source domain.

data points and combined PCA subspace obtained by doing
PCA of samples from both the domains. We also compare
our approach with the recent subspace alignment approach of
[11]. We observe that our approach outperforms all the other
approaches. We also observe that improvement because of our
DA approach is significantly better in the case when the source
and target domains are handwritten and printed respectively.
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Fig. 4. Qualitative comparison of nearest neighbor classifier for No
Adaptation case with our DA approach. Here LPSA is acronym for locality
preserving subspace alignment. The source and target domains are handwritten
and printed respectively. The figure shows test image from target domain and
corresponding nearest neighbors from source domain.
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In Figure 2, we compare the performance of our subspace
alignment approach with the approach of [11] as the subspace
dimension is increased. We observe that for lower dimensional
subspaces, both the approaches perform badly. For higher
dimensional subspaces (around 50 and above), performance of
both the approaches improve significantly. We observe that for
the case when the source domain is handwritten and the target
domain is printed, our method consistently outperforms [11]
by a good margin. In the other case, when the source and target
domains are printed and handwritten respectively, although our
method outperforms [11], the difference between the two is not
as prominent as the previous case. In Figure 3, we compare
the qualitative results for no adaptation case with our subspace
alignment approach for the cross domain nearest neighbor
based classification task. In this figure, the source and target
domains are printed and handwritten respectively. For the
experiment, a test image is picked from the target domain and
samples from source domain are sorted based on their distance
to the test image. We can clearly observe the improvement
in the results because of our approach. Although the source
and target domain samples look visually very different from
one another, our subspace alignment algorithm transforms the



samples so that the intra-class variations across the domains is
minimized. In Figure 4, we repeat the previous experiment
taking the source and target domains as handwritten and
printed respectively. Here also, our approach performs much
better than the no adaptation case.

V. CONCLUSION

We presented an unsupervised DA strategy for classification
in the presence of dataset shift. We have shown the application
of our strategy for the task of digits classification, however,
the approach is general and can be used for other tasks. Our
approach not only learns subspaces by utilizing the source
domain labels but also preserves the local neighborhood of
data points. Hence the subspaces are discriminative in nature.
We show the superiority of our approach over other existing
approaches by showing significant improvement in classifica-
tion over the other methods.
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