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Abstract. Short internet video clips like vines present a significantly wild dis-
tribution compared to traditional video datasets. In this paper, we focus on the
problem of unsupervised action classification in wild vines using traditional la-
beled datasets. To this end, we use a data augmentation based simple domain
adaptation strategy. We utilize semantic word2vec space as a common subspace
to embed video features from both, labeled source domain and unlabled target
domain. Our method incrementally augments the labeled source with target sam-
ples and iteratively modifies the embedding function to bring the source and target
distributions together. Additionally, we utilize a multi-modal representation that
incorporates noisy semantic information available in form of hash-tags. We show
the effectiveness of this simple adaptation technique on a test set of vines and
achieve notable improvements in performance.

1 Introduction

Action classification is an active field of research due to its applications in multiple
domains. The last decade has seen a significant paradigm shift from model-based to
data-driven learning for this task. Over the years, increasingly complex and challeng-
ing action recognition datasets such as UCF101, HMDB, Hollywood, etc. have been
introduced [2, 12, 16, 9, 11, 23, 17]. However, with growing popularity of social me-
dia platforms and mobile camera devices, there is unprecedented amount of amateur
footage that is significantly wilder and complex than curated datasets. In this paper, we
analyze this problem on a particular distribution of short video clips shared on the social
media platform vine.co, known as vines. Vines are six second long, often captured by
hand-held or wearable devices, with cuts and edits, and present a significantly wilder
and more challenging distribution. The action classifiers trained using traditional distri-
butions such as UCF, HMDB, etc. cannot generalize or adapt to wild distributions like
vines [25, 6, 24]. Recent methods that use increasingly complex features from large-
scale dictionaries and Convolutional Neural Networks (CNN) are showing promise in
building more generalizable systems. However, these methods require supervised train-
ing with large-scale labled data. Data from Internet sources, like vines, is ever increas-
ing and manually labeling such data is tedious and expensive. A better approach is to
expand the scope of existing datasets and classifiers.

We present a simple incremental approach to transfer knowledge from a tradi-
tional labeled source dataset to a wilder unlabeled target dataset. The class of methods
that try to mitigate the bias/shift between different distributions/datasets fall under the
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category of transfer learning methods. Recent approaches along these lines include
works on dataset bias shift[25, 19], domain adaptation [20, 10], zero-shot learning
[22, 8], heterogeneous/multi-modal transfer [13] and other transfer learning methods
[3, 1, 32, 18]. However, most of these methods work on image/object category prob-
lems or text-data problems and their application to web-scale wild video distributions
remain untested. Wang et al. [29] use hierarchical category taxonomy tree, designed by
professional linguists, to categorize Youtube videos. However, this approach cannot be
extended for action classification as it is difficult to hand-craft a generalized taxonomy
for actions. Sultani and Saleemi [24] propose a feature encoding that accounts for the
bias introduced by dataset specific backgrounds for video classification. However, this
method requires both source and target videos to be labeled.

We propose a simple, unsupervised approach that iteratively adapts the base classi-
fiers trained on a labeled training set UCF50 to an unseen, unlabeled test set of vines, by
incrementally augmenting the training set with vines. Adopting the terminology of do-
main adaptation and transfer learning literature, we call the UCF50 labeled set an aux-
iliary training set and the unlabeled vines a target training set. We leverage a semantic
space word2vec [14] as a common reference space to bring together the auxiliary and
the target domains. To embed video features in this space, we learn a neural-network
based embedding function [22]. We first learn this embedding using labeled samples
of the auxiliary set and project both labeled and unlabeled samples from auxiliary and
target sets into the semantic space. Figure 1(a) shows a t-Distributed Stochastic Neigh-
bor Embedding (t-SNE) visualization of seven classes after projection into the semantic
space. The auxiliary samples are represented by crosses, color-coded as per their class
labels; the target samples are represented by yellow triangles. It can be clearly seen that
the auxiliary and target domains are disparate. While auxiliary training samples (UCF)
form separable clusters, most target training samples (vines) are cluttered and insepara-
ble in the semantic space. Though it is not possible to reliably classify all target samples
in this space, we use a multi-modal scoring function to select a few vine samples from
the target that can be classified with high confidence. Our multi-modal scoring function
also incorporates the knowledge from user-given hash-tags for classification. We add
these samples to the labeled auxiliary training set, and retrain the embedding function
using the augmented auxiliary training set. After several iterations of this process, aux-
iliary set is augmented with sufficient samples from the target distribution. Figure 1(b)
shows the t-SNE visualization of the embedding after several iterations of augmenta-
tion and retraining. It can be seen that, after iterations, many more target samples merge
with the clusters formed by the auxiliary samples.

A recent work [31] also leverages semanatic embedding for recognizing new ac-
tion categories in a zero-shot learning framework for traditional datasets (UCF and
HMDB). However, the focus of our work is on learning cross-domain action classifi-
cation for wild social web-videos. Also, our method incrementally relearns the neu-
ral network allowing more non-linearity in the embedding function and utilizes multi-
modal features that include motion features and hash-tags. The nature of this work is
experimental and exploratory. We perform experiments for 7 action classes of UCF50
dataset and show that this surprisingly simple strategy works effectively and yields
precision, recall, and F-measure improvement of 2% to 10% on an unseen vines test
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(a) (b)

Fig. 1: t-SNE Visualization of semantic embedding of UCF and Vines before and after
iterative training. The crosses represent auxiliary (UCF) samples and are color-coded
according to their class labels. The yellow triangles represent unlabeled target training
samples (vines). After iterations, many more vines merge with the clusters formed by
the auxiliary samples. The leftover vines possibly belong to none of the action classes
and hence do not merge into any cluster.

set. Please visit our web-page for more information and research resources, https:
//cvit.iiit.ac.in/projects/actionvines/ .

2 Our Approach

The distribution of vines is widely different from traditional action classification datasets
in terms of appearance, quality, content, editing, etc. For a classifier to work well for
vines, it needs to be trained on a labeled set of vines. Except, manually annotating such
ever-altering web data is tedious and impractical. Vines do come with user-given tags,
and description but such tags cannot be considered reliable labels. Figure 2 shows stills
from vines retrieved for two action words ‘cycling’ and ‘diving’ as queries. Though
both sets of vines are hash-tagged with their respective action words, some vines are
only related to the concept and not the human action, while some vines are completely
unrelated to either the concept or the action. We tackle the problem of improving ac-
tion classification for vines by utilizing labeled samples from an auxiliary domain and
unlabeled samples from a target domain with noisy and weak semantic information. In
the following subsections, we provide details of data collection, multi-modal feature
representation, and iterative training.

2.1 Data collection and statistics

We work on seven of the fifty action categories of UCF50 action recognition dataset.
These seven classes are selected based on the sufficient availibility of related videos
on vine.co. The labeled samples of UCF50 belonging to these seven classes form our

https://cvit.iiit.ac.in/projects/actionvines/
https://cvit.iiit.ac.in/projects/actionvines/
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Fig. 2: Stills from sample vines (short video clips) retrieved for two queries, ‘cycling’
(top) and ‘diving’ (bottom). The vines in the red boxes are semantically related concepts
to the query words but are negative examples for the query human action. The vines in
the green boxes are positive examples for the respective human actions. The high intra-
class variability is worth noting.

auxiliary domain/ auxiliary set and the vines form our target domain/ target set. To
collect relevant vines for each action category, we use the action term as the query
word and download the top 450 retrieved vines per category (restricted by the vine
API). The retrieval of vines is based on the occurrence of the query word in either
the corresponding ‘hash-tags’ or the description. We discard the vines that do not have
the action category word as one of the hash-tags. Thus, we have a total of 2357 vines
with the associated tags. This forms our target domain. We divide this set into a target
training set and a test set. Our incremental and iterative training for augmenting the
auxiliary domain operates on the target training set and we report the performance of
the final classifier on the test set. All the retrieved vines are manually annotated by three
human operators but we never use the labels of the target training set in anyway for our
training but only to gather data statistics, making our approach unsupervised.

Table 1 shows the distribution of samples across classes and auxiliary, target train,
and test sets. Since, the hash-tags are noisy, many vines in the target set do not have
the respective action (false positives). The test set is pruned to remove all such false
positives. However, since our training is unsupervised, we do not alter the target train
set. The first two rows in Table 1 shows the total samples in the target train set and the
number of true positives for each class. We provide this statistic to demonstrate the fact

Action Class Billiards Cycling Diving Golfswing Horseride Kayaking Push up

Target Domain
(vines)

Train (total) 267 280 258 268 233 284 286
Train (true +ves) 100 92 133 151 106 73 178
Test 24 27 39 34 29 16 40

Auxiliary Domain
(UCF)

129 119 124 120 169 129 90

Table 1: Number of samples in auxiliary and target sets across classes. For some classes
the true positives are less than 25% of the total samples in the target train set. This
imbalance indicates the fact that ‘hash-tags’ can only provide noisy labels and other
modalities need to be utilized for effectively labeling target train vines.
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that hash-tags are extremely noisy labels. This fact can also be observed from leftover
vines in Figure 1.

2.2 Feature Representation

Many feature representations based on spatio-temporal constructs [2, 15, 30], appropri-
ate human body modeling [4, 5], successful image features [21, 7, 28] are proposed in
action recognition literature. Our approach leverages multi-modal feature representa-
tion to reliably augment the auxiliary set with target samples. We use motion features,
semantic embedding features, and tag-distribution features in our method. We explain
these features and the related terminology in this section. More details on parameters
and code are given in section 3.

Motion features: Motion encoding is the most preferred feature representation for ac-
tion recognition training. We compute the fisher vector encoded improved dense tra-
jectories (IDT) [26] for samples of both auxiliary and target sets. IDT features include
histogram of oriented gradients (HoG), histogram of optical flow (HoF), and motion
boundary histogram (MBH) descriptors across frames. To classify these features, we
use linear support vector machines (SVM).

Semantic features: Mikolov et al. [14] provide a mechanism to represent a word as a
vector in a 300-dimensional vector space, commonly known as word2vec space. Socher
et al. [22] proposed a neural network based supervised method to learn a non-linear
function that embeds visual (image) features into the word2vec space based on the
corresponding object category words. We use this framework and learn a semantic em-
bedding function that projects motion features (fisher vectors) into the word2vec space
corresponding to the action word. We call the resulting 300-dimensional representation,
embedded semantic features, or simply semantic features.

Tag Features: Hash-tags can be seen as noisy semantic labels of a video provided by the
users. We assume that similar videos will have similar tags. Tagged words are usually
slangs which are used to describe a video in an informal manner and hence don’t strictly
adhere to the word2vec representation of word space. Hence, we utilize tag features in
a separate framework. First, we collect all tags associated with the vines in our target
dataset and perform stemming to obtain cleaner, non-redundant set of tag-words. We
then create a histogram of all tag-words and form a tag dictionary by removing all
singleton words. A tag feature for a vine is simply a binary vector of the dimension
of the dictionary (1048 in our experiment), such that the value in ith position indicates
whether the ith tag in the dictionary is associated with the vine or not.

2.3 Iterative Training

Figure 3 shows a block diagram of the proposed iterative training. We now explain
each step in detail. We first describe the notations used, then discuss the strategy for
initialization and incremental updation of the training set, followed by explanation of
these updation rules, and sampling choices.
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Fig. 3: Pictorial representation of our iterative training

Notation: We denote the set of action categories as C = {ci |i ∈ [1, 7]}, where c1− c7
represent the seven action categories ‘billiards’, ‘cycling’, ‘diving’, ‘golf’, ‘horserid-
ing’, ‘kayaking’, and ‘pushups’. The negative label corresponding to an action category
ci is represented as c̃i. The SVM classifiers for fisher vectors and embedded semantic
features are denoted respectively by HFV and HWV. The auxiliary set features are rep-
resented as A. The training set at kth iteration for learning the classifiers for category
ci is denoted by Tci

k . The sets of positive and negative examples in Tci
k are denoted re-

spectively as Pci
k and Nci

k =
⋃

j 6=i P
cj
k . The target set of unlabeled vines with hash-tag

ci are represented as Uci . At kth iteration, the set of remaining unlabeled vines is Uci
k ,

Uci
k ⊂ Uci .

Initialization: The initial training of classifiers for class ci is performed using the aux-
iliary set (UCF50 examples) as the training set. At this point, all vines in the target set
are unlabeled. Hence, for the 0th iteration,

T0 = A, Pci
0 = Aci , Nci

0 = Ac̃i , Uci
0 = Uci

For each class, we train the SVM classifiers HFV and HWV using samples from the ini-
tial training set T0. The SVM classifier for each class return a confidence score ∈ [0, 1]
for each target sample. The two SVM scores are multiplied to yield a combined con-
fidence score for every vine sample in the unlabeled target set Uci

0 . The multiplicative
scoring function penalizes the overall score when any of the two scores is low and helps
to ensure that only the samples with highest confidence are labeled. We pick the top-
K scoring vines as potential positive samples, where K is emperically selected to be
10% of the auxiliary positive set (|Pci

0 |) at every iteration. We update the negative set
for a class ci by adding the newly labeled positives of other classes as labeled nega-
tives for ci. The auxiliary set size can be fixed or modified incrementally as explained
later. The positives and negatives in iteration k for the class ci are denoted as Lci

k and
Lc̃i
k =

⋃
j 6=i L

cj
k . Note, we don’t use tag based scoring in the initialization due to un-

availability of tags for the initial auxiliary set.
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Iterative training and update: The training set for class ci at iteration k > 0 is formed
by augmenting the newly labeled vines to the auxiliary set.

Tci
k = Tci

k−1 ∪ Lci
k−1 ∪ Lc̃i

k−1, Pci
k = Pci

k−1 ∪ Lci
k−1, Nci

k = Nci
k−1 ∪ Lc̃i

k−1

The parameters of the embedding function are re-estimated using the augmented train-
ing set. Our hypothesis is that by incrementally adding more vines to the training set, in
each iteration, we slowly modify the initial embedding that worked well for the auxil-
iary set to adapt for the target set (vines). As we are not altering the fisher vector space,
we drop the motion feature classifier (HFV ) after the initial iteration. The tag score for a
target vine in iteration k is the average number of co-occurring tags between given vine
and positively labeled vines in the previous iterations. The tag-score st is computed as
follows,

st(x
v
t ) =

1

|Lci |
1

n̄t

∑
xp∈Lci

ND∑
i=1

(xt(i) ∗ xp(i)), where, Lci = Lci
k−1 ∪ Lci

k−2 ∪ ...Lci
1

ND is the size of the tag dictionary and n̄t is the average number of tags per vine in
the target set (15 in our experiment). The combined score of a target training vine is
computed by multiplying the semantic space SVM confidence scores and the tag-score.
The tag-score boosts the overall score of the test vines that have many co-occurring tags
with the previously labeled positive vines. The tags help in distinguishing samples of
different classes retrieved as a result of the hash-tag. For example, Apart from ‘diving’,
‘sky-diving’ and ‘diving in a pool’ will have different accompanying tags which will
match accordingly to the currently classified/labeled vines. We stop the iterations when
we have labeled approximately 50% of the auxiliary positives, i.e. P ci

0 .

Sampling choice for auxiliary set augmentation: In addition to augmenting the auxil-
iary set, we also perform an experiment where we gradually replace the auxiliary sam-
ples by target samples. This approach allows us to diminish the influence of auxiliary
samples and provide more priority to target samples. We evaluate the performance of
our method for both sampling choices, with and without replacement in section 3

3 Experiments and Results

In this section, we explain the experimental setup, establish the baseline performance,
and finally report the results of our method and present our interpretations.

3.1 Experimental Setup

Here, we explain the code setup and parameters used for feature computation and clas-
sifier training. To extract the motion features, we compute the improved dense trajectory
descriptors [26, 27] for all videos using the code1 by the authors. For fisher vector com-
putation, the experimental parameters are same as [27] and the GMM paramters are

1 https:// lear.inrialpes.fr/people/wang/ improved trajectories

https://lear.inrialpes.fr/people/wang/improved_trajectories


8 Aditya Singh, Saurabh Saini, Rajvi Shah, and P J Narayanan

Iterative Training(Ours) Baseline Methods

With-replacement Without-replacement FV svm ES knn

Class prec. rec. F-score prec. rec. F-score prec. rec. F-score prec. rec. F-score

Billiards .750 .875 .807 73.3 .916 .814 1.00 .166 .285 1.00 .250 .400
Cycling .956 .814 .880 .884 .851 .867 .585 .888 .705 .621 .851 .718
Diving .750 .538 .626 .814 .564 .666 .645 .512 .571 .620 .461 .529
Golf-Swing .909 .588 .714 1.00 .588 .740 .641 .735 .684 .638 .676 .657
Horseriding .634 .896 .742 70.2 .896 .787 .857 .827 .842 .857 .827 .842
Kayaking .388 .875 .538 .361 .812 .500 .407 .687 .511 .333 .750 .461
Pushups .967 .750 .845 .969 .800 .876 .846 .825 .835 .891 .825 .857

Table 2: Comparison table for our methods with the baselines.

estimated over UCF samples of 50 action classes. The fisher vectors thus computed are
of 101, 376 dimensions. For computing the semantic features, we embed the fisher vec-
tors into the 300 dimensional word2vec space. For learning the embedding function,
we use publicly available implementations of word2vec2 and zero-shot learning 3. For
initializing the embedding function we use 400 hidden nodes and limit the maximum it-
erations to 1000. For computing the dictionary of tag-words, we first perform stemming
– a commonly used trick in NLP applications to reduce the related forms of a word to
its root form. From the remaining words we remove the singletons. The tag feature for
a vine is a binary vector of the size of the tag dictionary such that each 0/1 element
indicates whether that tag in the dictionary occurs with this vine or not. We use linear
SVMs for fisher vector and semantic features classification in our iterative training. For
SVMs we fix C = 1 and the weight for the positive class to be 7 times more than the
negatives to compensate for fewer positive samples as compared to the negatives being
added in each iteration.

3.2 Performance Evaluation

We evaluate the performance of our approach by classifying a test set using the semantic
embedding learned in the final iteration. We compare the performance of our method
with the baseline classifiers trained on the auxiliary dataset (UCF50) for semantic and
motion features. We report precision, recall, and F-score for classification of the test
dataset using all methods in Table 2 and the ROC-curves for three classes are shown
in Figure 4. The two baseline classifiers trained on the auxiliary dataset are represented
as, (i) Motion-only (FV+SVM), and, (ii) Semantic-only (ES+NN). For Motion-only
baseline, we train 7 one-vs-rest linear SVM classifiers and assign the labels based on the
highest decision value of the corresponding classifiers. For Semantic-only baseline, we
train an embedding function using the auxiliary set and use it to project the test samples
to the semantic space. We classify the samples to the nearest class in the word2vec
space using L2 distance. The semantic embedding function learnt using our iterative
approach is also evaluated in a similar fashion (ES+NN). We evaluate our final semantic

2 https://code.google.com/p/word2vec/
3 https://github.com/mganjoo/zslearning

https://code.google.com/p/word2vec/
https://github.com/mganjoo/zslearning
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Fig. 4: ROC comparison of our iterative training method (without replacement) with
baseline FV+SVM and ES+NN.

embedding for both sampling choices , when (i) the auxiliary set videos are replaced by
the newly labeled vines (with replacement), (ii) the auxiliary set is only augmented by
the newly labeled vines (without replacement).

4 Analysis

(a) (b)

Fig. 5: t-SNE Visualization of semantic embedding of UCF and Vines before and after
iterative training.

Iterative relearning of embedding function In Figure 5, we show the effect of
relearning the embedding function by t-SNE visualization of the test samples. In 0th it-
eration, we see UCF samples forming separate clusters but vines forming an inseparable
distribution. This shows that the embedding function learnt solely using auxiliary set is
insufficient to classify the test set. However, after iterations we see that the embedding
function projects most of the test samples around their class labels and close to the cor-
responding UCF samples. This observation supports our hypothesis of incrementally
modifying the embedding functin using augmented training set. If this hypothesis was
faulty then the embedding function would degrade performance of the test classification
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after iterations (see Figure 5, Table 2). In supplementary material we show additional
details and visualizations per iteration.

Comparision of baseline classifiers Table 2 shows that the baseline methods, FV+SVM
and ES+NN, have comparable performances. However, ES+NN operates in a signifi-
cantly lower dimensional space (101376 vs. 300) and has much lower time complexity
serving as a better alternative.

Without-replacement vs. baseline classifiers This sampling method outperforms
both baseline methods for all classes except ‘Horseriding’ & ‘Kayaking’. For Horserid-
ing we obtain a higher recall, however due to fall in precision the overall performance
decreases. Though our method performs better than ES+NN but falls short on preci-
sion against FV+SVM. Kayaking contains the least ratio of true positives (< 25%) in
the target set (Table 1). Incremental addition of target samples still helps in improving
precision and recall as compared to ES+NN baseline for ‘kayaking’.

With-replacement vs. baseline classifiers This sampling method performs signifi-
cantly better for all classes except ‘Horseriding’. For ‘Kayaking’ our method performs
marginally better and as mentioned earlier the improvement is limited due to the lack
of positives in the target dataset. For ‘Billiards’, we achieve an acceptable precision
with significantly higher recall against both the baselines which show a highly skewed
performance.

With-replacement vs. without-replacement We experimented with these two sam-
pling choices to see whether diminishing the influence of auxiliary domain will hamper
or aid the process of learning the embedding function. It is evident from Table 2, for 5
of the 7 classes without-replacement perfoms better and for the other two classes the
difference is marginal. This result suggests that augmenting the auxiliary domain by
target domain without replacement has a positive influence on iterative learning.

5 Conclusion & Future Work

In this paper we explored the problem of improving the performance of action clas-
sification for an unseen unlabeled wild domain by utilizing labeled examples from a
simpler source domain. We presented a simple iterative technique that improves se-
mantic embedding of video features into a structered reference space to bring together
the disparate auxiliary and target domains. We showed the effectiveness of this iterative
technique on the task of action classification for 7 classes in vines. We also experi-
mented with two sampling choices for augmenting the auxiliary domain and presented
detailed analysis of results. In future, we would like to explore the application of this
method for annotation and tag enrichment applications.
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