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ABSTRACT
Saliency computation is widely studied in computer vision
but not in medical imaging. Existing computational saliency
models have been developed for general (natural) images and
hence may not be suitable for medical images. This is due
to the variety of imaging modalities and the requirement of
the models to capture not only normal but also deviations
from normal anatomy. We present a biologically inspired
model for colour fundus images and illustrate it for the case
of diabetic retinopathy. The proposed model uses spatially-
varying morphological operations to enhance lesions locally
and combines an ensemble of results, of such operations, to
generate the saliency map. The model is validated against
an average Human Gaze map of 15 experts and found to
have 10% higher recall (at 100% precision) than four leading
saliency models proposed for natural images. The F-score
for match with manual lesion markings by 5 experts was
0.4 (as opposed to 0.532 for gaze map) for our model and
very poor for existing models. The model’s utility is shown
via a novel enhancement method which employs saliency to
selectively enhance the abnormal regions and this was found
to boost their contrast to noise ratio by ∼ 30%.

CCS Concepts
•Computing methodologies→ Interest point and salient
region detections; Modeling methodologies; •Applied
computing → Life and medical sciences;
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1. INTRODUCTION
Human attention is attracted by most prominent or visu-

ally salient objects in a scene. Saliency of an object is mod-
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ulated by the task at hand [25] and we selectively attend to
most informative regions of visual field while ignoring some
unimportant regions. Much effort has been made to under-
stand task-specific visual attention and perception, resulting
in cognitive modeling of visual saliency [24]. Computational
modeling of the same has been of interest to computer vision
community for years [4] leading to their use in segmentation
[1], object recognition [9], retrieval [23], image/video com-
pression [10] and context aware image editing [11]. Many
such applications are of interest in medical domain as well.

Medical experts look for specific type of abnormalities of-
ten at specific locations, ignoring irrelevant areas and ar-
tifacts, while reviewing images for diagnosis. Interest in
medical image perception is on the rise partly to identify
best practices for accurate diagnosis. Cognitive and psy-
chophysical studies have attempted to understand how med-
ical experts inspect images via eye tracking [18, 7]. Deriving
saliency models for medical images is a difficult task due to
the variability in modalities, anatomy and type of disease.
Very little work has been done to devise computational mod-
els of saliency for medical images [15, 3, 27]. Saliency has
been used in x-ray image classification[6], segmentation and
registration of MRI [20, 21] and anatomical plane classifica-
tion from fetal ultrasound [19].

Computational models of visual attention are broadly clas-
sified into 2 groups: bottom-up and top-down [4]. Bottom-
up models are stimuli driven, whereas top-down models are
intention, task or goal driven and based on prior knowl-
edge. Depending on the medical modality, general bottom-
up models may or may not be successful in explaining how
experts review images. Existing top-down models for gen-
eral images are inappropriate as the tasks are different. Saliency
models need to be designed for specific modalities and type
of lesions.

We propose a saliency model for colour fundus images
of eyes and showcase it for diabetic retinopathy (DR). Our
model handles normal and abnormal images with bright le-
sions (hard exudates, cotton wool spots) and dark lesions
(hemorrhages, microaneurysms). Potential applications of
this work are: (a) Selective enhancement of salient regions
(discussed in section 4), (b) Tools which assist/train read-
ers (in image reading centres) and clinical residents. Here,
saliency value of an image region can be mapped to a confi-
dence measure about the presence of abnormality. (c) Fully
automatic solution development for lesion detection, with
saliency aiding candidate region detection.

Existing computational saliency models include ones which
are biologically plausible [14] or based on spectral-analysis



[13], information- and decision-theory [5], pattern classifica-
tion [16], graphs [12], etc. The proposed model is biologi-
cally motivated and is based on morphological processing.
The model has been evaluated against gaze maps of retina
specialists as well as manual lesion markings and compared
with four existing bottom up saliency models developed for
natural images. The model is showcased in a novel selective
enhancement application.

2. METHOD
Human fixations follow a Gaussian distribution [26]. Vi-

sual information near a gaze-point is attended to more than
those that are away. In terms of visual processing, this im-
plies that information in a region proximal to a gaze-point is
given higher importance than that are not. The inspection
and understanding of the entire visual scene is done gradu-
ally as we move our eyes. We use this idea in developing the
proposed model.

We propose an approach to saliency computation for a
specific task, namely to detect abnormalities (bright and
dark lesions) in a given image, by boosting their prominence
at a local level. Let us consider a gaze-point p in the im-
age. Our strategy is to boost the prominence of lesions or
abnormalities in the image based on their proximity to p.
Specifically, the boosting is higher for proximal as opposed
to distant lesions. The boosting is achieved using spatially
varying morphological processing. The final saliency map is
derived by using a set of gaze-points pi and combining the
boosted results at these points.

The processing pipeline has 3 stages: (1) Preprocessing (2)
Generation of an ensemble of pre-saliency maps (3) ensemble
integration to produce the final saliency map. The details
are presented next.

2.1 Preprocessing
Given a colour fundus image, all processing was restricted

to the green channel. The vessel network and the optic-disk
were detected and inpainted. The fundus was extended to
cover the mask region.

2.2 Pre-saliency map generation
Given an image I and a gaze-point p = (a, b), the origin is

shifted to p. The resulting image Is (x, y) = I(x − a, y − b)
which in polar coordinates, is denoted as Is(r, θ). For any
given θ ∈ (−π, π], we denote the 1-D image Iθ(r) = Is(r, θ).
Consider a structuring element,

b(ρ) =

{
0, ρ ∈ Db
−∞, otherwise

(1)

where, Db is domain of structuring element b. Grayscale
dilation and erosion of Iθ with b is expressed respectively as,

(Iθ ⊕ b)(r) =max{Iθ(r − ρ) | ρ ∈ Db} (2)

(Iθ 	 b)(r) =min{Iθ(r + ρ) | ρ ∈ Db} (3)

In order to introduce spatially-varying processing, the do-
mainDb is made to vary with r and hence the dilation/erosion
is defined as follows,

Db(rn) ≡[−f(rn), f(rn)] (4)

(Iθ ⊕ b)(rn) =max{Iθ(rn − ρ) | ρ ∈ Db(rn)} (5)

(Iθ 	 b)(rn) =min{Iθ(rn + ρ) | ρ ∈ Db(rn)} (6)

We have chosen f(r) = λGσ(r), where Gσ(r) is a Gaussian
distribution with zero mean and variance σ2. λ is a free
parameter which controls the domain length. Eq. 5 and 6
can also be interpreted as rank filtering with a filter/window
whose length is a function of rn. At any point rn, a window
centred at rn and of length 2λGσ(rn) is used to do the rank-
ing operation. The above 1D operation (dilation/erosion)
is performed on Iθ(r), ∀θ ∈ (−π, π]. i.e. in each direction.
Fig.1 shows the windows of varying length along different di-
rections about a gaze point P : (r, θ). Windows for Iθ=0(r)
are shown to be derived from Gaussian distribution.

Figure 1: Window length at different points in the
image.

Processed images are shifted back to get the final pre-
saliency (PS) maps: PSiq(x, y) = Iq(x + ai, y + bi) where q
represents dilation or erosion operation. Dilation (erosion)
will boost the saliency of bright (dark) lesions.

We illustrate this idea with a phantom in Fig.2. Here, an
image patch is modeled as gray-scale texture with idealized
lesions appearing as dots of appropriate colour: white dot
(hard exudate or HE), white blurred spot (cotton wool spot
or CWS) and dark dot (hemorrhage or HM) (Fig.2a). Four
gaze-points pi are selected on the three lesions and back-
ground (Fig.2b). The PS maps obtained with different pi
are dramatically different as seen in Fig.2c-j. Overall, it can
be seen that a lesion is spatially extended while the back-
ground remains unchanged, in the PS map. It is noteworthy
that when p is on the background (shown in yellow), both
dilation and erosion has no effect since the lesions are not
proximal enough to p in any direction. Hence, the original
image and PS are almost identical in appearance. Similar
behaviour is shown in real images next.

A sample fundus image patch with a HE and HM is shown
in Fig.3 along with the PS maps for dilation/erosion de-
rived with three pj (shown in green, blue and black). In
Fig.2 and 3, the pj were selected on true lesions deliber-



(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 2: Pre-saliency maps for a phantom image (a) at four gaze-points considered (b). The maps with
dilation - erosion for the red, blue, green and yellow gaze-points are shown in (c)-(d),(e)-(f),(g)-(h) and (i)-(j)
respectively.

(a) (b) (c) (d) (e) (f) (g) (h)

Figure 3: Pre-saliency maps for a fundus image patch (a) at three gaze-points (b). The maps with dilation -
erosion for the black, green and blue gaze-points are shown in (c)-(d);(e)-(f) and (g)-(h) respectively.

ately to show the effect of the proposed spatially-varying
morphological processing. In reality, the lesion locations are
unknown. Hence, a set of {pj | j = 1, 2, 3, ..., J} at ran-
domly selected locations are used to generate an ensemble
of PS maps. Since both bright and dark lesions are of in-
terest, both erosion and dilation are applied separately at
each pj , to obtain 2J PS maps. A judicious combination of
these maps can help derive the desired saliency map, which
is explained next.

2.3 Integration
In order to combine the J PS maps, we follow the strategy

used in [22]. The J maps are summed to create a combined
map Cq. The variance at every pixel location is also com-
puted to derive a variance map Vq.

Cq =

J∑
i=1

PSiq (7)

Vq = Variance(PSiq); i ∈ [1, 2, 3, ..., J ] (8)

These two maps provide evidence for a location to be salient.

An explicit Evidence map (Eq) is computed by exponential
weighting of Cq by Vq as,

Eq = Cq × e(τ×Vq), τ ∈ R (9)

Here, τ helps control the contribution of the variance at a
pixel to the final evidence. A negative (positive) value of τ
is chosen for bright (dark) lesion. Higher absolute value of τ
boosts the saliency of even less prominent lesions. Separate
Eqs, one for dilation and other for erosion, are extracted.

2.3.1 Saliency map computation
A Center surround (CS) filter is applied to handle the

variable conspicuity of lesions. This is applied to both Eq
separately and they are combined to get the Saliency map
(S) as,

S = max{Ecsdilation,Ecserosion} (10)

where, Ecsq is CS filtered Eq and max{.} is a pixel-wise max
operation. S is finally smoothed with a Gaussian filter. The
proposed pipeline is shown in Fig.4 with all intermediate
results.



Figure 4: Proposed model for computing saliency with intermediate results.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 5: Comparison of saliency models (a) Sample fundus image (b) Markings from 5 experts (c) GM
map(d) SED (Our model) (e) GBVS (f) AIM (g) IK (h) SR

3. RESULTS

3.1 Evaluation for abnormal cases
The proposed Spatially-varying Erosion and Dilation (or

SED) model for saliency was tested on images collected from
a local eye hospital. Along with the images, manual marking
(GT) of lesion regions was collected from 5 retina experts.
The model was evaluated in two ways: i) against gaze maps
derived from eye tracking and ii) GT. The proposed model
was also benchmarked against 4 different bottom up mod-
els of saliency. The preprocessed images (section 2.1) were
taken as input for all the saliency models for a fair com-
parison. The models taken for comparison were based on
different approaches: SR [13], Itti-Koch (IK) [14], GBVS
[12] and AIM [5]. Of these models, only the AIM model is

based on learning (from patches of a large number of natural
images).

3.1.1 Evaluation against Gaze-map
We begin with the evaluation against average human gaze

map (GM). An eye tracking experiment was performed on
15 retina experts while they were reviewing the images ex-
haustively. To avoid human fatigue and hence low accuracy
of eye tracking data, dataset size was limited to 10 images,
all containing DR lesions. GMs of all experts were denoised
and averaged to derive an average GM for each image.

A sample image and its softmap GT are shown in Fig.5a-
b. The GM and the computed saliency maps are presented
in Fig.5c-h. SED and AIM appear to be similar to both GT
as well as GM, though there are some false positive saliency
regions as well. The saliency maps from GBVS, IK and SR



(a)

(b)

Figure 6: Comparative performance of various
saliency models against gaze maps (a) Precision-
Recall characteristics (b) F-score for saliency mod-
els.

are sparse and do not have as much overlap with the GT
and GM. A quantitative analysis was also done to compare
the performances. The results are presented next.

First, we compared the saliency maps (S) with GMs. Pre-
cision (P ) and recall (R) were computed by thresholding S
in the 0-90% range in steps of 10%. The resultant plots are
presented in Fig.6a. It can be observed that for P < 0.2 the
R values of existing models show an increasing trend whereas
for P > 0.2 the trend is a decreasing one. In contrast, SED
shows an increasing trend for all R ∈ [0, 1]. At P = 1,
SED outperforms the existing methods by 10%. This rela-
tive improvement is also seen in F-score which is presented
in Fig.6b.

3.1.2 Evaluation against Ground Truth
In the medical domain, unlike general vision, high level (or

top down) knowledge is used during image scrutiny as the
end goal is diagnosis. It is quite possible that overt attention
is not used in determining if a region has abnormalities or
not. Hence, it is of interest to determine the degree of over-
lap between the GM and GT maps. Further, since a saliency
map can have multiple applications (see section 1), we also
evaluated all the models against GT. The GT softmap was

(a)

(b)

Figure 7: Comparative performance of various
saliency models against ground truth (a) Precision-
Recall characteristics (b) F-score for saliency mod-
els.

thresholded at 50% agreement to generate a binary map.
Again, all saliency maps and GMs were thresholded from 0-
90% of saliency in steps of 10% to generate the PR plot and
F-score vs %saliency plot presented in Fig.7. The plots re-
veal that SED and GM outperform all saliency models. This
underscores the fact that a saliency model designed for nat-
ural images is not appropriate for medical images especially
in helping to detect abnormalities.

3.2 Evaluation for normal cases
The saliency maps were also computed for images without

any abnormalities i.e. normal images. These are shown for
a sample image for all models in Fig. 8. The GM was
collected separately for normal images and the one for Fig.
8a is shown in Fig. 8b. This reveals that experts scrutinize
even normal cases with a set of fixations before making a
diagnosis. The GM also indicates the macula to be the only
region with significant foveation. This is to be expected as
macula is responsible for sharp colour vision and is hence
a danger zone; any presence of abnormality here calls for
swift intervention. It can be seen that only SED is able
to reject normal regions and generate a very sparse saliency
map as desirable. The scrutiny of normal images is guided by



(a) (b) (c)

(d) (e) (f) (g)

Figure 8: Comparison of saliency models for normal fundus image. (a) Original fundus image (b) Average
gaze map (c) SED (Our model) (d) GBVS (e) AIM (f) IK (g) SR

more complex knowledge about the normal anatomy, danger
zones and an expert’s scrutiny style. Hence, a quantitative
analysis is not appropriate for such cases.

4. APPLICATION: SELECTIVE ENHANCE-
MENT

Saliency can be employed in many applications as men-
tioned in section 1. We next consider the problem of selec-
tive enhancement of color fundus images in greater depth.
Existing enhancement techniques include single channel(mostly
green channel) enhancement or color enhancement which
uses global information. Such methods alter perceptual qual-
ity of an image [8]. Such enhanced images may be useful
for computational purposes but unsuitable for visual pre-
sentation in real word scenario where a human image reader
is diagnosing images. Fully-automatic enhancement also
does not allow a reader to apply minor adjustment as is
often desirable. For example, radiologists routinely vary the
window-center and window-length to adjust brightness and
contrast of CT images for better visibility [2].

We propose a semi-automatic solution with Interactive Se-
lective Enhancement (ISE). ISE enhances salient regions lo-
cally, with minimum alteration to perceptual quality. ISE
provides interactive control over degree of enhancement i.e.
reader can vary parameters to improve results generated by
default parameter settings and can observe changes in real-
time. ISE however, does not aim to correct non-uniform
illumination or blur. Details are provided next.

Given an image I and evidence maps Ecsdilation and Ecserosion,
enhanced image X is computed over multiple scales and

fused as follows,

Xk =
∑
i

{
[(1− α)Ik − α((ak E

cs
erosion × Ik) ∗Gi)]

+ [(1− β)Ik + β((bk E
cs
dilation × Ik) ∗Gi)]

}
(11)

Here, the first and second terms help enhance dark and
bright lesions respectively. k is index of color channel and i
is scale. a and b control color shade in the enhanced image.
α and β are mixing parameters which control the degree of
enhancement. α, β, a, b are control parameters which can
be varied by the reader. Ecserosion(or Ecsdilation) masks out all
the background and picks only dark (or bright) lesions from
I, which is then mixed with I over multiple scales. Nega-
tive sign in the first term effects a darkening of the salient
regions. Similarly, positive sign in the second term has the
effect of brightening the salient regions.

The publicly available DiaretDB1[17] dataset is chosen for
validation as it contains both bright and dark lesions and
also provides lesion-level GT. We use 47 abnormal images
out of given 89 images for the evaluation. A set of experi-
ments are reported here for different settings of mixing pa-
rameters. a and b are fixed for all the experiments. First,
mixing parameter α and β are varied one at a time while
the fixed parameter is set to zero. Varying values of α with
β = 0 results in enhancement of only dark lesions. Simi-
larly, varying values of β with α = 0 results in enhancement
of only bright lesions. Figures 9 and 10 show qualitative
results of IES for dark and bright lesions respectively. An
excessive enhancement of dark (bright) lesions is seen to rel-
atively brighten (darken) the background. If, both α and



Original Image α = 0.1 α = 0.3 α = 0.5 α = 0.7 α = 0.9

Figure 9: Selective enhancement of dark lesions for different α (β = 0).

Original Image β = 0.1 β = 0.3 β = 0.5 β = 0.7 β = 0.9

Figure 10: Selective enhancement of bright lesions for different β (α = 0).

Original Image α = β = 0.1 α = β = 0.3 α = β = 0.5 α = β = 0.7 α = β = 0.9

Figure 11: Balanced enhancement of both bright and dark lesions for varying values of α and β.

(a)

(b)

Figure 12: Contrast to noise ratio as a function of
mixing parameter: (a) dark lesions (b) bright le-
sions.

β are varied simultaneously, this results in a balanced en-
hancement of both dark and bright lesions. Fig. 11 shows
this on a sample image.

A quantitative evaluation of IES was performed by com-
puting the contrast to noise ratio (CNR) for varying values
of mixing parameters. CNR is defined as

CNR =
|mf −mb|

σb
(12)

where, mf and mb are mean intensity of foreground (lesions
in our case) and background respectively. σb is the standard
deviation of background intensity. Fig.12 shows the rela-
tion between CNR and mixing parameter which is strictly
increasing. Varying mixing parameter from 0 to 1 increases
CNR by ∼ 30% for both dark and bright lesions (from 4.04
to 5.8 for bright lesions and from 3.36 to 4.75 for dark le-
sions).

Figures 9, 10 and 11 suggest that certain range of α and
β give the best perceptual quality. It is possible to dynam-
ically compute the optimum parameters of ISE for a given
image and use it as default settings subject to minor ad-
justments by reader. Optimized ISE can also be used for
computational purposes and is beyond the scope of this pa-
per.

5. CONCLUSION
Saliency computation has not received much attention in

medical imaging. We presented a saliency model which is
biologically inspired and is based on combining results of



spatially-varying morphological processing centred at ran-
domly chosen gaze points. The poor performance of saliency
models such AIM, GBVS etc., in contrast to the good perfor-
mance of our model in predicting gaze points and identifying
abnormal regions, underscore the point that generic saliency
models are unsuitable for the medical domain. As opposed
to the strategy we used where the gaze points were cho-
sen randomly, a guided spatial arrangement of gaze-points
would be an interesting variant worth exploring. Saliency
maps can be used for many applications. We presented one
which aids interactive and selective enhancement of regions
of abnormalities. This offers an efficient and highly interac-
tive environment for image readers in screening centres and
also aid candidate selection in automatic processing.
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