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Abstract. We propose a novel partial linearization based approach for
optimizing the multi-class SVM learning problem. Our method is an in-
tuitive generalization of the Frank-Wolfe and the exponentiated gradi-
ent algorithms. In particular, it allows us to combine several of their
desirable qualities into one approach: (i) the use of an expectation or-
acle (which provides the marginals over each output class) in order to
estimate an informative descent direction, similar to exponentiated gra-
dient; (ii) analytical computation of the optimal step-size in the descent
direction that guarantees an increase in the dual objective, similar to
Frank-Wolfe; and (iii) a block coordinate formulation similar to the one
proposed for Frank-Wolfe, which allows us to solve large-scale problems.
Using the challenging computer vision problems of action classification,
object recognition and gesture recognition, we demonstrate the efficacy
of our approach on training multi-class SVMs with standard, publicly
available, machine learning datasets.
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1 Introduction

Many tasks in computer vision can be formulated as multi-class classification
problems. In other words, given an image or a video, the task is to assign it
a label that belongs to a specified finite set. For example, in the case of ob-
ject recognition from an image, the label can be car, chair or person. Similarly,
for action recognition from a video, actions categories like jumping, kicking or
clapping can be candidate labels. There has been extensive research in the area
of multi-class classification with a plethora of solutions being proposed [16, 18,
4,2]. In this work, we focus on multi-class SVM (MC-SVM), which is one of the
most popular methods for this task. The MC-SvM model provides a linear func-
tion that gives a score for each class. Given a test sample, its class is predicted
by maximizing the score. During learning, the MC-SVM objective minimizes an
upper bound on the empirical risk of the training data, for which we know the
ground-truth labels. The risk is typically measured by the standard 0 — 1 loss
function. However, any other loss function can be easily substituted into the
MC-SVM learning framework.
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The size of the MC-SVM learning problem rapidly increases with the number
of classes and size of the training dataset. In order to enable the use of McC-
SVM with large scale problems, several optimization algorithms for minimizing
its learning objective have been proposed in the literature. One of the most
successful algorithms is a recent adaptation of the Frank-Wolfe algorithm [8].
Briefly, the algorithm solves the dual of the MC-SVM optimization problem iter-
atively. At each iteration, it obtains a descent direction by minimizing a linear
approximation of the dual objective. It was shown in [10] that the computation
of the descent direction corresponds to a call to the the so-called max-oracle for
each sample. In other words, for each training sample, we maximize over the
set of output classes with respect to the loss-augmented scores. As the max-
oracle can be solved efficiently for the MCc-svM, the Frank-Wolfe algorithm can
be effectively used to learn such models. There are two main advantages of the
Frank-Wolfe algorithm. First, the optimal step-size in the descent direction can
be computed analytically, thereby avoiding a tedious line search [10]. Second, it
can be suitably modified to a block-coordinate version [14], where the max-oracle
is solved for only one training sample at each iteration. The gain in efficiency
obtained by this version does not affect the accuracy of the solution.

A key disadvantage of the Frank-Wolfe algorithm is that it only provides a
very local approximation of the objective function with the aid of the max-oracle.
In other words, it effectively focuses on one constraint (the most violated one)
of the primal MC-SVM learning problem. In contrast, the exponentiated gradient
algorithm [1] makes use of a more informative expectation oracle. To elaborate,
instead of maximizing, it computes an expectation over the set of output classes
with respect to a distribution parameterized by the loss-augmented scores. How-
ever, the exponentiated gradient algorithm suffers from the difficulty of choosing
an optimal step-size, for which it has to resort to line search. Furthermore, de-
spite the availability of a stochastic version of the algorithm, its worst-case time
complexity is worse than that of the Frank-Wolfe algorithm.

In this paper, we propose a novel algorithm for optimizing the MC-SVM learn-
ing problem based on partial linearization [17]. Our algorithm provides a natural
generalization to the Frank-Wolfe and the exponentiated gradient algorithms,
thereby combining their desirable properties. Specifically, (i) it allows for the
use of a potentially more informative descent direction based on the expectation
oracle; (ii) it computes the optimal step-size in the descent direction analytically;
and (iii) it can also be applied in a block coordinate fashion without losing the
accuracy of the solution. We demonstrate the efficacy of our approach on the
challenging computer vision problems of action classification, object recognition
and gesture recognition using standard publicly available datasets.

In certain cases, our method can also be used for efficient optimization of
the more general structured svMm (ssvM) models. Specifically, in case of output
spaces that have a low tree-width structure, we can employ efficient max-oracles
and expectation-oracles. This in turn means that similar to the Frank-Wolfe [10]
and exponentiated gradient algorithms [1], our method can be effectively used
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for learning an ssvM model. We demonstrate this on the problem of handwritten
word recognition using a chain structured output space.

2 Related Work

Several algorithms have been proposed for optimizing multi-class svMs. Most
of the popular methods are iterative algorithms that make use of efficient sub-
routines called oracles in each iteration [10,1,11,19,23]. The most popular al-
gorithms can be bracketed into two classes depending on the type of oracles
they use: ones that use the max-oracle [10,11,19]; and the ones that use the
expectation oracle [1,23].

A max-oracle sub-routine maximizes the loss-augmented score over the out-
put space. In other words, given the current estimate of the parameters and a
training sample, it returns the output that maximizes the sum of the classifier
score and the loss. The sub-gradient descent algorithm [19] calls the max-oracle
to compute the sub-gradient of the primal objective and uses it as the update di-
rection in each iteration. The cutting-plane algorithm [11] uses the max-oracle to
get the most violating constraint or the cutting plane. It accumulates the cutting
planes to generate increasingly accurate approximations to the primal problem
that it solves in each iteration. The recent adaptation [10] of the Frank-Wolfe
algorithm to the Mmc-svM and SSvM learning problems uses the max-oracle to
compute the conditional gradient of the dual problem. All three aforementioned
algorithms have a complexity of O(1/€), where € is the user-specified optimiza-
tion tolerance. However, in practice, the block-coordinate Frank-Wolfe algorithm
has been shown to provide faster convergence on a variety of problems [10].

In contrast to the max-oracle, the expectation-oracle computes an expecta-
tion over the output space with respect to a distribution parameterized by the
loss-augmented scores. In [1], the expectation-oracle is used to make exponen-
tiated gradient updates [12], which guarantees descent in each iteration. The
Bregman projection based excessive gap reduction technique presented in [23]
also uses the expectation oracle. While this algorithm has a highly competitive
complexity of O(1/4/€), the method does not work with noisy oracles and hence
cannot lend itself to a stochastic or a block-coordinate version.

As will be seen shortly, our approach naturally generalizes over algorithms
from both the categories with the use of a temperature hyperparameter. When
the temperature is set to 0, the expectation oracle resembles the max-oracle and
our method reduces to the Frank-Wolfe algorithm[10]. Importantly, for a non-
zero temperature, the use of the expectation-oracle can provide us with a less
local approximation of the objective function. Hence, for the multi-class svM
learning problem, it may be beneficial to use the expectation-oracle instead of
the max-oracle. Another key aspect of our algorithm is that it chooses an optimal
step-size at each iteration. If we instead fix the step-size to 1 in every iteration
and use a non-zero value of the temperature hyperparameter, then our method
reduces to the exponentiated gradient algorithm [1]. Moreover, unlike the cutting
plane [11] and the excessive gap reduction [23] algorithms our approach allows
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for a block-coordinate version, which leads to faster rate of convergence without
affecting the accuracy of the solution.

3 Preliminaries

3.1 The Multi-class SVM Optimization Problem

We provide a brief overview of the multi-class SVM (MC-SVM) optimization prob-
lem. Given an input x € X the aim of multi-class classification is to predict the
output y that belongs to the output space ). If the number of classes is denoted
by ¢, the output space Y = {1,...,c}. Let the feature representation of sample
x be ¢(x), then a joint feature map ®(x,y) : X x Y — R? is defined as

D(x,y) = [v] ... 'v;r vt (1)

et =y,
where, v; = { 0 otherwise.

A multi-class svM, parameterized by w, provides a linear prediction rule as
follows: hyw(x) = argmax,cy, (W' ®(x,y)). Given a set of labelled samples D =
{(X1,Y1), -y (Xn, Yn)}, the parameter vector w is learnt by solving the following
convex optimization problem:

D R
min Z|[wl]* + ﬁ;& (2)
s.t. WTLT/i(y) > Ay, y) — &, Vi€ n),Yy ey

Here, ¥;(y) = @(xi,y:) — @(x4,y) and the loss incurred for predicting y, given
the ground truth y; for the sample x;, is defined as

0if y =y,
1 otherwise.

Ao = { 3)

We use [n] to denote the set {1,2,...,n} and shall use A;(y) as a short hand
for A(y,y;). The Lagrangian dual of problem (2) is given by:

A
min T(a) = -b'a+ Za' AT Aa (4)
a>0 2
s.t. Zaw =1,Yi € [n].
yey

Here the dual variable vector a is of size m = n X ¢; b € R™ is defined as
b = {bj, = 2A;(y) | i € [n],y € Y} and the matrix A € R™™ is defined as
A= {Azy = %Wz(y) e R4 | xS [n],y S J/}

It is possible to cheaply evaluate the objective of the primal MC-svM formula-
tion since the following problem lends itself to efficient optimization. Specifically,
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in order to compute the MC-SVM objective at a given set of parameters w, we
can solve the following problem for each sample i.

y; = argmax A;(y) — w ' ¥(y). ()
yeY

Given 7;, the value of the slack variable &; = A;(7,) —w ' ¥;(7,). We refer to the
above problem as the maz-oracle. Let P(y) denote the probability distribution
over the set of output classes, parameterized by the loss augmented scores, that
is,

exp (Ai(y) — w'Ti(y))
>yey exp (Ai(y) — wi¥i(y))

The max-oracle gives the most probable class according to the distribution P(y).
It has been shown through several works, including cutting-plane algorithms [11],
subgradient descent [19] and Frank-Wolfe [14], that an inexpensive max-oracle
is sufficient to minimize problem (2) and/or its Lagrangian dual (4) efficiently.

As we will see shortly, our work exploits the fact that, for multi-class classifi-
cation problems, a related problem known as the ezpectation-oracle can be solved
efficiently as well (with the same time complexity as the max-oracle). While the
max-oracle gives the most probable class, the expectation-oracle returns an ex-
pectation over the complete output space with respect to the distribution P(y).
By cleverly exploiting this observation, we obtain a natural generalization of
the Frank-Wolfe algorithm that retains many of its desirable properties such
as: guaranteed descent direction, analytically computable optimal step size and
guaranteed convergence even in block-coordinate mode. At the same time it also
allows the use of the expectation-oracle to find a valid descent direction that can
often lead to improved performance in practice.

P(y) =

(6)

3.2 Partial Linearization

Let us consider the following optimization problem with a convex and continu-
ously differentiable objective T'(a) defined over a compact and convex feasible
set U: mingey T'(a). For this problem, Patriksson [17] proposes a framework
that unifies several feasible-direction finding methods for non-linear optimization
through the concept of partial linearization of the objective function. The idea
of partial linearization is to construct a convex approximation to the original
objective T'(a) at each iteration. The approximation involves substituting the
original function with a surrogate function. Furthermore, in order to model the
difference between the original function and the surrogate function, we add a
first order approximation of this difference.
Formally, at each iteration k, we solve the following problem:

min THe) = f(a.a") + T(@") - f(a*,a") (7)

+[VT (") = Vaf(@*,a")]" (a—a").
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The term f(a,a®) denotes the surrogate function defined at the current solution
ak. The term T(a*) — f(a*,a*) + [VT(a*) — Va f(@®, a*)]T (e — a¥) is the first
order Taylor expansion of the actual error term T'(a”) — f(a, @") and is used as
an approximation for it. Patriksson [17] showed that the approximation proposed
in equation (7) actually preserves the gradient of the original objective function.
This guarrantees that a valid descent direction for the approximate problem (7)
is also a valid descent direction for the original problem. The optimal solution
a” to problem 7 gives a descent direction. This allows us to update the solution
as @l = (1—~)(a®) + (7)(@*), where v is the step-size that can be determined
via line search in general. Interestingly, in some special cases, including the one
considered in this work, the optimal step-size can also be computed analytically,
which avoids the tedious line search. For convergence, f(x,y) has to be convex
and continuously differentiable with respect to x and continuous with respect
to y. We adapt the partial linearization method for solving problem (4) in the
following section.

4 Partial Linearization for Multi-class SVM Optimization

The dual multi-class svM problem defined in problem (4) has a compact convex
feasible set and has a continuously differentiable convex objective. This allows
us to use the partial linearization method to solve the optimization problem.
However, as the above description shows, partial linearization is a very general
framework. For it to be applied successfully, we need to ensure that we make
the right choice for the surrogate function. Specifically, the resulting problem
(7) must lend itself to efficient optimization. Furthermore, in our case, we would
like to ensure that problem (7) captures the information regarding how much
each constraint of the primal multi-class SVM problem is violated, similar to the
expectation-oracle. To this end, we define the surrogate function as follows:

fla Z Z oy log(asy). (8)
[n] yey

Here, 7 is a non-negative hyperparameter, which we refer to as the temperature.
In the following subsection, we show that for the above choice of surrogate func-
tion, the partial linearization approach generalizes both the Frank-Wolfe and the
exponentiated gradient algorithm.

4.1 Partial linearization in the dual space

When we use the surrogate function defined in equation (8) for partial lineariza-
tion of the dual multi-class sSVM problem, the form of the update direction in
the resulting optimization algorithm is described by the following proposition.

Proposition 1. If the surrogate function is defined as

fla Z > aiylog(auy),

[n]yey
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then the update direction s* in iteration k for giveni and y € Y can be computed
as

_ 4T
exp (loglal, ") + L(Aily) — w1 T0(y))) o
s; = .

Zi

The proof of the above proposition is provided in Appendix 1.1 (supplementary
material).

In equation 9, for each sample 1, sf(y) forms a probability distribution over
the set of classes ). In the primal setting, this is equivalent to having an ex-
pectation over the entire output space as the update direction and is therefore
similar to an expectation-oracle. In each iteration of the algorithm, given the
update direction, we need to perform a line search to find the optimal step size
7 in that direction. Since the dual multi-class SVM problem involves optimizing
a quadratic function, it is possible to analytically compute the optimal step-size.
The following proposition that gives the form of the optimal step size directly
follows from the work of Jaggi et al. [14].

k

Proposition 2. The optimal step-size along the update direction s® can be com-

puted to be equal to
_<afl—sF b+ AT Aab! >
T AT =S

(10)

Here it should be observed that setting the temperature parameter 7 to 0
results in a distribution sf that has probability 1 for the label

7; = argmax (Li (y) —wk=!
yey

and 0 elsewhere. This results in an update direction that is the same as that of
the Frank-Wolfe algorithm and thus reduces the partial linearization method to
the Frank-Wolfe algorithm [14]. Moreover, fixing the step-size v to 1 for all itera-
tions, reduces our approach to the exponentiated-gradient algorithm [1]. Hence,
our partial linearization based approach for optimizing the MC-SVM problem gen-
eralizes both the Frank-Wolfe as well as the exponentiated-gradient algorithms.
Importantly, the descent direction obtained using some 7 > 0 can be signifi-
cantly better than that obtained using 7 = 0. This is illustrated in the following
example.

In problem 4, let n =1, A =1, A = [2,0,0;0,1,0;0,0,3] and b = [1;1;0].
Assume, after the (k — 1)* iteration of the optimization algorithm, the location
in the feasible set is o*~1 = [0.125,0.5,0.5] . Now, if we take 7 = 0, the descent
direction for the k' iteration can be computed to be sk_; = [1,0,0]T. Simi-
larly, for 7 = 1, the descent direction would be sf_; = [0.199,0.796,0.005] .
In each case, we take the optimal step in the descent direction. It can be ver-
ified that while the step along s’jzo reduces the objective function by 0.5341,
the step along s*_; reduces the objective function by a bigger value of 1.2550.
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This is primarily due to the fact that the Frank-Wolfe algorithm (7 = 0) con-
straints the descent directions to be only towards vertices of the feasible domain
polytope. For instance in this example, s¥_, can only take values from among
{[1,0,0]7,[0,1,0]T,[0,0,1] T}, which prevents it from taking a more direct path
towards the optimal solution ([0.25,1,0] ") which lies on one of the facets of the
polytope and hence away from the direction of any of the vertices. On the other
hand, with 7 > 0, our algorithm can explore more direct descent paths towards
the solution.

Algorithm 1 Partial linearization for optimizing multi-class SVM

1: D= (xiz y’b)z R (xn, yn)
2: Tnitialize a° such that w(a®) ~ [0]4, k « 1

3: repeat

4: for alli € [n] do

5 Yy e, -

6. o o exp(log<a?;1>+%(Azzm—wk—l 7i(y))

7:  end for

8:  Optimal step size, v < <ot7l-st,_biA Aatl>

MA@k~ 1—sF)[2
9:  Update a, @® + (1 —7)a* ! + (y)s*

10:  Update w, w* «+ Aa*

11:  k « k+1

12: until Convergence

13: Optimal parameter, w

The partial linearization algorithm for optimizing the dual MC-SVM problem
is outlined in Algorithm 1. Step 6 in Algorithm 1 requires us to explicitly com-
pute the update direction corresponding to each dual variable. For the MC-svMm
problem, as the number of dual variables is a reasonable (number of samples) x
(number of classes), sfy can be efficiently computed for every sample x; as the
marginal probability of each class y. Once we have the update direction we take
a step in that direction with optimal step-size 7 as computed in Step 8. Then
the dual and the primal variables are updated to complete an iteration of the
algorithm.

4.2 Block-Coordinate Partial Linearization

In many tasks, it is very common to learn classification models using very large
datasets. In such scenarios, learning an MC-svM model using the partial lin-
earization algorithm described in Algorithm 1 can be very slow. This is because,
each update iteration of Algorithm 1 requires a pass through the entire dataset.
In order to circumvent this expensive step, we present a block-coordinate version
of the algorithm, which updates the model parameters after every single sample
encounter. Algorithm 2 outlines the details of the block-coordinate partial lin-
earization algorithm. The key difference is that, unlike Algorithm 1, Algorithm 2
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Algorithm 2 Block-Coordinate Partial linearization for optimizing multi-class
SVM

1: D= (Xi,¥Yi)y- - (Xn,Yn)

2: Tnitialize a° such that w(a®) ~ [0]4, k « 1

3: Initialize a (d x n) matrix W such that i*" column of W, w; = w(ay)

4: repeat
5:  Chose a random ¢ € [n]
6: VYye),
g, ep(los@l, HH (A ) -wh T T ()
T siy — t -
k—1_ _k _ T Agk—1
8:  Optimal step size, v <+ <o s, _biA Aoy >

AlAfaf~t—sh)|2
9:  Update a;, af + (1 —y)a"™! 4 (y)sF
10:  Update ws, w¥ «+ Aa®

11:  Update w, w* «+ wh ™1 — wffl +wh
122k < k+1

13: until Convergence

14: Optimal parameter, w

does not have to loop through all the samples in the training set before updating
the primal variable vector. Instead, we pick a random sample ¢ from the training
set (step 5) and compute the marginals just for this sample. Accordingly we
update the primal weight vector w with this new marginal for sample i while
the marginals for all other samples remain unchanged. This is similar to the
coordinate descent method and is more efficient compared to the batch method
as instead of solving n convex optimization problems, we have to solve only one
in each iteration. As shown in the following proposition, this improvement in
run-time does not affect the accuracy of the solution.

Proposition 3. The block-coordinate partial linearization algorithm is guaran-
teed to converge to the global optima of the multi-class SVM learning problem.

The proof of the above proposition is provided in Appendix 1.3 (supplementary
material).

4.3 Partial Linearization for Structured SVM Optimization

The multi-class svM solves a prediction problem in which the output space is
a set of classes. However, for many tasks, the output space can have a more
complicated structure. The structured svM (ssvM), which is a generalization of
the binary SvM to structured output spaces, can effectively model such struc-
tures. Given an input x € X, the aim is to predict the output y that be-
longs to a structured space )(x). Borrowing the notations from section 3.1,
a structured svM, parameterized by w, provides a linear prediction rule as fol-
lows: hw(x) = argmax,cy (W' ®(x,y)). Given a set of labelled samples D =
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{(x1,¥1); s (Xn,yn)}, the parameter vector w is learnt by solving the following
convex optimization problem:

D WP IR T .
min §|IW|| +5;&, st.w Yi(y) > Alyi,y) — &, Vi € [n],Vy € i (11)

The key differences from the multi-class SvM formulation are that here we can
have any general joint feature map @(x,y) and loss function A(y;,y) designed
to effectively model the structure of the output space. The Lagrangian dual of
problem (11) is given by:

A
- _ T T YT 1w
min T@)=-b a+ i A' Aa, s.t. ezy ay =1,Yie[n]. (12)
y&bi

Here the dual variable vector a is of size m = >, |Vi|; b and A have the same
definition as in section 3.1.

In general the size of output space can be exponential in the number of output
variables. This would result in exponentially large number of primal constraints
and dual variables, which can be hard to deal with. However, these problems
can be overcome by making clever use of the structure of the output space.
The key observation behind our effective partial linearization based optimiza-
tion algorithm is that we can efficiently compute the marginals of the output
variables. Now, when the output space ); has a low tree-width graph structure,
it is possible to efficiently compute the exact marginals of the output variables,
by solving the expectation-oracle problem. This can be done using a message
passing algorithm over a junction tree corresponding to the underlying graph of
the output space [22]. In such a setting, our algorithm can be used for efficient
optimization of the SSVM learning problem for low tree-width models. We discuss
the partial-linearization algorithm for learning low tree-width SSvM models in
detail in the supplementary material. We demonstrate the applicability of such
an approach on the task of handwritten word recognition.

5 Experiments

We now demonstrate the efficacy of our algorithm on the challenging multi-
class classification tasks of action classification, object recognition and gesture
recognition. We also present some preliminary results for tree-structured models
on the task of handwritten word recognition.

5.1 Datasets and Tasks

Action Classification

Dataset. We use the PASCAL voc 2011 [6] action classification dataset for our
experiments. This dataset consists of 4846 bounding boxes of persons, each of
which is labeled using one of ten action classes. It includes 3347 ‘trainval’ person
bounding boxes for which the ground-truth action classes are known.
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Modelling and Features. We train a multi-class SVM as an action classifier using
2800 labelled bounding boxes from the ‘trainval’ set. We use the standard poselet
[15] activation features as sample feature for each person bounding box. The
feature vector consists of 2400 action poselet activations and 4 object detection
scores. We refer the reader to [15] for details regarding the feature vector.

Object Recognition on CIFAR-10 dataset

Dataset. We use the CIFAR-10 dataset [13] for this set of experiments. It consists
of a total of 60,000 images of 10 different object classes with 6,000 images per
class. The dataset is divided into a ‘trainval’ set of 50,000 images and a ‘test’
set of 10,000 images.

Modelling and Features. We train a multi-class svM for object recognition on
the trainval set. To represent each image, we use a feature representation that
is extracted from a trained Convolutional Neural Network. Specifically, we pass
the resized image as input to the VGG-NET [20] network and use the activation
vector of its penultimate layer as the feature vector. The length of the resulting
feature vector is 4096.

Object Recognition on PASCAL VOC dataset

Dataset. We use the PASCAL voc 2007 [5] object detection dataset, which con-
sists of a total of 9963 images of which 5011 images are in the ‘trainval’ set. All
the images are labelled to indicate the presence or absence of the instances of 20
different object categories. Each image can have multiple instances of an object
and we are provided with tight bounding boxes around each of them.

Modelling and Features. We train a multi-class svM for object recognition on
12,608 object bounding boxes extracted from the trainval set. For each object
bounding box, we use a feature representation extracted from a trained Convo-
lutional Neural Network (CNN). Specifically, we pass the bounding box as input
to the CNN and use the activation vector of the penultimate layer of the CNN as
the feature vector. Inspired by the work of Girshick et al. [9], we use the ONN
that is trained on the ImageNet dataset [3], by rescaling each window to a fixed
size of 224 x 224. The length of the resulting feature vector is 4096.

Gesture Recognition

Dataset. We use the MSRC-12 data set [7] which contains 594 sequences of mo-
tion capture data obtained using a Kinect sensor. Each sequence corresponds
to a person repeatedly performing one out of the 12 gestures represented in the
dataset. For each frame of the sequence, we are given the 3D world position of 20
human body joints. In addition to the sequence level gesture annotations, we are
also provided with frame level annotations which we ignore in our experiments.
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Modelling and Features. We treat each sequence as a single sample and train a
multi-class latent-svM for sequence level gesture recognition. The exact location
of the gesture in a sequence is held by a latent variable. We represent a sequence
x using a feature vector ¢(x, h) which is extracted from the frame in the sequence
denoted by the latent variable h. We extract the same 130 dimensional feature
vector from a frame as used in [7].

Handwritten Word Recognition

Dataset. We use the OCR dataset [21] for our experiments. The dataset consists
of 6251 images of handwritten words. We use 626 images for training and the
rest for testing. Each word image is already segmented into individual characters.
Each character can be of one of the 26 classes: {a, ..., z}.

Modelling and Features. The dataset provides the handwritten-word images in
binary format. Each segmented character image in the dataset is of size 16 x 8
pixels. We use binary pixel values of the character images to construct a 128
dimensional feature vector for each character. We use an indicator basis function
to represent the correlation between adjacent characters. We also use indicator
basis functions to represent location independent bias for each of the characters
and additional bias for the first and the last characters of any word. This makes
the overall size of the feature vector equal to (128 x 26 + 26 x 26 + 26 + 26 x 2) =
4082. Note that the underlying graph has a ‘chain’ structure, which enables the
computation of exact marginals via sum-product belief propagation [22].

5.2 Methods

For all the tasks, we compare the runtime of our block-coordinate partial lin-
earization (BCPL) approach to those of two baseline algorithms for solving the
multi-class SVM or the SSVM optimization problem, namely the block-coordinate
Frank-Wolfe algorithm [14] (BCFW) and the online exponentiated gradient (OEG)
algorithm [1]. We ran each of the algorithms for 3 different values (0.1, 0.01, 0.001)
of the regularization parameter . For most practical setups A is chosen to be
very low since large datasets avoid the problem of high generalization error via
overfitting. In all the experiments, we used a fixed temperature of 7 = 0.01
for our algorithm. For OEG, we repeated the experiments for 8 different values
(100,10,1,0.1,0.01,0.001, 0.0001, 1075, 10*10) of the temperature parameter 7
and report he results for the best performing value. We initialize all the opti-
mization algorithms in a manner which ensures that the weight parameters are
almost equal to 0. In each iteration of training, we sample without repetition
from the dataset. For the BCPL and OEG algorithms, in order to avoid getting
stuck on a facet of the domain polytope, we truncate the step size v at each
iteration to 1 — e. Where, € = 2.2204 x 107! is the machine epsilon.
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Fig. 1: Comparison of different optimization algorithms in terms of change in the dual
objective (negative of the objective of problem (4)) with respect to training time. The
results correspond to (a) Action classification (b) Object recognition on CIFAR-10 (c)
Object recognition on PASCAL VOC (d) Gesture recognition (e) Hand written word recog-
nition. The figures are zoomed-in along the vertical axis to highlight the differences
between the top most competing methods. Note that for A = 0.01 and A = 0.001, the ez-
ponentiated gradient algorithm performs significantly worse than the other two methods,
and 1is therefore not visible in the plots. This figure is best viewed in colour.

5.3 Results

We report the performance of the different methods in terms of the increase in the
dual MC-SVM or the SSVM objective function with respect to training time. Figure
1 provides the detailed plots for the experiments for different values of A\. As can
be observed from the plots, in most cases, our BCPL algorithm converges faster
than BCFwW and OEG. It should be noted that the relative difference between
the rate of convergence of the two algorithms may seem comparatively small.
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Fig. 2: Comparison of Block-coordinate Frank-Wolfe (BCFW ) and Block-coordinate Par-
tial linearization (BCPL) in terms of the mean training time. The results correspond to
(a) Action classification (b) Object recognition on CIFAR-10 (c¢) Object recognition on
PASCAL VOC (d) Gesture recognition (e) Hand written word recognition.

However, due to the low absolute rate of convergence of both the algorithms in
the later stages, this small gap leads to significant saving in terms of iterations
and time for our algorithm. The OEG algorithm performs consistently worse
than the other 2 algorithms for these set of experiments. For all the tasks, we
also report the mean time taken for training by our method and the Frank-
Wolfe algorithm. For each task, the training time is averaged over all values of
A. Figure 2 shows that our approach consistently does better than the Frank-
Wolfe algorithm. Note that since we solve a convex optimization problem, all
the methods are guaranteed to converge to the same or very similar solutions.
Hence, we have focused on only a comparison of the run time in the paper.

6 Discussion

We proposed a partial linearization based approach for optimizing multi-class
SsvM, which naturally generalizes the Frank-Wolfe and the exponentiated gra-
dient algorithms. Our method introduces the key temperature hyperparameter
for which we keep a fixed value through out the optimization. This leaves scope
for exploring ideas for varying the temperature across iterations for faster con-
vergence. In this work, we discussed our approach only in context of multi-class
classification models and structured SvM models that have a tree structure. How-
ever, the efficacy of our approach in the context of loopy graphs that require
approximate computation of the expectation oracle is still unknown. Another
interesting direction for future research would be to explore the applicability
of our approach for variations of the svM optimization problem (such as those
that use soft constraints), or for other learning frameworks such as convolutional
neural networks.
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