
Can RNNs Reliably Separate Script and Language at Word and

Line Level?

by

Ajeet Kumar Singh, C V Jawahar

in

International Conference on Document Analysis and Recognition,
(ICDAR 2015)

Report No: IIIT/TR/2015/-1

Centre for Visual Information Technology
International Institute of Information Technology

Hyderabad - 500 032, INDIA
August 2015



Can RNNs Reliably Separate Script and Language at
Word and Line Level?

Ajeet Kumar Singh and C. V. Jawahar
Center for Visual Information Technology, IIIT Hyderabad, India.

Abstract—In this work, we investigate the utility of Recurrent
Neural Networks (RNNs) for script and langauge identification.
Both these problems have been attempted in the past with
representations computed from the distribution of connected
components or characters (e.g. texture, n-gram). Often these
features are computed from a larger segment (a paragraph or a
page). We argue that one can predict the script or language with
minimal evidence (e.g. given only a word or a line) very accurately
with the help of a pre-trained RNN. We propose a simple and
generic solution for the task of script and language identification
which do not require any special tuning. Our method represents
the word images as a sequence of feature vectors, and employ
the RNNs for the identification. We verify the method on a large
corpus of more than 15.03M words from 55K document images
comprising 15 scripts and languages. We report an accurate script
and language identification at word and line level.

Keywords—Script and Language Identification, Recurrent Neu-
ral Networks, Recognition Free Methods

I. INTRODUCTION

Recurrent Neural Networks (RNNs) have gained popularity
in recent years for many recognition tasks such as Opti-
cal Character Recognition(OCR) [1, 2], handwriting recog-
nition [3], word retrieval [4], and word spotting [5]. This
architecture has started finding more and more applications in
diverse areas of computer vision [6]. In this work, we investi-
gate the utility of RNNs for script and language identification at
the granularity of words and lines. Naturally, this investigation
has its applications in multilingual settings, where one needs
to decide the script or language before recognition or post-
processing of an incoming document image. In addition, this
work also throws light on how semantically richer tasks can
be attempted without any explicit recognition by looking at
the distribution of certain features. For example, can we find
the topic model or classify the document into an appropriate
category without an explicit textual representation? Such high-
level tasks are often attempted based on the statistics and
distribution of words or characters. In this work, we limit our
attention to the identification of script and language at the word
and line level as shown in Fig. 1. By designing an RNN that can
learn the distribution of feature vectors, we reliably identify
the scripts and language from the image itself. We empiri-
cally demonstrate the utility of RNNs for script and language
identification with experiments on a corpus of nearly 15.03M
words from 55K document images comprising 15 scripts and
languages. We argue that RNNs can be considered as a strong
contender for accurate script and language identification which
can lead us to the integrated solutions for the recognition tasks
in multilingual settings.

Many approaches proposed in the past for script and
language identification often deal at page, line or word level.

Fig. 1. Figure depicts the script and language identified at word level in
document snippets written in Roman-script (first row) based languages and
Indic scripts (second row), respectively. In the first row, red, green and blue
rectangles denote German, French and Spanish languages, respectively. In
the second row, violet, orange and brown rectangles denote Hindi, Telugu
and Malayalam scripts, respectively. Unlike the approaches in the past we
propose a method to identify the script and language at word and line level
by employing popular Recurrent Neural Network (RNNs).

At page level, script is identified by looking at the texture
and orientation of the image segments. Sptiz [7] analylzed the
individual components for script identification in document
images using attributes such as upward concavities, optical
densities, character height densities and top and bottom pro-
files. The use of texture has also been extensively used in
script identification. Tan [8] proposed to solve this problem
using a multi-channel Gabor filter. Many later attempts used
different variations of texture features computed from Gray-
level Co-occurrence Matrix, Gabor Energy, Wavelet Energy,
Local Binary Pattern [9, 10, 11, 12] for the identification
purpose. In recent years, there has been an effort to use
discriminative features learned using Convolutional Neural
Networks(CNN) for multi-script recognition [13]. These fea-
tures are automatically extracted and learned at connected
component level of the document image.

When the inherent script of document images are same, vi-
sual features are hard to separate between different languages,
especially when the identification is required at word level.
There are many attempts in the textual domain to separate
the languages. Often they use the statistics (e.g. n-gram
probabilities of characters). In the image domain, language
identification is attempted at page level or paragraph level
in the past. A class of methods have been proposed which
categorizes the characters based on a number of character
shape features such as character ascenders and descenders. For
example, [7] group the character images into a small set of
categories first. Then, based on the classification results, each
word image is converted into a word shape token. Latin-based
languages are finally determined according to the frequency
of a single word [7], word pair and word trigram. Shijian and
Tan [14] combined the script and language identification using
a document vectorization framework. They convert document



image into a vertical cut vector based on the number and
positions of vertical cut to capture the shape of the word
directly.

Our method is simple, efficient and accurate, without any
special tuning for the scripts or languages of interest. We
convert the word or line images into a sequence of feature
vectors and train the RNNs to reliably separate the script or
language. We report comparable, if not better results than the
state-of-the-art [11]. Our method also leaves lots of scope
for further improvement in performance with better features
and special adjustments (e.g. hierarchical classification, special
features for harder pairs). We believe this makes our method
very generic and applicable in a wide range of settings. We
perform the experiments on 12 Indic scripts: Hindi, Malay-
alam, Gurumukhi, Kannada, Tamil, Telugu, Bangla, Marathi,
Gujarati, Assamese, Manipuri and Odiya, and 3 Roman script
based languages: French, German and Spanish. We discuss the
method in Section II and the experimental results in Section III.

II. RNN FOR SCRIPT AND LANGUAGE IDENTIFICATION

In traditional feed-forward neural networks (FFNN), con-
nections between the nodes do not form any cycles. If we
relax this condition, and allow the cyclical connections among
the nodes, we obtain the recurrent neural networks (RNNs).
RNNs in the past have been used to handle sequential data.
RNN is a powerful classification tool, as it allows a “memory”
regarding previous inputs to persist in network’s internal state,
which can be later used to influence the network output. RNNs
are not widely popular, as they often require a longer training
process, because the error path integral decays exponentially
along the sequence [15]. Our preference for RNNs is motivated
by the fact that it has superior characteristics in several aspects.
Unlike HMM which uses the current state of input to gener-
ate any observations, RNN uses the long-short term memory
(LSTM [3]) structure to store the contextual information of
previous states. Also it does not require any explicit labeling
of all the vectors in the input feature sequences.

For the script and language identification, we use a RNN
based Bidirectional Long Short Term Memory(BLSTM) net-
work. These networks have been used in the past for printed
text [2] and handwritten text recognition [3]. This network
consists of two LSTM networks in which one network takes
the input from beginning to end while other network takes the
input from end to beginning. The individual output of both the
LSTM networks is used to predict the final output. Hence, these
networks have been known for remembering the long range of
context over several timesteps. The Connectionist Temporal
Classification (CTC) [16] is used at the output layer of RNN
network to label the unsegmented data which uses a forward-
backward algorithm. The CTC [16] layer directly outputs the
probability distribution of desired label. The output layer of
RNN network contains one node for each class label plus a
special node, (ε), which indicates “No Label”, i.e. no decision
can be made about the incoming word/line at that position.
Hence, there are K+ 1 nodes in the output layer, where K is
the number of class labels. In our system, a training sample
can be viewed as a pair of input sequential features and target
script/language label (x, z). The objective function of RNN is

Fig. 2. The architecture for RNN based script and language identification.
From left to right, the segmented line and word from the document images
are horizontally divided into two parts. Then, sequence features are calculated
from sliding windows, w. Here, m is the number of sliding windows and n
is the number of features , f , computed from a single window. These features
are then given as input to the LSTM cell of RNN to identify the script and
language of current line/word image.

then defined by:

O = −
∑

(x,z)∈S

ln p(z|x), (1)

where S denotes the training set and p(z|x) denotes the
conditional probability of label z given a sequence of feature
x. The main objective is to minimize O, which is equiva-
lent to maximization of conditional probability p(z|x). For
script and language identification, our method only uses the
script/language level annotation.

We also analyzed the network performance on various
parameter settings for our identification task. A RNN is charac-
terized by the number of nodes in hidden layer it uses, number
of hidden layers and the stopping criteria used for training. We
generally stop the RNN training once the training error rate
ceased to reduce below a certain threshold. We have observed,
experimentally, that increasing the number of hidden layers
until 3 gave better results. The best results are obtained with
the LSTM size of 50 with 3 hidden layers.

A. Representation of Words and Lines

In order to use the RNN, the input word and line images are
needed to be converted into sequential features. For this, we
use the popular profile features [2, 17], which can be used
to represent the lines and words as a feature sequence. In
this work, we calculate six profile features from every word
and image. These features are calculated using the sliding
windows of size 20 pixels with an overlap of 75%. For each
window, scanning is done from top to bottom and following
four features are computed: (F1) vertical profile(i.e. the number
of ink pixels in each column), (F2) location of uppermost ink
pixel, (F3) location of lowermost ink pixel and (F4) number
of ink to background transitions. The profile features are cal-
culated on binarized word/line images obtained using the Otsu
thresholding algorithm. We also use the gray level information
of the image to extract two features: (F5) mean value and
(F6) standard deviation of gray pixel values. All features are
normalized with respect to the image height to [0,1]. These
features are made more robust by horizontally dividing the
image into two regions and then computing the aforementioned
features for each region. Hence, we extract a total of twelve
features. The splitting of the image into two parts may seem



Scripts/Languages
D1[18] Accuracy (in %)

Books Pages Lines Words
D1-[18] D2-[11]

Line Word Ours Pati[11]

Hindi 34 5K 133K 1.66M 96.6 85.8 92.3 96.2

Malayalam 31 5K 93K 0.96M 99.2 99.0 96.2 93.3

Gurumukhi 33 5K 125K 1.62M 97.9 93.2 92.8 93.6

Kannada 27 3.8K 90K 0.72M 98.0 93.8 93 93.8

Tamil 23 4.8K 88K 0.64M 98.5 98.1 95.9 95.2

Telugu 28 5K 102K 0.83M 98.4 96.0 91.5 92.3

Bangla 14 2.8K 50K 0.95M 98.6 98.5 94.3 96.2

Marathi 20 5K 127K 1.44M 97.6 95.8 - -

Gujarati 26 5.2K 124K 1.25M 98.6 98.4 94.5 95.5

Assamese 19 3.5K 73K 0.59M 95.3 93.3 - -

Manipuri 25 3.6K 69K 0.72M 98.2 71.4 - -

Odiya 17 5K 109K 1.44M 99.5 97.2 96.4 94

TABLE I. TABLE DEPICTS THE DETAILS OF DATASET (D1) [18] USED
FOR SCRIPT AND LANGUAGE IDENTIFICATION. IT DEPICTS THE

PERFORMANCE OF OUR METHOD ON THE D1 AT WORD AND LINE LEVEL.
IT ALSO SHOWS THE COMPARISON OF OUR METHOD AGAINST GABOR

FEATURES WITH SVM CLASSIFIER ON D2 [11]. SINCE, D2 [11] DIDN’T
SHOW ANY RESULTS ON MARATHI, ASSAMESE AND MANIPURI SCRIPTS,

WE ARE NOT COMPARING ON THESE LANGUAGES.

insignificant, but it helps in differentiating similar symbols
which appear in different areas. Fig. 2 shows the full pipeline
for script and language identification, depicting the various
stages of identification framework from feature representation
to identification using RNN.

B. Implementation and Evaluation

The script and language of a line or word image is
identified by presenting the corresponding sequential features
to the RNN. For this, we train integrated neural networks for
both scripts and languages for identification at word and line
level. For training the RNN, the initial parameters, number of
hidden nodes, number of hidden layers are obtained by cross-
validation. Number of input nodes in network is equal to the
number of features presented to it (12 in our case) and number
of output nodes is same as the number of target labels (in our
case 12 nodes for script and 3 nodes for language). For all the
experiments, we have used a LSTM size of 50 and number of
hidden layers is set at 3. All these experiments were conducted
on a mid-level desktop PC having 16GB RAM and a 2.3GHZ
processor. On an average, training was conducted for 50 epochs
for all the experiments mentioned below. The implementation
details specific to script and language identification are ex-
plained in detail in sections III-A and III-B, respectively.

III. RESULTS AND DISCUSSIONS

In this section, we validate our method on a spectrum of
scripts and languages. We present the experimental results of
our proposed script and language identification method at both
word and line levels.

A. Script identification

We have tested the proposed method on 12 different scripts
of Indian multilingual dataset. For this evaluation we have

taken around as many as 5000 pages and as few as 2800
pages from each script, amounting to 50K pages and a total
of 12.84M words. This dataset has emerged as a challenging
benchmark data (D1) [18] within Indian OCR research com-
munity. Almost all of these scripts and languages have their
own unique way of representing the character symbols. For
example, the scripts of the languages such as Hindi, Bangla
and Gurumukhi uses shirorekha (headline) over its words while
the languages such as Malayalam, Tamil, Telugu and Kannada
are more curved in nature. Table I shows the details of the
printed dataset which we have used for our experiments.

To train the RNN for word level script identification we use
960K words and 240K words for validation from all the scripts.
Training the network for word level script identification took
an average of 3.75 hours per epoch. The trained network is then
tested on 11.64M words. It took 0.1 ms to identify the script
of a word. At line level too, a separate network (with same
architecture) is trained with 120K lines followed by validation
with 60K lines from all the scripts . Training time in this task
took an average of 4.11 hours per epoch. The trained network
is then tested on 1.003M lines. Script identification of a single
unseen line took 0.5 ms. Note that as the average length of
input sequence increases, training the network becomes costly
with respect to time

We have performed the experiments at line and word level
on reported dataset (D1). Table I shows the accuracy of our
script identification method at line and word level for all
the scripts. At word level script identification, our method
achieves an average accuracy of 93.96% and at line level,
we report an average accuracy of 97.90%. At word level, we
report a maximum accuracy of 99% for Malayalam script.
And for Manipuri, report a minimum accuracy of 71.4%
due to presence of visually similar characters in the script
from Assamese script. Similarly, at line level we are getting
a maximum accuracy of 99.5% for Odiya and a minimum
accuracy of 95.3% for Assamese.

In order to validate the generality of the work, we compare
it with the method proposed in [11] on the reported dataset
(D2). Their word image dataset (D2) contains about 220K
words from eleven different Indian scripts. The method in [11]
uses Gabor features with SVM as classifier to identify the
scripts of the incoming word images. We train the RNN with 7K
words and test it with remaining 13K words from each script.
In Table I we report the accuracy of both these methods on
this dataset (D2). Both the method yield comparable results
(i.e., 94.59% of our method against 94.8% of [11]). As can
be seen, our method which uses naive features yield results
that are comparable to those that are evolved over years of
research. (Note that wide variety of texture features based
on gabor and wavelets are tried in the past [11, 9, 19] and
this was one of the top performing descriptors in this class.)
In addition, our method uses a simple multiclass classifier
and not a hierarchical handcrafted classifier architecture as
in [11]. It can also be seen from the Table I, our method
on D2 gives an accuracy 94.10% whereas [11] reported an
accuracy of 94.44%. One may also note that D2 does not
contain scripts (such as Manipuri, Assamese and Marathi)
which can get confused with others present in the dataset.
On this subset of scripts, we report an average performance
of 95.55%, which is better than 94.44% as reported by [11].



Fig. 3. Script identification Results: Some failure cases in script identification
at word level. First row, first column shows Kannada words identified as Telugu
and the second column in same row shows Telugu words identified as Kannada
words. In second row, first column shows the Gurumukhi words as Hindi and
in second column of the same row, Hindi words identified as Gurumukhi.
Similarly in the third row of the figure, first column shows Bangla words
identified as Assamese and vice versa in second column.

Using multilayer perceptrons (MLP) for script identification
at word level, yields an average baseline accuracy of 74.67%
against our method’s 93.96%.

Scripts in Indic languages share some minor or major
similarities with each other. For example, Hindi, Bangla and
Gurumukhi have shirorekha at top of their wordset. Therefore
there is a probability that a Hindi word can be confused with
a Gurumukhi or a Bangla word, which also holds true for
Gurumukhi and Bangla words. Also, there are some characters
in these scripts which are visually similar. Fig. 4 shows the
confusion matrix at word level for all the 12 Indian multi-
lingual scripts. It is evident that aforementioned observation
holds true as Hindi is confused with Bangla and Gurumukhi
1.46% and 0.91% of words, respectively. Similarly, Gurumukhi
words are identified as Hindi as much as 2% of times and
Bangla 1.7%. In confusion matrix table it can also be seen that
2% of Kannada words are being confused with Telugu words
and 1.81% of Telugu words are confused as Kannada words.
This is due to the fact that Kannada and Telugu alphabets
are essentially the regional calligraphic variants of a single
script. Assamese, Oriya and Bangla also look similar as they
all originated from an ancient Siddhông script. Typographical
differences between these scripts are used to identify the al-
phabets and their script. Hence, it can be seen in the confusion
matrix that Assamese words are identified as Bangla 0.51% of
the times, and as Oriya 0.54% times. Similarly, Oriya words
are identified as Assamese 0.95% times. Some failure cases
in script identification at word level has been discussed in
Fig. 3, where we show the effect of observations made above,
on identification at word level.

For line level script identification, we report better results
than the identification at word level. We observed through our
experiments that longer sequential features, even at word level,
gives a good accuracy. Hence, it is natural that the accuracy
at line level will be better than the word level accuracy as
RNN becomes more confident with longer sequences. Also,
we find that the assumptions which we made above, at word
level hold true for the line level too. Although, the accuracies
of Hindi, Bangla and Gurumukhi has increased at line level,
it is observed that there are still some confusions, albeit low,
among these due to their textual properties. For Kannada and
Telugu too, there are some confusion due to similarity of the
scripts they are written in.

H
indi

M
alayalam

G
urum

ukhi
K
annada

Tam
il

Telugu

B
angla

M
arathi

G
ujarati

A
ssam

ese
M

anipuri
O

riya

 2.00

 0.47

 2.63

 1.46

 0.76

 0.41

 0.44

 1.81

 1.43

 0.68

 2.44

 0.45

 0.92

 1.94

 0.47

 0.51

10.64

 1.77

 0.51

26.04

 0.95

 5.39

 1.44

 0.54

 2.24

85.76

99.02

93.15

93.83

98.12

96.03

98.55

95.78

98.44

93.27

71.35

97.16

Hindi

Malayalam

Gurumukhi

Kannada

Tamil

Telugu

Bangla

Marathi

Gujarati

Assamese

Manipuri

Oriya

Fig. 4. Confusion Matrix for the script identification at word level. The blank
spaces in the graph denotes predictions that are less than 0.40%.

B. Language Identification

Encouraged by the performance of the method on script
identification, we also did experiments to identify the inherent
language of a document image at line as well as word level.
For this we use three Roman script based languages: French,
German and Spanish; two Devanagari script based languages:
Hindi and Marathi; two Bangla script based languages: As-
samese and Manipuri which also happens to share some
vocabulary. Table II shows the printed dataset details for
Roman-based languages. We have used around 2000 pages for
each language, amounting to 2.19M words and 154K lines.

For language identification at word level, we train the RNN
(with the same architecture as mentioned in section III-A) with
600K words followed by validation with 150K words from all
Roman-script based languages. Training took approximately 2
hours per epoch. For testing, around 1M words were used. To
identify the language of a word, it took an average of 0.1 ms.
For language identification at line level, we train and validate a
different network with same architecture with 30K lines 15K
lines, respectively, from all the languages. Training took an
average of 0.8 hours per epoch. Trained network is then tested
with 100K lines.

For language identification, we are showing the accuracy of
all the Roman-script based languages in Table II. We achieve
an average accuracy of 93.39% at word level on our dataset.
In Table II we also show the confusion matrix for language
identification for the languages at word level. For language
identification at line level, the average line level accuracy is
shown in also shown in Table II. Using RNN, we achieve an
average accuracy of 95.25% for language identification at line
level.

We also perform language identification at word and line
level on some Indian languages that share script and vo-
cabulary. We achieve a fairly good accuracy for all these
languages. As it can be seen in Table I, Hindi and Marathi,
which share Devanagiri script, obtain an accuracy of 85%
and 95.8% respectively. Assamese and Manipuri, which share



Language
Dataset Confusion Matrix (%) Accuracy (%)

Books Pages Lines Words French German Spanish Line Word

French 6 1.9K 51K 0.71M 93.32 3.47 3.21 94.51 93.32

German 4 2.1K 55K 0.74M 5.44 92.19 2.37 94.77 92.19

Spanish 5 1.9K 48K 0.63M 3.63 1.70 94.67 96.47 94.67

TABLE II. TABLE DEPICTS THE ROMAN SCRIPT-BASED DATASET USED
FOR LANGUAGE IDENTIFICATION. IT SHOWS THE CONFUSION MATRIX FOR

LANGUAGE IDENTIFICATION FOR ROMAN-SCRIPT DATASET. IT ALSO
DEPICTS THE PERFORMANCE OF OUR METHOD ON THE REPORTED

DATASET AT WORD AND LINE LEVEL.

Fig. 5. Language Identification Results: Some failure cases for language
identification at word level for both the Indian and Roman-script based dataset.
In the first row, the first column shows the French words identified as Spanish
and the second column shows Spanish words identified as French. In the
second row, the first column shows the German words identified as French
and the second ones shows French words identified as German. For the third
row, the first column shows the Marathi words identified as Hindi, and vice
versa in second column. In the fourth row, the first column shows the Assamese
words identified as Manipuri and vice versa in the second column.

both script and vocabulary, obtain an accuracy of 93.27% and
71.4% respectively. At the line level too, the Indian languages
perform better than that at word level due to longer sequential
features. Table I shows the accuracy at line level for the Indian
languages sharing the script as well as some vocabulary.

Lexical similarity is a measure of the degree to which
the word sets of two given languages are similar. A lexical
similarity of 1 means the complete overlap between vocabu-
laries whereas 0 means no overlap. Lexical similarity of French
and German is 0.29, hence, there are 29% common words in
French and German language, similarly French and Spanish
has 75% of vocabulary overlapping (more information can be
found at [20]). Therefore, it is evident in Table II that 3.63%
of Spanish words are confused with French and 3.21% of
French words as Spanish. Similarly, 3.47% of French words are
confused as German and 5.44% of German words as French.
In Indian languages, Hindi and Marathi share a common script
of Devanagiri. Hence, it can be seen in the confusion matrix
in Fig. 4 that 2.64% of Marathi language words are confused
with Hindi words. And 10% of Hindi words are confused as
Marathi. In Fig. 4, it can also be seen that 26% of Manipuri
words are confused as Assamese words, and 5.7% of Assamese
words are confused as Manipuri words. The failure cases in
language identification at word level for both Indian languages
and Roman-script based languages are shown in Fig. 5.

IV. CONCLUSION

Script and language identification in multilingual setting
is very important in optical character recognition tasks. In
this work, we present a simple, efficient and accurate method

to predict the inherent script or language at word and line
level with minimal evidence, using a pre-trained RNN. This
work comprises of two important components. First component
computes the sequential feature from an unsegmented word
image. The second component, LSTM is used to classify
the incoming word image into its corresponding scripts and
languages. Also, experiments on a public dataset show that
even with naive features, RNNs achieves good if not better
results than the state-of-the-art method. We also observe that,
RNNs are able to characterize the statistical distribution of
features computed over vertical segments. We hope that this
can help in other forms of recognition free tasks in document
image understanding.

Acknowledgements. This work is supported by Ministry of
Communication and Information Technology, Government of
India, New Delhi.

REFERENCES

[1] T. Breuel, A. Ul-Hasan, M. Al-Azawi, and F. Shafait, “High-
performance ocr for printed english and fraktur using lstm
networks,” in ICDAR, 2013.

[2] P. Krishnan, N. Sankaran, A. K. Singh, and C. V. Jawahar,
“Towards a robust ocr system for indic scripts,” in DAS, 2014.

[3] A. Graves, M. Liwicki, S. Fernandez, R. Bertolami, H. Bunke,
and J. Schmidhuber, “A novel connectionist system for uncon-
strained handwriting recognition,” PAMI, 2009.

[4] R. Jain, V. Frinken, C. V. Jawahar, and R. Manmatha, “Blstm
neural network based word retrieval for hindi documents,” in
ICDAR, 2011.

[5] V. Frinken, A. Fischer, R. Manmatha, and H. Bunke, “A novel
word spotting method based on recurrent neural networks,”
PAMI, 2012.

[6] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet
classification with deep convolutional neural networks,” in NIPS,
2012.

[7] A. Spitz, “Determination of the script and language content of
document images,” PAMI, 1997.

[8] T. Tan, “Rotation invariant texture features and their use in
automatic script identification,” PAMI, 1998.

[9] A. Busch, W. Boles, and S. Sridharan, “Texture for script
identification,” PAMI, 2005.

[10] M. Ferrer, A. Morales, and U. Pal, “Lbp based line-wise script
identification,” in ICDAR, 2013.

[11] P. B. Pati and A. G. Ramakrishnan, “Word level multi-script
identification,” PR Letters, 2008.

[12] S. Chanda, S. Pal, K. Franke, and U. Pal, “Two-stage approach
for word-wise script identification,” in ICDAR, 2009.

[13] S. Rashid, F. Shafait, and T. Breuel, “Discriminative learning
for script recognition,” in ICIP, Sept 2010.

[14] L. Shijian and C. Tan, “Script and language identification in
noisy and degraded document images,” PAMI, 2008.

[15] S. Hochreiter and J. Schmidhuber, “Long short-term memory,”
Neural Computing, 1997.

[16] A. Graves, S. Fernández, F. J. Gomez, and J. Schmidhuber,
“Connectionist Temporal Classification: Labelling Unsegmented
Sequence Data with Recurrent Neural Networks,” in ICML,
2006.

[17] T. M. Rath and R. Manmatha, “Features for word spotting in
historical manuscripts,” in ICDAR, 2003.

[18] C. V. Jawahar and A. Kumar, “Content-level Annotation of
Large Collection of Printed Document Images,” in ICDAR,
2007.

[19] G. D. Joshi, S. Garg, and J. Sivaswamy, “A generalised frame-
work for script identification.” IJDAR, 2007.

[20] “Ethnologue - webpage,” https://www.ethnologue.com/.


