
Leveraging Multiple Tasks to Regularize
Fine-Grained Classification

Riddhiman Dasgupta Anoop M. Namboodiri
CVIT, International Institute of Information Technology, Hyderabad, India.

riddhiman.dasgupta@research.iiit.ac.in, anoop@iiit.ac.in

Abstract—Fine-grained classification is an extremely chal-
lenging problem in computer vision, compounded by subtle
differences in shape, pose, illumination and appearance. While
convolutional neural networks have become the versatile jack-
of-all-trades tool in modern computer vision, approaches for
fine-grained recognition still rely on localization of keypoints
and parts to learn discriminative features for recognition. In
order to achieve this, most approaches use a localization module
and subsequently learn classifiers for the inferred locations,
thus necessitating large amounts of manual annotations for
bounding boxes and keypoints. In order to tackle this problem,
we aim to leverage the (taxonomic and/or semantic) relationships
present among fine-grained classes. The ontology tree is a free
source of labels that can be used as auxiliary tasks to train
a multi-task loss. Additional tasks can act as regularizers, and
increase the generalization capabilities of the network. Multiple
tasks try to take the network in diverging directions, and the
network has to reach a common minimum by adapting and
learning features common to all tasks in its shared layers.
We train a multi-task network using auxiliary tasks extracted
from taxonomical or semantic hierarchies, using a novel method
to update task-wise learning rates to ensure that the related
tasks aid and unrelated tasks does not hamper performance
on the primary task. Experiments on the popular CUB-200-
2011 dataset show that employing super-classes in an end-to-end
model improves performance, compared to methods employing
additional expensive annotations such as keypoints and bounding
boxes and/or using multi-stage pipelines. 1

I. INTRODUCTION

Convolutional neural networks(CNNs) first tasted main-
stream success with their impressive performance on large
scale image recognition challenges, starting with Krizhevsky et
al. [1], which brought them into the limelight. Training a
convnet from scratch is usually too expensive and will not
result in the same discriminative power of one that is trained on
a large dataset like Imagenet. A far more effective strategy is
to fine-tune a convnet pre-trained on Imagenet to new datasets
and/or tasks. Consequently, researchers have adapted convnets
that were pre-trained on Imagenet for a vast plethora of tasks,
ranging from object detection and semantic segmentation to
pose estimation, depth estimation, attribute prediction, part
localization, and many more. The works by Donahue et al. [2],
Ravazian et al. [3], Chatfield et al. [4], and Oquab et al. [5]
have shown beyond any reasonable doubt that convnets are
ripe for transfer learning via fine-tuning.

The primary challenges of fine grained recognition are
large variations in pose and illumination, subtle intra-class

1Additional details can be found at cvit.iiit.ac.in/multitaskhierarchy.

Belted
Kingfisher

Green
Kingfisher

Pied
Kingfisher

Ringed
Kingfisher

White
Breasted

Kingfisher

Megaceryle Ceryle Chloroceryle Halcyon

Alcedinidae Halcyonidae

Fig. 1. Leveraging the taxonomic ontology of birds for fine grained recogni-
tion. From top to bottom, we have family, order and species for five classes
of kingfishers in the CUB-200-2011 dataset [6]. Observe how identifying the
family or order can help identifying the class, e.g. in case of ringed kingfisher
and green kingfisher. Best viewed enlarged, in color.

differences and striking inter-class similarities. Most modern
methods for fine grained recognition rely on a combination of
localizing discriminative regions and learning corresponding
discriminative features. This in turn requires strong super-
vision such as keypoint or attribute annotations, which are
expensive and difficult to obtain at scale. On the other hand,
since fine grained recognition deals with subordinate-level
classification, there exists an implied relationships among
labels. These relationships may be taxonomical (such as super
classes) or semantic (such as attributes) in nature. The ontol-
ogy obtained in this manner contains rich latent knowledge
about finer differences between classes that can be exploited
for visual classification. The model we propose consists of a
single deep convolutional neural network, with each level of
the ontology giving rise to an additional set of labels for the
input images. These additional labels are used as auxiliary
tasks for a multi-task network, which can be trained end-
to-end using a simple weighted objective function. We also
propose a novel method to dynamically update the learning
rates (hereforth referred to as the task coefficients) for each
task in the multi-task network, based on its relatedness to the
primary task.
In this work, we analyze the utility of jointly learning multiple
related/auxiliary tasks that could regularize each other to
prevent over-fitting, while ensuring that the network retains
its discriminative capability. Much like dropout is bagging
taken to the extreme, multi-task learning is analogous to
boosting, if each task is considered a weak learner. We note
that our model can be plugged into or used in conjunction with
more complex multi-stage pipeline methods such as [7]–[10]

2016 23rd International Conference on Pattern Recognition (ICPR)
Cancún Center, Cancún, México, December 4-8, 2016

978-1-5090-4847-2/16/$31.00 ©2016 IEEE 3476

to further improve performance for fine grained recognition.
Furthermore, this enables us to learn a single model that can
be used for multiple tasks, effectively reducing the training
time by a factor of T for T tasks. Our experimental results
show that adding additional tasks are effective as regularizers,
especially for convnets where there is not enough training data
available. This is often the case in fine grained datasets, where
labelled data is scarce and expensive to obtain.

II. RELATED WORK

A. Deep Multi-task Learning

Collobert et al. [11] trained a deep neural network on three
related tasks in the domain of natural language processing..
This seminal work paved the way for deep multi-task net-
works, ranging from joint prediction of depth, surface normals
and semantic labels [12] and joint learning of facial landmark
localization, pose estimation and gender recognition [13], to
instance segmentation [14] and immediacy prediction [15].
More recently, Misra et al. [16] presented a detailed study
of how and where to share tasks across layers in convnets.
Li et al. [17] exploit localization as an additional task to
find human pose keypoints. Zhang et al. [18] use pose and
keypoints as additional tasks for multiview face detection.
However, both methods consider all tasks to have fixed
learning rates. Zhang et al. [19] use auxiliary tasks such as
attribute prediction to make facial keypoint detection more
robust. Tian et al. [20] use a task-assistant CNN to jointly
learn attributes to detect pedestrians. Both methods resort to
multi-step alternating gradient descent methods to tweak task
weights, resulting in increased training time and complexity.
Gkioxari et al. [21] study the effect of multi-task learning
using R-CNNs fine-tuned for pose estimation and action
classification. Teterwak [22] provides a succinct attempt at
regularizing deep neural networks using multi-task learning.

B. Fine Grained Recognition

There exists a plethora of literature tackling fine grained
recognition with the help of convnets, with most approaches
relying on alignment of keypoints [23], [24], [25], localization
of keypoints [10], [9], [7] or part based models [26], [27].
Branson et al. [23] use keypoint based templates to align
bird parts and learn separate part based networks, which are
then combined. Zhang et al. [27] extend R-CNNs [28] by
combining region proposals with geometric constraints to train
part based networks. Both of these works rely on keypoints
and bounding boxes requiring expensive labor-intensive an-
notations, which is not a strict requirement for our proposed
method. Krause et al. [25] use cosegmentation followed by
alignment, while Xiao et al. [26] combine bottom-up part
extraction with top-down part-based attention. While both
methods forego the requirement of annotated regions, they
end up being complex multi-stage pipelines in contrast to our
simple end-to-end trainable models.
Lin et al. [8] on the other hand use two separate convnets to
extract deep features and subsequently combine them using a
bilinear layer. Jaderberg et al. [10] employ spatial transformer

networks for the task. While these models are end-to-end
trainable, they are large, slow and difficult to interpret. Our
model is at a clear advantage here because it can be plugged
into any of these end-to-end methods to potentially achieve
even higher efficacy.
Lin et al. [24] formulate a complex non-parametric valve
linkage function to connect localization and classification
networks by aligning predicted parts and keypoints. More
recent methods such as Huang et al. [9] and Zhang et al. [7]
aim to combine attention based models and part based models
by cropping parts corresponding to predicted keypoints and
feeding them to discriminative feature extractors for fine
grained recognition. Yet again, our proposed approach does not
require such additional annotations, but can be merged with
these end-to-end approaches combining localisation, attention
and classification.

C. Taxonomy Based Classification

Perhaps closest to our approach lies the work done by
Wang et al. [29], Deng et al. [30] and Srivastava et al. [31].
Wang et al. [29] claim that a set of classification labels at
the subordinate level implies a hierarchy of labels. Their work
involves separate models being learnt for each level of the
hierarchy and fused for global recognition. We instead aim to
employ multi-task learning to regularize the subordinate level
classification using the other levels of the ontology tree. This
makes our proposed method work with a single model, which
can be much smaller as well as end-to-end trainable.

D. Dynamic Multi Task Coefficients

Zhang et al. [19] apply task-wise early stopping, but do not
tune the task-wise rates throughout training. Zhang et al. [34]
employ both dynamic task coefficients and task correlations,
but end up requiring multiple alternating gradient updates for
each mini-batch. Abdulnabi et al. [35] propose a latent task
matrix to capture the relationship among tasks, which can only
be trained via a combination of multiple separate gradient
descent steps for each mini-batch, rendering training highly
impractical.
We overcome many of the aforementioned restrictions in our
model. We consider no constraints such as binary tasks or
equal task coefficients. Our work aims to present multi-task
learning as not just an easy way of training a single network
for multiple tasks, but as an effective regularizer.

III. PROPOSED METHOD

A. Multiple Related Tasks

Learning multiple tasks jointly is a natural way of regu-
larization [32] for deep neural networks that typically have
a large number of parameters or weights. The crux of the
idea stems from the notion that if tasks are related, then
features representing the task should be related as well. Multi-
task learning requires a way to share features across tasks. In
neural networks, including deep convolutional ones, this can
be accomplished by branching or bifurcation. All layers before
the branching or bifurcation are shared, while the subsequent

3477

SHARED LAYERS

K

K
1

K
2

K
3

H
1

H
2

H
3

K
1

K
2

K
3

H
1

H
2

H3+K1+K2

K
1

H
1

H2
+K1

H3
+K2

K
2

K
3

SHARED LAYERS SHARED LAYERS

SHARED LAYERS SHARED LAYERS

K
2

K
1

K
3

Fig. 2. A few examples of typical multi-task neural network architectures. Note that the first few layers are shared by all the tasks, and there is no constraint
on what type of task can be added. Shared layers are represented in grey, while layers in task-specific branches are shown in green. Hi means the hidden
layer and Ki denotes the final loss layer for task i. In the top row, from left to right, we have (a) a single task network, followed by (b) a plain multi-task
network, folowed by (c) a multi-task network with task-specific hidden layers. In the bottom row, from left to right, we have (d) a network where features
from some tasks are concatenated before being passed to another task, and (e) a cascading multi-task network where each task feeds into the next one.

layers are task dependent. Figure 2 shows a few examples of
typical convolutional neural networks designed for learning
multiple tasks. Here, we aim to optimize the performance
of a main or primary task T0 with the aid of additional
related/auxiliary tasks τ = {1, ..., T}. The general form of
the objective function that we aim to minimize here is:

argmin
W0,Wt∀t∈τ

N∑
i=1

[
α0l0(y

0
i , f0(xi,W0)) +

T∑
t=1

αtlt(y
t
i , ft(xi,Wt))

]
(1)

The 0th index refers to the primary task. For N input samples,
Wt denotes the weights of the network with respect to task t,
while yti denotes the ground truth for the input representation
xi. ft represents the feature transformation of the input xi
with respect to the task t and the corresponding weights Wt,
and lt is the corresponding loss function for the task. It is
to be noted that Wt = (Ws,Wtt), where Ws is the shared
representation, i.e., the weights of the shared layers, while
Wtt is the set of weights from the task specific layers.
Compared to traditional multi-task learning, in this formulation
we can employ different loss functions for each task as
appropriate. This is slightly different from traditional multi-
task learning where all the tasks might be considered to be
equally important. For this purpose, we associate each task
t with its loss function lt and a coefficient αt, which acts
as a coefficient determining the relative importance of the
corresponding task.
Even with disparate loss functions, the entire convnet can still
be trained in end-to-end fashion using vanilla backpropagation.
Each loss function lt will compute the error Eit with respect to
an input xi and a target yit, along with a set of error gradients
∇it. These gradients for each task t are then back-propagated
all the way to the point of branching and bifurcation, where
they are combined and propagated backwards through the
shared layers. The task-specific coefficients αt are applied
to the errors Eit and gradients ∇it to ensure that each task

contributes accordingly to the global loss or objective function.
This formulation of multi-task learning faces two challenges,
namely that of finding related tasks, and that of setting the
proper task-specific coefficients. We now discuss our proposed
way of dealing with these two hurdles.

B. Hierarchy as a Related Task

Multi-task learning works only with the correct set of
tasks to learn jointly. Trying to learn unrelated tasks leads
to negative transfer, resulting in poor generalization. We
opine that inherent relationships present among classes can
be effectively used as related tasks to regularize the primary
classification task. For example, the semantic relationships in
case of automobiles, i.e. the type of car (sedan vs. hatchback),
manufacturer (Ford vs. BMW), model (Tesla Model S vs. Tesla
Roadster), form a three level hierarchy that can be exploited
for fine grained recognition. From fig. 3, we can observe that
distinguishing commercial airliners from military fighters is
easier than distinguishing a Boeing airliner from an Airbus
one. One can also obtain a multiple tasks from attributes, such
as ingredients of food items, or from superclasses, as shown in
fig. 3 for breeds of dogs. Even when relationships cannot be
obtained automatically, and require domain knowledge, it is
far cheaper to have experts extract a ontology among classes,
than to have them manually annotate each image in a dataset
for keypoints, attributes, etc. We use this to our advantage,
and use a hierarchy based on the scientific names according to
the Linnaean taxonomy [33] which is in effect a taxonomical
hierarchy. Thus, for any organism, traversing the hierarchy
tree results in multiple labels depending on the level in the
tree, where each label is a classification task that needs to be
learnt by our model. As an example, human beings belong to
Homo sapiens at the species level, Homo at the genus level,
Primates at the order level, Mammals at the class level, and so
on. Naturally, classifiction can benefit from such a hierarchy of
classes, since going to a higher level enables one to leverage

3478

inter-class differences to distinguish classes, while intra-class
variations can be tackled by traversing to a lower level in the
hierarchy.

Retriever Breed
Group

Setter Breed
Group

Chesapeake
Bay Retriever

Curly Haired
Retriever

Golden
Retriever English Setter Gordon Setter Irish Setter

(a) Hierarchy among dogs

McDonnell Douglas Mikoyan GurevichBoeingAirbus

Airliner Military

A300 A319 707 747-8 F-15 F-18 MiG-29 MiG-21

(b) Hierarchy among aircraft

Fig. 3. Examples of relationships among classes that can be exploited for
multi-task learning. a and b show relationships inherent among breeds of dogs,
and types of aircrafts respectively. Best viewed digitally, in color.

C. Task-specific Coefficients

We are now left with the daunting problem of figuring
out how to specify task importance. Tasks need to be ini-
tialised with a proper task-specific coefficient, which effec-
tively weighs its contribution to the total loss and gradients.
Furthermore, these coefficients need to be monitored and tuned
during training based on whether a task is helping or hurting
the performance of the primary task. We adapt the work by
Silver et al. [36] where a separate dynamic task coefficient is
introduced for each task based on a measure of relatedness of
each auxiliary task with the primary task.
We extend Silver et al.’s measure of relatedness to work for
any task with any loss function and with any number of hidden
layers in its own task-specific branch, as long as each task
specific branch has a linear layer with the same number of
units. Like Silver et al., we consider that the primary task has
a coefficient of α0, and each task has a coefficient of αt for
t = {1, ..., T}, where we now consider αt to be a measure of
relatedness between the tth task and the primary task, i.e.,

αt = tanh
(accuracyt
distancet + ε

× 1

RELMIN

)
(2)

where accuracyt is the performance measure of the tth

task and distancet is the Euclidean distance between the
weights of the tth task and the primary task. RELMIN
is a hyperparameter, and ε is a small constant (1e − 6) to
prevent division by zero. The hyperbolic tangent clamps the
task specific coefficient between 0 and 1, while the primary
task has a coefficient of α0 = 1 in our experiments. This
ensures that the auxiliary tasks always contribute less than the
primary task to the weighted loss.
In our model, each task specific branch has a final hidden
layer with the same number of units. Thus, mathematically,

distancet is computed as the distance between the weights of
the final hidden layers in task t’s branch and primary task’s
branch. We further introduce task competition by applying a
softmax on the task coefficients of the auxiliary tasks. As a
result, the primary task has α0 = 1 and for the auxiliary
tasks,

∑T
t=1 αt = 1. Since each auxiliary task now has its

contribution clamped further, this inter-task competition acts
as an additional regularizer. Even though our model has task
specific branches and multi-output tasks unlike [19], [20],
[34], [35], simply by using making the hidden layer of each
task have the same size we can dynamically update task
specific coefficients, and by smoothening the aforementioned
coefficients using a softmax function, we obtain task wise
feature competition.

IV. EXPERIMENTS

We show quantitative results on the Caltech-UCSD Birds-
200-2011 dataset. We use the Torch [37] machine learning
library, on an NVIDIA Titan X GPU.

4
0
9
6

IMAGENET PRETRAINED SHARED
LAYERS

5
1
2

15 Orders

5
1
2

42 Families

5
1
2

120 Genera

5
1
2

200 Species

Fig. 4. The task specific layers of the model for the CUB dataset. Shared
layers are shown in grey, and are usually taken from a model pre-trained on
Imagenet. Each task specific branch is color-coded, viz. orders is in green,
families is in blue, genera is in red, and species is in purple.

A. Caltech-UCSD Birds-200-2011

The Caltech-UCSD Birds-200-2011 dataset contains 11, 788
images of birds belonging to 200 species, where each image
contains additional annotations consisting of 15 pairs of key-
point coordinates, 312 binary attributes and one bounding box
for localization per image. Unlike most existing methods, we
do not use these labels at all. The training and test splits are
roughly equal in size (5994 vs. 5794), and so this dataset has
limited training data. Regularization via multi-task learning
should therefore boost the performance of the primary task. We
refer to the American Ornithologists’ Union Checklist of North
American Birds to obtain the taxonomic hierarchy for avian
species. For each of the 200 species present in the dataset, we
extract the order, family and genus, for a total of 15 orders, 42
families, 120 genera and 200 species in the dataset. Classifying
each bird image into the corresponding genus, family, order
and species make up the four tasks in our multi-task model,
with species level classification being the primary task. The
remaining three tasks contribute to the main goal of identifying
the species of the bird present in the image.
We use an Imagenet pre-trained model to initialise our net-
work. We take all the layers till the last 4096-dimensional
fully connected layer. Right after this layer, we create four

3479

branches, whose details are provided in figure 4 below. Each
branch has a linear layer mapping the 4096 dimensional
feature of the shared layer to 512 dimensions, followed by
another linear layer mapping the 512 dimensional feature to
the corresponding number of classes. All task specific layers
except the final ones have ReLU non-linearities and Dropout
with a probability of 0.5. The 512 dimensional linear layer in
each branch is shown in orange because it is used to compute
the relatedness of the auxiliary tasks with the primary task.
figure 4 shows the base model, which we also adapt to form
concatenated and cascaded models, similar to the ones shown
in figure 2.

B. Training Details

The joint objective function is thus a weighted sum
of four terms, with the weights for species, genus,
family and order classification being denoted by
αclass, αgenus, αfamily & αorder respectively. αclass is
set to 1.0, while all other task coefficients are set to 0.1
initially, and updated at the end of every epoch. We also
employ task wise early stopping, where we set the coefficient
for a task to 0 if its performance saturates in a fixed number
of epochs. The learning rate for the branches is 10 times the
learning rate for the pre-trained layers. Mini-batch gradient
descent is used for training, with an initial learning rate of
0.001 and a batch size of 32. We set the value of RELMIN
to 0.05 following Silver et al. [36], who show that their
method is robust to changes in the value of RELMIN .
Accuracies for the 200 class fine-grained classification task
are shown in table I. We use the VGG-16 model of [38] for
fine-tuning our models, and compare our results with the
current state-of-the-art for simple fine-tuning of pre-trained
model on the CUB-200-2011 dataset for a fair comparison. It
should be noted that both [8] and [10] use pretrained models
as a building block in their models, and our model can easily
be incorporated into their systems for even more improved
fine-grained classification.

C. Analysis

From table I, it is evident that forcing a deep network to
learn multiple tasks simultaneously results in increased testing
accuracy on the primary task(s). The added regularization
increases the generalization of the model. A closer look at
the learning procedure reveals some more benefits of having
multiple tasks. While performance from our multi-task models
does not reach state of the art, it surpasses or provides close
competition to [7], [23], [27], [29] which rely on expensive ad-
ditional annotations of keypoints and bounding boxes, and/or
are multi-stage methods. In contrast, our model is an order
of magnitude simpler, and can easily be utilised in other end-
to-end fine grained recognition pipelines, such as [8]–[10].
Additionally, our results are purely in the weakest regime of
evaluation, without any bounding boxes provided during either
training or testing, unlike methods such as [25]. Supervision
in the form of bounding boxes is bound to increase accuracy,
and remains in the scope of future work.

TABLE I
ACCURACY FOR FINE-GRAINED RECOGNITION WITH THE PROPOSED
APPROACH. PLEASE NOTE THAT CLASSIFICATION HAS A CONSTANT

WEIGHT αclass = 1. MTL REFERS TO SIMPLE MULTI-TASK LEARNING,
WITH EACH TASK SPECIFIC BRANCH HAVING JUST A SINGLE CLASSIFIER
LAYER. MTL−H REFERS TO THE ARCHITECTURE SHOWN IN FIGURE 4
WHERE EACH TASK SPECIFIC BRANCH HAVING ITS OWN HIDDEN LAYERS.
CONCATENATING AND CASCADING ARE APPLIED AS SHOWN IN FIGURE 2.

Methods Additional Details Accuracy
Fine-tuning VGG-16 - 73.52

MTL - 74.85
MTL-H No re-weighting 74.75
MTL-H Re-weighting 75.09
MTL-H Re-weighting, smoothing 75.28
MTL-H Re-weighting, smoothing, stopping 75.66

MTL-H Re-weighting, smoothing,
stopping, concatenating tasks 75.76

MTL-H Re-weighting, smoothing,
stopping, cascading tasks 76.66

BCNN [M,M] model from [8] 78.10
BCNN-MTL MTL on top of BCNN [8] 79.04

[27] Oracle unknown scheme 73.89
[7] Without bilinear features 75.04

[23] Head+Body+Whole image model 75.73
[9] Keypoints+BBox cropping 76.27

From our results, it can be seen that recognition is aided by
not only adding multiple related tasks, but by task coefficient
re-weighting and smoothing as well. Further, it seems that
concatenating and cascading tasks improves performance even
further, courtesy the knowledge embedded in the manifolds of
the auxiliary task branches.
We further implement the BCNN [M,M] method of [8],
and replace the single classifier with our baseline MTL
classifier, i.e. with 4 branches corresponding to the 4 tasks we
intend to learn jointly. We show that combining a hierarchy
based MTL classifier with the BCNN gives a slight boost
in accuracy. Compared to [8] that runs at 8 frames/sec, our
model runs at 32 frames/sec while training.

0 5 10 15 20

Number of epochs

10

20

30

40

50

60

70

80

90

100

A
cc

ur
ac

y

train-STL
test-STL
train-MTL
test-MTL

Fig. 5. Rate of convergence plotted as a function of accuracy versus epochs,
for the baseline fine-tuned model and out MTL−H model.

D. Regularization of Primary Task

We also address the claim of multi-task learning providing
better regularization by analyzing the gap between trainng
and testing accuracies, as shown in figure 5. Here, we plot
training and testing accuracies for the baseline single task fine-
tuned model (STL in the figure) and our MTL −H model
for the first 20 epochs of training, when both models have

3480

saturated in terms of performance. One can clearly observe
from figure 5 that not only does the testing accuracy improve
in the MTL−H model, but the difference between training
and testing accuracies is also lower for the MTL−H model.
This proves that multi-task learning has indeed regularized the
model, leading to increased generalization. Indeed, in table II
we show that auxiliary tasks in the form of super-classes
actually help resolve confusing samples, and end up achieving
better performance. Our experiments show that while training
accuracy reaches 99.41% in the fine-tuned model, it only
reaches 96.36% in the final MTL−H model.

TABLE II
ACCURACIES FOR THE ADDITIONAL TASKS OF ORDER, FAMILY AND

GENUS CLASSIFICATION USING A SINGLE TASK MODEL FINETUNED FROM
VGG-16, AND A MULTI TASK MODEL WITH TASK SPECIFIC HIDDEN

LAYERS. IMPROVED ACCURACIES REPRESENT BETTER GENERALIZATION.

Methods Order Family Genus
Single Task Model 94.80 86.58 79.39

MTL-H 96.78 90.49 83.43

V. CONCLUSION

Use of a label hierarchy to generate auxiliary tasks is an
effective strategy for regularization of a learning algorithm. We
exploit the inter-dependency and relatedness among tasks to
train deep convolutional networks that are more accurate and
robust. Our experiments show that even with limited training
data, the presence of hints in the form of additional tasks and a
joint objective function causes the convnet to learn meaningful
features that generalize well on testing data. Additionally,
multiple tasks can be learnt faster than it takes to learn a single
task. Possible extensions to this would involve attempting to
analyse the effect of relatedness of tasks has on generalization.
A deterministic method to assign appropriate importance to
each auxiliary task is much needed as well.

REFERENCES

[1] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in NIPS, 2012.

[2] J. Donahue, Y. Jia, O. Vinyals, J. Hoffman, N. Zhang, E. Tzeng, and
T. Darrell, “Decaf: A deep convolutional activation feature for generic
visual recognition,” arXiv preprint arXiv:1310.1531, 2013.

[3] A. S. Razavian, H. Azizpour, J. Sullivan, and S. Carlsson, “Cnn features
off-the-shelf: an astounding baseline for recognition,” in CVPRW, 2014.

[4] K. Chatfield, K. Simonyan, A. Vedaldi, and A. Zisserman, “Return of
the devil in the details: Delving deep into convolutional nets,” in BMVC,
2014.

[5] M. Oquab, L. Bottou, I. Laptev, and J. Sivic, “Learning and transferring
mid-level image representations using convolutional neural networks,”
in CVPR, 2014.

[6] C. Wah, S. Branson, P. Welinder, P. Perona, and S. Belongie, “The
Caltech-UCSD Birds-200-2011 Dataset,” California Institute of Tech-
nology, Tech. Rep. CNS-TR-2011-001, 2011.

[7] N. Zhang, E. Shelhamer, Y. Gao, and T. Darrell, “Fine-grained
pose prediction, normalization, and recognition,” arXiv preprint
arXiv:1511.07063, 2015.

[8] T.-Y. Lin, A. RoyChowdhury, and S. Maji, “Bilinear cnn models for fine-
grained visual recognition,” arXiv preprint arXiv:1504.07889, 2015.

[9] S. Huang, Z. Xu, D. Tao, and Y. Zhang, “Part-stacked cnn for fine-
grained visual categorization,” arXiv preprint arXiv:1512.08086, 2015.

[10] M. Jaderberg, K. Simonyan, A. Zisserman et al., “Spatial transformer
networks,” in NIPS, 2015.

[11] R. Collobert and J. Weston, “A unified architecture for natural language
processing: Deep neural networks with multitask learning,” in ICML,
2008.

[12] D. Eigen and R. Fergus, “Predicting depth, surface normals and semantic
labels with a common multi-scale convolutional architecture,” in ICCV,
2015.

[13] R. Ranjan, V. M. Patel, and R. Chellappa, “Hyperface: A deep multi-
task learning framework for face detection, landmark localization, pose
estimation, and gender recognition,” arXiv preprint arXiv:1603.01249,
2016.

[14] J. Dai, K. He, and J. Sun, “Instance-aware semantic segmentation via
multi-task network cascades,” arXiv preprint arXiv:1512.04412, 2015.

[15] X. Chu, W. Ouyang, W. Yang, and X. Wang, “Multi-task recurrent neural
network for immediacy prediction,” in ICCV, 2015.

[16] I. Misra, A. Shrivastava, A. Gupta, and M. Hebert, “Cross-stitch net-
works for multi-task learning,” in CVPR, 2016.

[17] S. Li, Z.-Q. Liu, and A. B. Chan, “Heterogeneous multi-task learning
for human pose estimation with deep convolutional neural network,” in
CVPR, 2014.

[18] C. Zhang and Z. Zhang, “Improving multiview face detection with multi-
task deep convolutional neural networks,” in WACV, 2014.

[19] Z. Zhang, P. Luo, C. C. Loy, and X. Tang, “Facial landmark detection
by deep multi-task learning,” in ECCV, 2014.

[20] Y. Tian, P. Luo, X. Wang, and X. Tang, “Pedestrian detection aided by
deep learning semantic tasks,” arXiv preprint arXiv:1412.0069, 2014.

[21] G. Gkioxari, B. Hariharan, R. Girshick, and J. Malik, “R-cnns for pose
estimation and action detection,” arXiv preprint arXiv:1406.5212, 2014.

[22] P. Teterwak and L. Torresani, “Shared Roots: Regularizing Deep Neu-
ral Networks through Multitask Learning,” Master’s thesis, Dartmouth
College, 2014.

[23] S. Branson, G. Van Horn, P. Perona, and S. Belongie, “Improved bird
species recognition using pose normalized deep convolutional nets,” in
BMVC, 2014.

[24] D. Lin, X. Shen, C. Lu, and J. Jia, “Deep lac: Deep localization,
alignment and classification for fine-grained recognition,” in CVPR,
2015.

[25] J. Krause, H. Jin, J. Yang, and L. Fei-Fei, “Fine-grained recognition
without part annotations,” in CVPR, 2015.

[26] T. Xiao, Y. Xu, K. Yang, J. Zhang, Y. Peng, and Z. Zhang, “The applica-
tion of two-level attention models in deep convolutional neural network
for fine-grained image classification,” arXiv preprint arXiv:1411.6447,
2014.

[27] N. Zhang, J. Donahue, R. Girshick, and T. Darrell, “Part-based r-cnns
for fine-grained category detection,” in ECCV, 2014.

[28] R. Girshick, J. Donahue, T. Darrell, and J. Malik, “Rich feature
hierarchies for accurate object detection and semantic segmentation,”
in CVPR, 2014.

[29] D. Wang, Z. Shen, J. Shao, W. Zhang, X. Xue, and Z. Zhang, “Multiple
granularity descriptors for fine-grained categorization,” in ICCV, 2015.

[30] J. Deng, N. Ding, Y. Jia, A. Frome, K. Murphy, S. Bengio, Y. Li,
H. Neven, and H. Adam, “Large-scale object classification using label
relation graphs,” in ECCV, 2014.

[31] N. Srivastava and R. R. Salakhutdinov, “Discriminative transfer learning
with tree-based priors,” in NIPS, 2013.

[32] I. Goodfellow, Y. Bengio, and A. Courville, “Deep learning,”
2016, book in preparation for MIT Press. [Online]. Available:
http://www.deeplearningbook.org

[33] C. Linnaeus et al., “Systema naturae, vol. 1,” Systema naturae, Vol. 1,
1758.

[34] Z. Zhang, P. Luo, C. C. Loy, and X. Tang, “Learning deep representation
for face alignment with auxiliary attributes,” IEEE Transactions on
Pattern Analysis and Machine Intelligence, vol. 38, no. 5, pp. 918–930,
May 2016.

[35] A. H. Abdulnabi, G. Wang, J. Lu, and K. Jia, “Multi-task cnn model
for attribute prediction,” Multimedia, IEEE Transactions on, 2015.

[36] D. L. Silver and R. E. Mercer, “The parallel transfer of task knowledge
using dynamic learning rates based on a measure of relatedness,”
Connection Science, 1996.

[37] R. Collobert, K. Kavukcuoglu, and C. Farabet, “Torch7: A matlab-like
environment for machine learning,” in BigLearn, NIPS Workshop, 2011.

[38] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” arXiv preprint arXiv:1409.1556, 2014.

3481

