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Abstract—Content based indexing is critical to the effective
access of the multimedia data. To this end, visual data is often
annotated with textual content for bridging the semantic gap.
In this paper, we present a method to generate frame level
fine grained annotations for a given video clip. Access to the
frame level fine grained annotations lead to rich, dense and
meaningful semantic associations between the text and video.
This in turn makes the video retrieval systems more accurate. We
demonstrate the use of probabilistic label consistent sparse coding
and dictionary learning with a K-SvD algorithm to generate ‘fine
grained’ annotations for a class of videos — lawn tennis. The
algorithm simultaneously learns a classifier and a dictionary
to generate the frame level annotations for the tennis videos
using available textual descriptions. The utility of the proposed
algorithm is demonstrated on a publicly available tennis dataset
comprising of tennis match videos from Olympics games.

I. INTRODUCTION

Multimedia sharing sites have gained substantial popularity
in recent years. Both video and image contents are changing
the ways we interact with the data on web. With the surge in
the availibilty of online video content, it is increasingly becom-
ing complex to index and annotate them with appropriate tags.
These tags imbibe the contextual and semantic information in
the video (or media, generally). They are used to facilitate
the media content search and access. Considerable work has
been done in the past for the multimedia annotations both for
images [7], [17], [22] and videos [19], [5], [8], [3]. The anno-
tation tags produced by such methods are substantially detailed
and could be used for retrieval settings. However, in the case
of videos we require more fine grained annotations (tags gets
finer and specific as the interval gets smaller on the temporal
axis) to be useful in real-life applications. Few have attempted
the problem of tagging and localization in videos [2], [3],
[12], [14]. Video tagging and temporal localization based on
social knowledge [3], Youtube videos annotation using Flickr
images [2] using zero-shot visual similarity of keyframes
and images, video shot modeling using multiple instance
learning [12], semantic tagging of personal video content using
user generated tags in an image folksonomy [14] are some
of the examples of previous video annotation attempts. In our
present work, we propose an approach to generate fine grained
annotations for tennis videos.

Using current retrieval methods, a video search query like
‘Serena hits a forehand shot’ might (depending on the details
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Fig. 1. Given a collection of tennis videos along with the linked captions,

our approach generates annotations for constituent frames of the input video.
The approach aligns video frames with the corresponding ‘action phrases’.
Window size (shown in red and blue colors) of ‘two’ assigns similar labels
to the adjacent two frames.

captured by annotations) return videos where Serena plays
a forehand shot. We propose a method to generate video
annotations at ‘frame level’ granularity (see Fig. 1). In such a
case, we even can identify ‘time-stamps’ where Serena hits
a forehand shot. This becomes extremely challenging in a
domain independent setting due to innumerable possibilities.
Focus on a specific domain confines the output space [19].
We therefore restrict ourself to lawn tennis videos and take
a step towards fine grained video annotations. The input in
our case is a video and a corresponding caption. We associate
each frame with a corresponding tag and the annotation which
is a collection of similar action phrases.

A complementary but essential task to multimedia retrieval
is to associate the multimedia content with semantically
meaningful captions. Several approaches have been proposed
to achieve such associations between text and multimedia
content. Amongst all these approaches, the two most popular
practices have been either to generate captions using template
based NLG techniques [7], [5] or to retrieve from a collec-
tion of available descriptions [19], [17]. In retrieval based
approach, description is generated by using either image-to-
image similarity [17] or video-to-text similarity [19]. Our work
is a precursor to methods using text-based similarities over
available descriptions for multimedia retrieval. In a domain
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Fig. 2. The proposed approach: Every frame is associated with a corresponding tag which is a collection of similar action phrases. Both trajectory matrix
(Y) and phrase-cluster matrix (H) are stacked together to compute the dictionary. The dictionary is used to generate frame level annotations for the input

videos. We represent each group of ‘phrases’ by a cluster number.

specific video retrieval setting, our method would assist in
better retrieval results as it encodes local temporal structures
in tennis videos and aligns the frames with appropriate fine
grained annotations. We address the problem of automatically
identifying and aligning ‘annotations’ that best describe the
constituent video frames.

Unlike current video tagging and event detection methods
[6], [13] we extract action phrases from the linked captions
and simultaneously localize the spatio-temporal actions. Deep
Event Network, [6], detects high-level events and localizes the
key evidences based on CNNs. Deep networks are utilized in
multimedia event detection and recounting [6]. Convolutional
Neural Networks (CNNs) have also shown promising results
for action classification and recognition [11], [18]. Related
to our task is the problem of video classification by iden-
tifying key segments and their transitions [20], [21], [16].
These methods focus on high-level event classification and
generate recounting for video understanding and automatic
tagging. We intend to be more fine grained in our present
approach and temporally localize multiple actions in domain
restricted setting of tennis videos. Such frame level annotations
are useful for computer vision and machine learning based
applications. The better the association of the visual data and
the textual description, better is the generated model.

Earlier attempts for tennis video analysis and annotations
focused on player and action detections [15]. Recent work on
tennis commentary generation [19] suggests a more holistic
approach of tennis scene understanding. It simultaneously uses
vision, language and machine learning techniques to produce
semantically rich and human-like descriptions for lawn tennis
videos. Our approach bears a resemblance to the task of
learning main steps from input narrated instruction videos [1].

We take a step towards weak labelled unsupervised ‘action
phrase’ recognition for tennis videos and suggest a unified
objective function to identify prominent action phrases from
verbal descriptions. The identified phrases are then aligned to
appropriate video frames.

We obtain the alignment by optimising an appropriate objec-
tive function. This is done using KSVD which yields similar ac-
tion phrases for local temporal structures of videos composed
of similar actions. We use probabilistic label constrained KSVD
for learning sparse dictionary for recognition. The suggested
approach (Section II) utilizes the video descriptions to learn
varied constructs and associates them with action features
extracted from videos. It extracts various linguistic phrases [7]
from available sentences and clusters them into groups of
semantically similar [9] action phrases, for example phrases
like ‘huge rally’ and ‘contested rally’ are part of one cluster
and ‘backhand catches net’ and ‘Serena catches net’ belong
to the same cluster. The phrase clusters are thereafter used
for classifying action features — similar looking actions are
labelled with similar phrase clusters. A group of semantically
similar phrases belong to the same phrase clusters and the set
of frames encoding similar actions are assigned similar phrase
clusters as corresponding labels. Our main contributions in this
direction are:

1) a joint model to assign video frames into appropriate
phrase bins under weak label supervision, and

2) use of probabilistic label consistent dictionary for fine
grained classification.

The next section describes the framework of the fine grained
tennis annotations generation. Localized frame level annota-
tions binding the temporal information are the output of the
proposed approach. We evaluate our method on a public tennis
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Generated <acex craft return®, <Serena catch net> <Serena go> rally=<Williams return return><cross-court fail>
Phrase Clusters 4,23 23,32, 36, 42, 46 28,32, 35, 43
Joint Model 4,23,23, 4 42,373,312, 42,4242 43, 28, 28, 28, 32, 43, 32, 43, 32, 32, 32, 35, 43,
[I:ll.ltput] 43,28, 43, 28, 43, 32, 28, 32, 32, 43, 32, 32, 28,

32,28, 32

Fig. 3. Illustration of the approach: First two rows correspond to input videos and the linked descriptions. The extracted phrases and assigned phrase clusters
are shown in the next two rows. The last row demonstrates output phrase clusters obtained using the proposed approach (Number of such clusters depends
on the duration of an input video). Every cluster index represent the group of similar action phrases for the local temporal structures of the input video.

video dataset [19] in the penultimate section.

II. FINE GRAINED ANNOTATIONS

The video segments of tennis game are input to the proposed
approach. We begin by text based phrase clustering which
is a precursor to learn dictionary parameters using KSVD.
The computed dictionary is then used to generate frame level
annotations for the input videos. Fig. 2 summarises the steps
involved in our method.

A. Phrase Extraction and Clustering

We automate the process of phrase extraction from a given
video descriptions using CoreNLP toolkit '. We use ‘collapsed-
coprocessed-dependencies’ [4], i.e. dependencies involving
prepositions and conjuncts are collapsed to reflect direct
relation between content words. Each sentence is mapped
to the list of nine distinct phrase encodings — (subject),
(object), (subject;verb), (object;verb), (subject;prep;object),
(object;prep;object), (attribute;subject), (attribute;object) and
(verb;prep;object). We believe these nine encodings assimilate
all possible information in a linked description and input
sentence, Fig. 4. Since the generated phrases are targeted to
increase the overall retrieval efficiency we keep player names
intact in the extracted phrases.

The extracted phrases are clustered using hierarchical ag-
glomerative clustering with Semantic Textual Similarity (STS)
measure described in [9]. The similarity scores describe the
degree of equivalence in the underlying semantics of paired
snippets of text (phrases). The distance metric uses a word
similarity feature combining both LSA word similarity and
WordNet knowledge. The text clusters computed are visualized

Thttp://nlp.stanford.edu/software/corenlp.shtml

using a dendrogram as shown in the Fig. 2. In an agglomerative
setting, each phrase starts with its own cluster and subse-
quently, the pairs of text clusters are merged as one climbs
up the hierarchy.

B. Action Phrase Alignment

For action representation, we extract dense trajectory
features [23] over space-time volumes (using parameters as
in [19]). We use trajectory, HOG, HOF and MBH descriptors
to describe the actions and process them similar to [19].
Given a set of tennis videos, we extract action features from
both upper and lower part of the frames (capturing actions of
both upper and lower player respectively). Action features are
computed from neighbouring frames using a sliding window
(neighbourhood of size 30 frames with no overlap). The
computed action features (from both the halves) are stacked
over each other and represent the overall feature vector of
the frames embodied in each sliding window. We aim to
classify the stacked action feature vector into the phrase bins
computed in Section II-A.
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Fig. 4. Parsed dependencies (collapsed and propagated) for an input com-
mentary text. We only keep nine selected encodings and discard others to
assimilate all possible phrase information in the linked sentence.
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C. Dictionary Learning

A compact and a discriminative dictionary is learnt for
sparse coding which is later used for classification. Let, Y
be a matrix of stacked video features (from the upper and
the lower halves) of the training videos (collection of N
sliding windows). A single training video is represented by the
consecutive columns of Y and the number of such columns
equate to the count of sliding windows encompassing the
whole video. Every column represents feature vector of frames
in one sliding window, each of n dimensions, i.e., ¥ =
[Y1,y2,---,yn] € R"™N. We learn a single re-constructive
dictionary, D, with K items for sparse representation of Y:

— . o 2 1. . . <
<D, X> argrggg” Y = DX [[5,s.t.¥6, [ z; o< T (1)

Here, D = [dy,ds . ..,dx] € R"* X is the learnt dictionary,
X = [x1,79...,75] € REXN are sparse codes of Y and T'
is sparsity constraint factor (each sparse code has at-most T’
items). We leverage the supervised information (i.e. phrase
labels obtained after text-based hierarchical agglomerative
clustering) of the feature vectors to learn an efficient dictio-
nary. In order to make dictionary optimal for the classification
task, we include the classification error term in the objective
function. Similar to [10], we use a linear predictive classifier
f(x; W) = Wz and learn the weights, WW. The following
objective function for learning a dictionary, encompasses both
reconstruction and classification errors:

<D,W,X >=arg min |Y —DX |2+ || H-WX |2,
D.W,X

2)

The above function encodes an explicit correspondence
between the dictionary items and the phrase labels. The term
| H—W X ||3 represents the classification error, with W being
the classifier (weights) parameters. H = [hy,hs...hy] €
R™ N are the class labels of Y. A video (represented by
consecutive columns of Y) can have multiple (extracted)
phrases, so we assign equal probabilities to the corresponding
phrases in each column of H. Number of columns in H for
each video depend on the number of features columns in Y
for each video, Fig. 5.

A video with 90 frames will constitute (90/30) = 3
columns (considering sliding window size of 30 frames) in
matrix Y and H; y; corresponds to stacked dense trajectory
feature of 30 frames and h; represents equal probabilities of
phrase labels (all three corresponding columns in H will be
identical). h; = [0,0.33,0.33,0,0.33,...,0,0] would mean
that phrases identified from linked description belong to phrase
clusters 2, 3,5 (non-zero entries in h;). We assign each phrase
cluster an equal probability (1/3 = 0.33). Intuitively this
would mean the input video is comprised of these three cluster
labels and hence classification error should be minimized with

i Y12 - ec1 [ [0 O ...7 g 23
Y21 Y22 - ez v 0.5 05 g
Y31 Y32 - P3| 100 2B
Y= Y4 Y42 | H= P4 v|0.5 0.5 52

EE Ysl Y52 - : 0 0
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B
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Fig. 5. Matrix structure: Considering the sliding window size of ‘n’ frames, a
video with m frames (n < m) will constitute (m/n) columns in matrix ¥ and
H; Each column of Y corresponds to the dense trajectory feature of frames
in sliding window and each column of H represents equal probabilities of
phrase cluster labels detected in the input linked text (m/n adjacent columns
in H are identical).

respect to these three labels. We use KSVD to find the optimal
solution for all the parameters simultaneously. The objective
function can be re-written as:

. Y D
<D W X >= argDmul/nX I ( I ) - ( W )X ||§, 3)

< D", X >=arg min | V" = D"X 12, 5.t.¥i, || z; o< T
“)
Here, D* represents the final dictionary with optimal
reconstruction and classification error — the features from
same class have similar sparse codes and those from different
classes have dissimilar sparse codes. The dictionary is
subsequently used for action classification.

Initialization: We initialize the parameters Dy and
Wy similar to the way suggested in [10]. We use the
multivariate ridge regression, with quadratic loss and Lo
norm regularization.

Classification: We compute D and W using the KSVD
algorithm. Both D and W are transformed and normalized
before classification. For a given video, we compute sparse
representation (z;) of dense trajectories action features (y;)
using modified dictionary, D:

x; = argrr;'}n | i — Dx; ||§, stV || @i o< T 5)

Thereafter, we use the linear predictive classifier W to estimate
the labels of frames:

argmax(l;) , I, = Wz (6)
j

These labels correspond to the phrase cluster ids to which
given group of frames belong. Every frame of the input video
would have a tag associated with it. These tagged associations
add a textual meaning to the video frames. Both video frames
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and the available textual descriptions are thus co-clustered to
generate finer annotations.

III. EXPERIMENT AND RESULTS

We restrict our attention to the singles game of lawn tennis
and use 314 ‘tennis-points’ videos from ‘Video-commentary’
dataset of lawn tennis dataset introduced in [19]. A ‘tennis-
point’ begins with the start of the service and ends when
a scoring criteria is met. Each video in this dataset has a
corresponding commentary text aligned to it. In all there are
45K video frames with an average length of each video being
147 frames. Videos of lawn-tennis matches have two players
— one on each side of the net (approximately at the center
of every frame). Similar to [19], we analyse the videos by
dividing them across the center net and compute features for
upper and lower parts separately.

For the experiments, we partition the dataset into 60% train
and 40% test data. The video dataset is collection of broadcast
video recordings of matches from London Olympics 2012.
Each video has a linked textual description describing its
content. The videos used are all of resolution 640 x 360.
The training set is used to learn the dictionary and other
model parameters. At the time of text based phrase clustering,
we use all available linked descriptions. While extracting the
phrases from the available descriptions, we replace all possible
words with respective synonyms determined using WordNet
synsets [7]. Overall, we have 50 phrase clusters during the text
based phrase clustering — these clusters determine the groups
and the bin to which a description would belong. Number
of clusters (i.e. phrase bins) were empirically selected on the
basis of the most relevant qualitative results with experiments
being performed over 25, 30,40 and 50 bins.

We compute the action phrases and the clusters as described
in Section II-A. Dense trajectory features [23] are used as
action features — trajectory, HOG, HOF and MBH descriptors

0.9
20 40 60 80 100

0

Dictionary Sparsity (T)

Fig. 6. Correct match accuracy: Initial phrase clusters (computed using only
linked description) act as ground truth and are compared to clusters computed
using the proposed approach.

Clusters (Only Description) | Aligned Clusters (Joint Model)
4,23 4,23,23,23
2,16,26,32,36,43 16,43
4,9,16,23,40 23,4,23,16,4,40,4,16,4,9
23,29,48 23,29
4,15,23,26,29,32 23,32,29,23,15
423 23,4,23,23,23,4,23,4,4,23,23,2,2,23,
18,23,18,49
TABLE I

QUALITATIVE RESULT FOR THE ASSIGNED CLUSTERS: CLUSTERS
COMPUTED USING THE PROPOSED SOLUTION BIND TEMPORAL
INFORMATION AND DEPEND ON THE LENGTH OF THE VIDEO. THE
LOCALIZED PHRASE CLUSTERS OBTAINED USING A JOINT MODEL ARE
RICHER AND ALIGN THEMSELVES TO RESPECTIVE FRAMES OF INPUT
TENNIS VIDEO.

describe the actions from both upper and lower part of the
frames. Initial phrase clusters are used to evaluate the proposed
approach. One should note that the count of phrases generated
and number of the phrase clusters may differ. In column 3
(Fig. 3), ( quick return )’ and ‘( Williams return return)’
belong to same clusters. We determine the final output of the
proposed system by using classifiers described in section II-B.
Number of such assigned phrase clusters depend upon the size
and length of the (test) video and not on the size of the linked
descriptions. This is evident from all the examples shown in
Fig. 3.

To evaluate the temporal localization, we should have a
one-to-one correspondence map between the identified phrase
clusters in the video and the ground truth alignment. Owing to
the lack of such data we demonstrate the effectiveness of the
proposed system by comparing it with clusters obtained using
only text-based model. Table I illustrates the qualitative im-
provement in phrase alignments obtained using a joint model.
The clusters obtained using joint modelling bind the temporal
information and depend on the length of the input video, which
is not the case with text based modelling, Fig. 7. Standalone
text based clusters depend only on the input descriptions. We
consider the clusters computed using only descriptions as the
ground truth and compare them to the clusters obtained using
our proposed solution — an overlap of one cluster is considered
as a match. Fig. 6 illustrates the match between ground truth
and the computed clusters.

Discussions

Frame level fine grained annotations imply that the annota-
tion interval gets smaller on a temporal axis and every frame
has an annotation of its own. Frame-by-frame annotations
are important for the tennis videos because such videos are
composed of long shots, which in turn are a collection of
many fine grained actions. These frame level annotations bind
constituent frames of an input video to a textual tag. In one of
our past works [19], we explicitly focused on integrating fine
grained details into an overall descriptions for an input tennis
video. The annotation descriptions generated in [19] were
distinct for every input video but were significantly detailed

845



sizzling serve
slice serve
williams serve

return exchange
return go
return return

sizzling serve
slice serve
williams serve

return exchange
return go
return return

sla)sn|)

(uondursaq Ajup)

iy
L

- P
return fail = =
; o B
o
return miss court S
return miss ke
=0
s
[=d
oo
S a
29

Fig. 7. Frame level annotations for the input video: The figure illustrates the difference between the clusters obtained using only the text descriptions and
the clusters obtained using the proposed approach. The phrase clusters computed by the proposed approach are richer and bind temporal information within
them. The arrows represent the binding of the phrase clusters with the frames. The numbers at the bottom-right corner depict cluster-ids of the phrase clusters

generated.

and human like. In our present work the focus is to bind every
frame with a corresponding tag.

IV. CONCLUSIONS

We describe an unsupervised approach to identify action
phrases in domain specific tennis settings and temporally
localize them in the given tennis videos. The complementary
nature of both the video and the associated text is used to
demonstrate a method that sequentially solves text and video
clustering problems linked by joint constraints to obtain the
frame level annotations. We co-cluster the video frames and
the available textual descriptions in to generate ‘fine grained’
annotations. This could be useful for plethora of applications
ranging from fine grained cross modal retrieval systems to
modern day text based video summarization systems.
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