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ABSTRACT
In multi-instance data, every object is a bag that contains
multiple elements or instances. Each bag may be assigned
to one or more classes, such that it has at least one instance
corresponding to every assigned class. However, since the
annotations are at bag-level, there is no direct association
between the instances within a bag and the assigned class
labels, hence making the problem significantly challenging.

While existing methods have mostly focused on Bag-to-
Bag or Class-to-Bag distances, in this paper, we address the
multiple instance learning problem using a novel Bag-to-
Class distance measure. This is based on two observations:
(a) existence of outliers is natural in multi-instance data, and
(b) there may exist multiple instances within a bag that be-
long to a particular class. In order to address these, in the
proposed distance measure (a) we employ L1-distance that
brings robustness against outliers, and (b) rather than con-
sidering only the most similar instance-pair during distance
computation as done by existing methods, we consider a sub-
set of instances within a bag while determining its relevance
to a given class. We parameterize the proposed distance
measure using class-specific distance metrics, and propose
a novel metric learning framework that explicitly captures
inter-class correlations within the learned metrics. Experi-
ments on two popular datasets demonstrate the effectiveness
of the proposed distance measure and metric learning.
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•Computing methodologies → Computer vision tasks;
Machine learning;
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1. INTRODUCTION
In the conventional image categorization task, each im-

age is considered as a single instance, and is assigned to
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bottle, glass, people, table building, car, column, lawn,
palm, park, people, side, sky,
street, tower

Figure 1: Samples from IAPR TC-12 dataset [6],
which show that a whole image is not representative
of all the assigned classes. Moreover, there could
be multiple instances within an image that denote a
particular semantic concept. E.g., there are multiple
segments in the left and right pairs that belong to
the classes “people” and “car” respectively.

one (single-instance single-label problem) or more (single-
instance multi-label problem) classes. However, this ignores
the fact that usually only some region(s) in an image corre-
spond(s) to a particular semantic concept. E.g., as shown in
Figure 1, though the images are tagged with several classes,
each of these concepts represent only few specific region(s).

Multiple Instance Learning (MIL) [2] is a machine learning
paradigm that has lately achieved significant attention [17,
8, 10, 11, 1, 19, 14, 16, 15]. In MIL, each object/sample is
assumed to be a bag consisting of a collection of instances,
and is assigned to one or more classes such that there is
at least one instance corresponding to every assigned class.
MIL framework has been shown to be particularly useful for
capturing inherent structure in data, such as indirect associ-
ations between an image’s regions and its assigned classes [8,
14, 15], or reducing the labeling cost of videos [16]. How-
ever, along with these advantages, it also presents several
challenges [8, 10, 14, 16, 15]. First, computing distance be-
tween two object-bags is not straightforward since they are
bags of multiple instances rather than a single instance, and
traditional distance measures such as Manhattan distance
or Euclidean distance cannot be applied directly. Second,
there exists a weak association between the instances of a
bag and the classes assigned to it. Due to this, learning
class-specific models remains non-trivial. And third, by the
definition of MIL, an object bag is assigned to a class if at
least one of its instances belongs to that class. In such a
scenario, most of the other instances which do not represent
that class act as outliers for the class under consideration.



Most of the existing MIL methods [17, 8, 10, 19, 14, 16,
15] have focused on developing sophisticated distance mea-
sures, and/or learning dataset-specific or class-specific dis-
tance metrics (also called metric learning) for MIL. While
metric learning for single-instance data (single-label [5, 4,
18] or multi-label [7, 13]) is a well-studied topic, there have
been few attempts that perform metric learning for multi-
instance data. The first metric learning formulation for
multi-instance data was proposed in [10]. Since it is based
on computing bag-to-bag (or B2B) distance, there exists
no direct association between instances within a bag and
their class labels. Hence, to overcome this, it learns a sin-
gle distance metric by simultaneously learning associations
between instances and class labels, which results into a com-
plex optimization problem. After this, few other methods
have focused on learning distance metric for multi-instance
data by using either B2B distance [8] or class-to-bag (or
C2B) distance [14, 16, 15]. Since [14, 16, 15] are based on
C2B distance, they were able to learn class-specific distance
metrics unlike [10]. They represent every class by a super-
bag , which consists of all the instances from the object-bags
that belong to that class. Given a new object bag and a
particular class, its distance from every instance of the cor-
responding super-bag is computed using the class-specific
distance metric. Finally, the classes are assigned based on
decreasing order of their distance from that object bag.

In this paper, we present a novel bag-to-class (or B2C)
distance measure for computing distance of an object-bag
from a super-bag. The major differences between the pro-
posed distance measure and those in the earlier works are:
(1) Instead of using L2-distance [17, 8, 10, 14, 16, 15], we
propose to use L1-distance while computing distance be-
tween two instances. This is because L1-distance is known
to be more robust against outliers than L2-distance, which
are frequent in multi-instance data.
(2) Rather than using C2B distance [14, 15, 16] or B2B dis-
tance [10, 8], our distance measure is based on computing
B2C distance. This is because while C2B distance may be
affected by the presence of large number of outliers within a
super-bag, B2B distance complicates learning distance met-
rics since it requires computing distance between bags be-
longing to different classes which involves distance metrics
from different classes (as also mentioned in [15]).
(3) While existing methods such as [8, 10, 14, 16, 15] con-
sider only the single most similar pair of instances for com-
puting C2B or B2B distance, we compute the distance of an
object-bag from a given super-bag based on a subset of top
few instances from both the sets that are most similar to
each other, with similarity being computed from object-bag
towards super-bag. This is based on the observation that
there could be multiple instances within a bag that denote a
particular semantic concept (Figure 1). Each of these in turn
may match with a potentially different subset of instances
within the super-bag under consideration. We believe that
this further adds robustness to our distance measure since
instead of relying only on the most similar instance which
may be an outlier, we consider a set of top few most similar
instances while computing the B2C distance.

Due to these considerations specifically adopted to intro-
duce robustness while computing distance in MIL setting, we
call our proposed distance as Robust B2C (or RB2C) dis-
tance. Other important contributions of this work are: (1)
Similar to [14, 16, 15], we integrate class-specific distance

metrics into RB2C-distance. (2) We formulate a novel met-
ric learning framework that explicitly captures inter-class
correlations, which are particularly observed in multi-label
datasets. To our knowledge, this is the first metric learning
formulation of its kind in this domain.

To validate our approach, we extensively experiment on
two popular multi-label datasets: Corel-5K [3] and IAPR
TC-12 [6]. Experiments demonstrate that the baseline
RB2C-distance itself outperforms most of the existing tech-
niques, and achieves further improvements after incorporat-
ing learned distance metrics.

2. PROPOSED DISTANCE MEASURE
In this section, first we briefly discuss the multi-instance

setting [14, 15, 16]. Then, we describe the proposed RB2C-
distance for multi-instance data.

2.1 Preliminaries
Let D = {(X1,y1), . . . , (X|D|,y|D|)} be a dataset consist-

ing of |D| input-output pairs and L classes. Each Xi =
[xi1, . . . ,xini ] is a bag of ni instances, where xij is the jth

instance of Xi and is represented by an N -dimensional fea-
ture vector (xij ∈ RN ∀j = {1, . . . , ni}). Each output vector
yi ∈ {0, 1}L is a binary vector. Under the MIL setting, for a
given bag Xi, if ∃j ∈ {1, . . . , ni} such that the instance xij
belongs to the lth class (1 ≤ l ≤ L), then the whole bag Xi
belongs to the lth class and yi(l) = 1; otherwise yi(l) = 0.

Also, if
∑L
l=1 yi(l) = 1, ∀i ∈ {1, . . . , |D|}, then each bag Xi

belongs to exactly one class and the dataset D is a single-
label dataset. While, if

∑L
l=1 yi(l) ≥ 1 ∀i ∈ {1, . . . , |D|},

then each bag Xi may belong to one or more classes, and
the dataset D is a multi-label dataset. Thus, single-label
data is a special case of multi-label data.

2.2 Robust B2C Distance for MIL
Let each class l be represented by a super-bag Ul that

consists of all instances from all the training bags that belong
to that class [14, 15, 16]. Precisely,

Ul = {xij | yi(l) = 1} (1)

Let ml = |Ul| =
∑
i | yi(l)=1 ni be the size of the super-bag

Ul. In case of single-label data where each bag belongs to
exactly one class, all the super-bags are non-overlapping;

i.e., (i)
∑|D|
j=1 nj =

∑L
l=1ml, and (ii) |Ug ∩Uh| = 0, ∀ g 6= h.

Whereas, in case of multi-label data where each bag may be
labeled with one or more classes, there may be an overlap

among different super-bags; i.e., (i)
∑|D|
j=1 nj ≤

∑L
l=1ml,

and (ii) |Ug ∩ Uh| ≥ 0, ∀ g 6= h.
Based on this, now we present the RB2C-distance for MIL.

Given an object bag A = [a1, . . . ,anA ] and a class l, let

d
A

ilj ∈ RN denote element-wise L1-distance between an in-
stance ai of A and an instance xlj ∈ Ul. Precisely,

d
A

ilj(k) = |ai(k)− xlj(k)|, ∀ k ∈ {1, . . . , N} (2)

Using this, distance between the instances ai and xlj
(instance-to-instance distance or Di2i) is defined as

Di2i(ai,xlj) =

N∑
k=1

|ai(k)− xlj(k)| = eTd
A

ilj , (3)

where e = [1, . . . , 1]T is a vector with all entries equal to 1.

Let N
K1

il ⊆ Ul be the set of the top K1 nearest-neighbours of



Figure 2: The proposed RB2C-distance is based
on the assumption that a bag may have multiple
instances (illustrated by red boxes) that represent
some particular class. Additionally, each of these in-
stances may match with a potentially different (may
or may not be disjoint) subset of instances within the
super-bag of the concerned class. E.g., in this fig-
ure, there are two instances in the object-bag that
match with the super-bag of “car”. Moreover, each
of these matched instances match with two distinct
sets of instances {C1, C2} and {C3, C4}. Note that in
both the datasets used in our experiments, an in-
stance is a segment of an image. Here we use box
just for illustrative purpose.

ai from the super-bag Ul determined using Eq. 3. Then, the
distance of instance ai from super-bag Ul (instance-to-class
distance or Di2c) is defined as:

Di2c(ai, Ul) =
1

K1

∑
xlj∈N

K1
il

Di2i(ai,xlj) . (4)

Now, let N
K2

l be the set that contains the top K2 instances
of A with least distance from super-bag Ul computed using
Eq. 4. Then, distance of A from Ul (bag-to-class distance or
Db2c) is defined as:

Db2c(A,Ul) =
1

K2

∑
ai∈N

K2
l

Di2c(ai, Ul) . (5)

Substituting Eq. 3 and Eq. 4 into the above equation gives

Db2c(A,Ul) =
1

K1K2
eT

 ∑
ai∈N

K2
l

∑
xlj∈N

K1
il

d
A

ilj

 . (6)

The distance function defined by the above equation is our
proposed RB2C-distance. Intuitively, it computes distance
of a given object from a class based on distance between the
few instances from both the bags that are most similar to
each other, with similarity being computed from object bag
towards super-bag. Figure 2 illustrates the gist of RB2C-
distance for multi-instance data.

3. METRIC LEARNING FOR RB2C
The distance function defined in Eq. 6 is based on sim-

ple L1-distance that considers every dimension of a feature
vector as equally important. However, it is well-known that
computing distance in a learned projected space better cap-
tures data properties as compared to unprojected space,
and hence also improves quantitative performance. Here
we discuss how to learn linear distance metrics for the pro-
posed RB2C-distance. Also, since there exists large diversity
among samples from different classes, we learn L different

class-specific metrics wl ∈ RN , ∀ l ∈ {1, . . . , L}. For this,
we re-define the distance in Eq. 6 as:

D
w

b2c(A,Ul) =
1

K1K2
wT
l

 ∑
ai∈N

K2
l

∑
xlj∈N

K1
il

d
A

ilj

 . (7)

We shall refer this as metric based RB2C-distance (or M-
RB2C). To learn the metrics wl ∀l ∈ {1, . . . , L}, we follow
the approach of metric learning using pair-wise comparisons
[18, 4, 5, 13]. For a given bag A, let L+

A ⊆ {1, . . . , L} be the
set of classes to which it belongs; and L−A = {1, . . . , L} \L+

A

be the set of classes to which it does not belong. We are
interested in learning wl’s such that the distance of A from
Ul ∀ l ∈ L+

A is less than its distance from Uk ∀ k ∈ L−A by a
margin. This results in the following constraints:

∀l ∈ L+
A, ∀ k ∈ L

−
A : D

w

b2c(A,Uk)−D
w

b2c(A,Ul) ≥ 1− ξAkl (8)

Let W = [w1, . . . ,wL] ∈ RN×L be the concatenation of all
class-specific metrics. Based on the above constraints, we
solve the following convex optimization problem:

OP1 : min
W,ξA

kl
≥0

1

2
Trace(WTW) + C

∑
A,l∈L+

A
,k∈L−

A

ξAkl

s.t. ∀A, l ∈ L+
A, k ∈ L

−
A : D

w

b2c(A,Uk)−D
w

b2c(A,Ul) ≥ 1− ξAkl
∀ 1 ≤ l ≤ L, 1 ≤ i ≤ N : wl(i) ≥ 0

where ξAkl are slack variables, and C > 0 is a constant that
controls the trade-off between the two terms. The second
set of constraints impose non-negativity on the elements of
wl. This is necessary since it is used to define a distance
metric, which should be a positive semi-definite operator.
We optimize OP1 in the primal form itself using a batch
gradient-descent and projection method similar to [18]. In
the beginning, we initialize wl = e, ∀ l ∈ {1, . . . , L}.

4. CORRELATED METRIC LEARNING
(CML)

In multi-label datasets where each bag may belong multi-
ple classes, presence of one class gives hint about the pres-
ence of its correlated classes. E.g., presence of “car” may im-
ply presence of “road”. In OP1, a linear metric wl is learned
corresponding to every class l. However, it ignores to cap-
ture inter-class correlations into the learned metrics. In this
section, we extend OP1 by explicitly incorporating inter-
class correlations within the metric learning framework.

Consider the distance computation of a bag A from super-

bag Ul as given in Eq. 7. There, let d̃
A

l ∈ RN denote the
normalized sum of all distance vectors; i.e.,

d̃
A

l =
1

K1K2

∑
ai∈N

K2
l

∑
xlj∈N

K1
il

d
A

ilj (9)

Now, let D̃A = [d̃
A

1 , . . . , d̃
A

L ] ∈ RN×L. Also, ∀l ∈ {1, . . . , L},
let el ∈ RL be a binary vector with el(l) = 1 and rest all
entries being 0. Then, it is easy to verify that the constraints
given by Eq. 8 are equivalent to

∀l ∈ L+
A, ∀ k ∈ L

−
A : (WIek)T D̃Aek − (WIel)

T D̃Ael ≥ 1− ξAkl
where I denotes the identity matrix. Let P ∈ RL×L be
a matrix such that P(k, l) denotes the correlation between



the kth and lth classes. Using P, we introduce inter-class
correlations into the above constraints as follows:

∀l ∈ L+
A, ∀ k ∈ L

−
A : (WPek)T D̃Aek−(WPel)

T D̃Ael ≥ 1−ξAkl

Now, let V = WP ∈ RN×L, and R = PTP � 0. Then,
the above constraints and the identity Trace(G1G2G3) =
Trace(G3G1G2) result into the following optimization:

OP2 : min
V,ξA

kl
≥0

1

2
Trace(VR−1VT ) + C

∑
A,l∈L+

A
,k∈L−

A

ξAkl

s.t. ∀A, l ∈ L+
A, k ∈ L

−
A : (Vek)T D̃Aek − (Vel)

T D̃Ael ≥ 1− ξAkl
∀ 1 ≤ l ≤ L, 1 ≤ i ≤ N : vl(i) ≥ 0

where vl denotes the lth column of V. Similar to OP1, we
use a batch gradient-descent and projection method to solve
OP2. Thus, vl is the new learned distance metric that ex-
plicitly encodes correlations of the lth class with all other
classes. Moreover, since each of these metrics are learned
jointly in a max-margin discriminative manner, it also en-
sures optimal predictive performance. One can observe that
if the prior matrix P is taken to be I (i.e., there are no
prior correlations among the classes), then OP2 becomes
the same as OP1, which makes OP1 a special case of OP2.
Also, since there is no particular restriction on the matrix R
except that it must be a positive-definite matrix, it can be
either sparse or dense depending on the given application.

Using these new class-correlated metrics, we update the
distance function of Eq. 7 by replacing wl with vl as below:

D
v

b2c(A,Ul) = vTl

 ∑
ai∈N

K2
l

∑
xlj∈N

K1
il

d
A

ilj

 . (10)

We shall refer the above distance as correlated metric based
RB2C (or CM-RB2C). We believe ours is the first work
that incorporates inter-class correlations into metric learn-
ing framework for multi-instance multi-label data.

The proposed CML formulation is motivated by [9] that
incorporates inter-class correlations into SVM classifiers.
Our framework differs from theirs in two important ways:
(1) Their approach is meant to learn binary one-vs.-rest
SVM classifiers, while our aim is to learn class-specific
distance-metrics in a nearest-neighbour scenario. (2) Since
they learn one-vs.-rest SVM classifiers, their optimization
problem boils-down into disjoint optimization problems for
individual classes, which can be optimized easily. However,
in our case, the pair-wise constraints defined over pairs of
positive and negative classes for each bag (Eq. 10) result in a
more complex optimization problem, where we need to learn
metrics for all the classes simultaneously in a joint manner.

Defining P: Since R is a positive-definite matrix, the ca-
pacity of the prior correlation matrix P is quite large (it can
also have negative entries to model negative correlations).
We define the correlation between kth and lth class as [12]:

P(k, l) =
fkl

fk + fl − fkl
, (11)

where fk and fl denote the frequencies of the kth and lth

classes respectively, and fkl denotes their co-occurrence fre-
quency. Higher the value of P (k, l), more is the correlation
between these two classes, and vice-versa.

Label Prediction: Given an object A, we compute its
distance from every class using Eq. 6, 7, and 10 for different
forms of parameterization. Then we rank all the classes
based on the decreasing order of their distance from A, with
smaller distance implying higher relevance and vice-versa.

5. EXPERIMENTS
Now we evaluate and compare different variants of the

proposed distance measures (Eq. 6, Eq. 7 and Eq. 10).

5.1 Datasets and Experimental Details
We use two popular multi-instance multi-label datasets

Corel-5K [3] and IAPR TC-12 [6]. In both these datasets,
each image (bag) consists of multiple segments (instances),
and each segment is represented by a feature vector. We use
the same train/test partitions for both the datasets as in [7,
13]. Corel-5K dataset consists of 4500 training images, 500
testing images, and a vocabulary of 260 classes. IAPR TC-
12 dataset consists of 17665 training images, 1962 testing
images, and a vocabulary of 291 classes. In all our exper-
iments, we consider the top 20 most frequent classes from
each dataset since others have very few occurrences.

We compare with following benchmark methods: (a) Ci-
tation kNN [17], (b) MIMLSVM [19], (c) MildML [8], (d) S-
C2B and its variants (C2B and M-C2B) [15], (e) TagProp [7],
and (f) 2PKNN [13]. For MIMLSVM [19], MildML [8], Tag-
Prop [7] and 2PKNN [13], we use publicly available codes.
For Citation-kNN [17] and S-C2B (and its variants) [15], we
have implemented these methods by following the details
from the respective papers. For RB2C and its variants, we
keep K1 = 5 and K2 = 8 for Corel-5K dataset, and K1 = 10
and K2 = 4 for IAPR TC-12 dataset.

Note that both TagProp and 2PKNN consider whole im-
age as a single instance and used a set of 15 features [7].
This gives a 37152-dimensional feature vector per image,
which is more than 100 times the number of features used
by all other methods listed above. Since this would result
in an unfair comparison, we project each of these 15 fea-
tures using Principle Component Analysis (PCA) and keep
only the top 5% dimensions from every feature. This gives
a 1858-dimensional feature vector per image.

For quantitative evaluations, we use five popular metrics:
Hamming loss (HL), One-error (OE), Coverage (Co), Rank-
ing loss (RL) and Average precision (AP). More details on
these measures can be found in [15, 16, 10]. Among these,
while HL and OE measure multi-label classification perfor-
mance, Co, RL and AP measure multi-label ranking perfor-
mance, Also, for HL, OE, Co and RL, smaller score means
better performance; and for AP, higher score means better
performance. Since Hamming loss is based on binary assign-
ment of classes, we assign the top µ classes to each test-bag
while computing it. Here, µ is set to be the (rounded) av-
erage number of classes per bag in training data (µ = 2 for
Corel-5K dataset, and µ = 3 for IAPR TC-12 dataset).

5.2 Results and Discussion
Table 1 compares the performance of different methods.

We can observe that: (1) Citation-kNN, which although is
quite old, achieves very competitive results and performs ei-
ther better than or comparable to several recent methods.
This demonstrates the effectiveness of this classical MIL
method, and also reflects the need of revisiting such meth-
ods for developing better methods. (2) The simple RB2C-



Table 1: Performance using different methods (↓: lower is better; ↑: higher is better).
Corel-5K IAPR TC-12

Method HL ↓ OE ↓ Co ↓ RL ↓ AP ↑ HL ↓ OE ↓ Co ↓ RL ↓ AP ↑

Citation-kNN [17] 0.088 0.514 5.288 0.193 0.558 0.121 0.502 7.682 0.249 0.521

MIMLSVM [19] 0.100 0.590 5.849 0.195 0.530 0.133 0.593 8.929 0.281 0.456

MildML [8] 0.090 0.511 5.851 0.210 0.548 0.120 0.520 7.968 0.262 0.504

S-C2B [16] 0.519 0.669 7.094 0.240 0.438 0.487 0.608 9.706 0.304 0.420

C2B [16] 0.479 0.671 7.016 0.237 0.438 0.452 0.605 9.611 0.300 0.422

M-C2B [16] 0.465 0.664 6.988 0.229 0.445 0.439 0.597 9.497 0.293 0.431

TagProp [7] 0.122 0.603 5.217 0.174 0.520 0.168 0.546 7.406 0.223 0.516

2PKNN [13] 0.120 0.628 5.524 0.188 0.516 0.172 0.591 7.748 0.240 0.498

RB2C (this work) 0.107 0.468 4.207 0.131 0.607 0.148 0.480 6.912 0.199 0.554

M-RB2C (this work) 0.095 0.462 4.124 0.126 0.613 0.142 0.469 6.727 0.190 0.562

CM-RB2C (this work) 0.087 0.457 4.086 0.119 0.620 0.139 0.460 6.659 0.184 0.568

distance itself outperforms (sometimes significantly) most
of the other methods, and the performance of M-RB2C is
consistently better than RB2C. It further improves by using
distance metrics learned with inter-class correlations (CM-
RB2C), thus validating the utility of the proposed CML
formulation. (3) CM-RB2C provides the best performance
for both the tasks, except on IAPR TC-12 where its HL is
slightly inferior to competing methods.

6. CONCLUSION
We have introduced a novel RB2C-distance for multi-

instance multi-label data, and integrated class-specific dis-
tance metrics into it. Additionally, we have presented a
novel metric learning framework that explicitly takes into
account inter-class correlations in multi-label datasets, and
also provide its principled interpretation. Our method
demonstrates marginal improvements in performance on
multi-label ranking and classification tasks compared to sev-
eral benchmark techniques, thus confirming its effective-
ness. Though in this work we have focused only on multi-
instance multi-label data, the proposed CML framework can
be adopted for single-instance multi-label data as well.

Acknowledgement: Yashaswi Verma is partially supported by

Microsoft Research India PhD fellowship 2013.

7. REFERENCES
[1] Y. Chen and J. Z. Wang. Image categorization by

learning and reasoning with regions. The Journal of
Machine Learning Research, 5:913–939, 2004.

[2] T. Dietterich, R. Lathrop, and T. Lozano-Pérez.
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