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Abstract

Visual place recognition on low memory devices such as
mobile phones and robotics systems is a challenging prob-
lem. The state of the art models for this task uses deep
learning architectures having close to 100 million param-
eters which takes over 400MB of memory. This makes these
models infeasible to be deployed in low memory devices
and gives rise to the need of compressing them. Hence we
study the effectiveness of model compression techniques like
trained quantization and pruning for reducing the number
of parameters on one of the best performing image retrieval
models called NetVLAD. We show that a compressed net-
work can be created by starting with a model pre-trained
for the task of visual place recognition and then fine-tuning
it via trained pruning and quantization. The compressed
model is able to produce the same mAP as the original un-
compressed network. We achieve almost 50% parameter
pruning with no loss in mAP and 70% pruning with close
to 2% mAP reduction, while also performing 8-bit quanti-
zation. Furthermore, together with 5-bit quantization, we
perform about 50% parameter reduction by pruning and
get only about 3% reduction in mAP. The resulting com-
pressed networks have sizes of around 30MB and 65MB
which makes them easily usable in memory constrained de-
vices.

1. Introduction

Recent approaches in solving pattern recognition prob-
lems are focused on deep learning techniques. Visual place
recognition in computer vision is one such task, which
is typically cast as an image retrieval problem, where a
database of images is queried using a query image and the
system produces relevant images. Some of the major chal-
lenges for the visual place recognition task is to correctly
retrieve the image of the desired place even though it has a
different perspective or is under a different ambient light-
ing. Thus we would want our retrieval system to be scale
and light invariant.

Traditionally, this problem is solved by extracting fea-

ture vectors using the BOF or SIFT representations and
finding the approximate nearest neighbours of the query
image in this feature space. Another popular method, the
vector of locally aggregated descriptors (VLAD) was origi-
nally proposed by Jegov et al. [10] as an improvement over
BOF representation of images and the Fisher kernel vector
representation. This method essentially provides a vector
representation of images and is quite similar to the Fisher
kernel representation. It aggregates the descriptors based on
a locality criterion in the feature space. Arandjelovic et al.
[2] improved on VLAD by introducing vocabulary adapta-
tion and intra-normalization. Over the years, contributions
have been made on quality improvement of the aggregated
features, optimizing the indexing scheme and other modi-
fications for improving the performance of VLAD in [16],
[3].

Starting with the work of Krizhevsky et al. [11], there
has been a significant improvement in the performance of
various computer vision tasks by using deep neural net-
works. For the task of image retrieval, Arandjelovi¢ et al.
[1] proposed a deep learning model that can be trained in an
end to end fashion. Their architecture consists of the convo-
lutional layers of popular deep image classification models
like Alexnet or VGG16 (Simonyan et al. [15]). This is fol-
lowed by a NetVLAD layer (see Section 2) which has train-
able parameters unlike the original VLAD. Finally, they
also have a PCA whitening layer that reduces the dimen-
sion of the feature vectors.

The recent trend for improving the performance of com-
puter vision tasks has been to train deep learning mod-
els with an increased number of parameters. For exam-
ple the popular Alexnet has 60 million parameters and re-
quires about 240 MB of memory while VGG16 has 130 mil-
lion parameters and has takes around 500 MB of memory.
However, these models need to be deployed in memory-
constrained devices like a mobile phone or a robotics sys-
tem. Hence, there is a need for reducing the size of the
models without deteriorating the performance as well as re-
ducing the test-time evaluation (Denton et al.[4]). In this
work, we address the former.

Gong et al. [5] studied some of the standard quantization



approaches for storing network weights in compressed for-
mat after the training process is completed. Through param-
eter pruning, we want to remove those parameters which do
not have an adverse effect on performance of task at hand.
This method of avoiding incorrect pruning was proposed by
Geo et al.[6] where they implement on-the-fly connection
pruning followed by splicing. Recently, Han et al. [8] pro-
posed a combination of pruning of weights and quantizing
them during the training process itself since such huge mod-
els are likely to contain many redundant parameters. They
further reported the energy savings in the compressed net-
works in [7].

In our work, we study the effectiveness of trained prun-
ing and quantization methods (see Section 3) proposed by
Han et al., for compressing the NetVLAD model (see Sec-
tion 2) of Arandjelovi¢ et al. [1]. We demonstrate our re-
sults on the Oxford and Paris buildings datasets (see Sec-
tion 4). We implement trained pruning and trained quan-
tization iteratively while fine-tuning the original network.
This makes the network drop the redundant parameters as
well as allows it to fine tune the other parameters so that
the network can learn to deliver a similar performance as
before by making do with the existing parameters. Such
a compact network finds importance in enabling better per-
formance in small memory devices. While performing 8-bit
quantization, we can achieve about 50% reduction in pa-
rameters (factor of 8X) with same performance and about
70% reduction (factor of 12X) with just about 2% reduction
in performance (see Section 5).

Han et al. [8] performed pruning, quantization as well as
Huffman encoding to achieve a compression ratio of 35X.
However, Huffman encoding is only useful while saving to
disk. The network needs to be uncompressed before doing
a forward pass during testing. In this work, we are more
concerned about the memory required during the forward
pass and do not apply the Huffman encoding technique.
Hence our compression rate of 12X is lower that the 35X
as claimed by Han et al. [8]. Moreover, we are doing it for
the task of image retrieval rather than for classification as in
the case of Han et al. [8].

2. NetVLAD

Vector of Locally Aggregated Descriptors (VLAD) is a
well-known method used for instance level retrieval. Here
we first compute a feature descriptor for each image and
define £ cluster centers from among the descriptors. This is
followed by the computation of sum of residuals i.e the dif-
ference between the feature descriptor for each image and
each of the cluster centers. Thus, if we have a d dimen-
sional feature descriptor, we will have k residues each of d
dimension. These vectors are then concatenated resulting in
a k x d length descriptor for each image. This is followed by
vocabulary adaptation and intra normalization, the details of

which are mentioned in [2].

The VLAD comprises a series of operations which were
presented in the form of a Generalized VLAD layer for neu-
ral nets called NetVLAD by Arandjelovi¢ et al. [1]. The
input to the NetVLAD layer (denoted by x; where i is a
spatial location) is the convolutional features of dimension
H x W x D which is considered as N = H x W D-
dimensional vectors. It has some trainable parameters W, b
and cluster centers C' having dimensions K x D, K and
K x D respectively. The output feature vector denoted by
V' (of dimension K x D) is given by the following equation:
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Figure 1 shows NetVLAD layer.

VLAD Layer with fully connected layers removed

NetVLAD Architecture

Figure 1. CNN + Fully Connected Layer (top) and NetVLAD ar-
chitecture (bottom)

2.1. Triplet loss

The standard loss function used for retrieval problems is
the triplet loss. This loss takes as inputs the feature vectors
corresponding to a query image as well as a positive and
negative vector corresponding to that query. In our exper-
iments, for each query, the positive example is a relevant
image (typically a image of the same building with a differ-
ent perspective or lighting conditions) and a negative exam-
ple is randomly sampled from the rest. The triplet loss is
defined in equation 2.

1

Here, q denotes the query, p is a positive example for g and
n is a negative example for g. m denotes the margin which
is usually taken to be 1. h denotes the hinge loss where
h(z) = maxz(0, z). Figure 2 illustrates how this loss affects
the feature vectors while training.



Figure 2. Toy image showcasing the distribution of the samples be-
fore and after the fine tuning using triplet loss. The red/blue dots
indicate negative/positive examples. The innermost circle resem-
bles the boundary for the Query image. The outermost circle is
imaginary resembling the maximum distance a sample image can
be from the query. The middle circle is indicative of the margin
which we use to separate the positive samples from the negative
samples.

3. Compression

We perform trained pruning and trained quantization
iteratively on some networks for the task of visual place
recognition and report the performance on well known
datasets. We explain these compression techniques in the
subsequent sections.

3.1. Trained Network Pruning

Network Pruning has been widely used for compressing
neural nets as shown by LeCun et al. [12]. They help to re-
duce the number of parameters thereby reducing complexity
and avoiding redundancy.

We build on top of these approaches. Our aim is to drop
all connections which have a value less than some threshold.
We start with a model which has been trained to a desired
precision on the visual place recognition dataset using the
architecture mentioned in Section 2. Now, we must ensure
that the network learns to do its task even after the param-
eters have been dropped, and in order to maximize it we
must make the network learn in such a way that more pa-
rameters are closer to zero. In other words, the weight ma-
trix should be sparse. In order to achieve that, we add a ¢,
regularizer to the weights which ensures that sparse matri-
ces are learnt. This works better than using ridge regression
as regularization i.e using a ¢ regularizer. These have been
demonstrated in Tibshirani et al. [17] and Hoerl et al.[9].

Thus, we add the ¢, regularizer to every layer in our net-
work.

The weight regularization can be framed as follows:
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where ) is a tuning parameter and can be considered as a
hyperparameter, [ is the layer number in the neural network
architecture, n; is the number of layers and s; is the num-
ber of hidden units in the Ith layer. j, 7 are indices of the
weight matrix W in the /th layer. The effect of adding the
regularizer can be viewed in Figure 4
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Figure 3. Distribution of weights before and after regularization.
X-axis denotes the values of weights while Y-axis denotes the fre-
quency of weights.
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After training the network by backpropagating the gradi-
ents from the loss function for some time, we prune the net-
work connections below a threshold and retrain the network
using the new modified loss function for a few epochs. This
is followed by trained quantization which is described in
the next section. This iterative process of pruning weights,
quantizing and retraining is repeated for a certain number of
epochs until the loss stabilizes. We ensure pruning by alter-
ing the gradients for the already pruned parameters to zero
after every pruning operation. If any other parameters enter
the threshold as a result of the gradient updates, then they
are also pruned in the next iteration. Retraining the network
ensures that the other parameters are able to compensate for
the drop of the existing parameters. The parameters which
are not pruned are able to adapt accordingly after realizing
that the pruned parameters are non-existent.

An important hyperparameter which we need to fix is the
threshold. Let us denote it by . This is significant because
it determines the range in which weights will be dropped.
Since our aim is to make the weight matrix as sparse as pos-
sible without compromising on the original mAP, we exper-
iment with several values of # ranging from 0.1 to 0.001 as
long as it sparsifies the weight matrix without loss in mAP.
We prune the weights according to the following rule.

W; W, < —6
W, =0 —60<W, < ()
W 9<Wz

where W is the weight matrix and 6 is the threshold
value.

3.2. Trained Quantization

This step is carried out after every pruning step. The way
in which we compress the network is by reducing the num-
ber of bits required to represent each weight. The trained
pruning step is accompanied by weight sharing where we
reduce the number of effective weights being stored, by
having multiple connections share the same weight.

The steps for trained quantization are listed below:

1. Perform Network pruning on the already trained net-
work as mentioned in Section 3.1



2. Use k-means clustering for non-uniform quantization
on the weights. For 8-bit non uniform quantization we
shall get 256 cluster centers.

3. Now, for each time we update the weights, we accu-
mulate the gradients having the same cluster indices,
and add them up. Then we add these gradient clus-
ter centers to the original codebook of cluster centers.
This codebook is what we need to store in memory.

4. At the end, we replace the original weights with these
256 distinct updated cluster centers.

Figure 4 gives an overview of the process.
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Figure 4. Steps involved in Trained Quantization

4. Dataset and Experiments

We use transfer learning for our experiments i.e we use
a pretrained network which has been trained on the visual
place recognition task and we fine tune it on one of Oxford
and Paris Buildings dataset and test on the other. This is
helpful because it uses the knowledge of a previously learnt
task and uses it for a similar task, but on different data. This
fine tuning is required because it lets the network learn how
to perform the visual place recognition task with less num-
ber of parameters.

We test our results in two ways and report the same.
First, we fine tune on Oxford Buildings dataset and validate
the performance of our method by using the Paris Buildings
dataset. Then, we repeat this process by using Paris Build-
ings for fine tuning and Oxford Buildings for testing. This
approach is justified due to the following reason. There are
55 queries in each of these datasets. Had we made a split
of one dataset say into fine tuning and testing query sets,
and reported our performance on that, it would not have re-
flected a realistic scenario. This is because once the model
has been deployed on a mobile phone or any other memory
constrained device for that matter, there is no further scope
of fine tuning. Thus, recording the performance on a com-
pletely new dataset such as that which has not been seen by
the network beforehand makes much more sense.

We study the effect of the compression techniques men-
tioned in Section 3 on the following pretrained NetVLAD
models Arandjelovi¢ et al.[1].

1. Alexnet + NetVLAD : Consists of the convolutional
layers of Alexnet (pretrained on Imagenet), followed
by the NetVLAD layer and a whitening layer, pre-
trained on Pittsburgh 30k dataset.

2. VGGI16 + NetVLAD : Consists of the convolutional
layers of VGG16 (pretrained on Imagenet), followed
by the NetVLAD layer and a whitening layer, pre-
trained on Pittsburgh 30k dataset.

We report our results on the following datasets
1. Oxford 5K : Images of Oxford buildings [13].
2. Paris 6K : Images of Paris buildings [14].

Both the datasets, contain search results corresponding
to 55 query images. There are ’good’ and "ok’ images in
each dataset which are considered as positive images for a
query in our triplet loss function. The ’junk’ images and
other non-positive images for each query are considered as
negative images. As mentioned above we use one of these
for fine tuning and the other for testing.

We observe the change in MAP for several values of
threshold which results in different number of parameters
being discarded (Figure 5). From such a plot, it is easier for
us to determine what optimum value we should select for
the 6.

Table 1 enlists the results of trained pruning and quanti-
zation on aforementioned networks which we used.

5. Results and Discussion

We show that our method is able to reduce the memory
usage of the network with negligible loss in precision. We
are able to prune close to 50% of the parameters with no loss
in mAP and almost 70% parameters with only 2% drop in
mAP while fine tuning with 8-bit quantization. Overall, this
corresponds to 8X and 12X compression rates respectively.
Also, fine tuning with 5-bit quantization allows us to attain
about 50% parameter reduction with about 3% mAP drop
and this corresponds to about 12X compression rate. These
results are reported in Table 1.

5.1. Alexnet+NetVLAD

We evaluate the performance of our compressed network
by fine-tuning with Oxford Buildings dataset and testing our
performance using Paris buildings dataset and vice-versa.
We report the mAP and the corresponding plots. In this ar-
chitecture, there are 5 convolutional layers followed by a
NetVLAD layer. Additionally, a whitening operation after



Method Threshold Percentage of Drop in MAP Drop in MAP Memory
for pruning | Parameters Pruned | (Oxford Buildings) | (Paris Buildings) | usage (MB)
Alexnet + NetVLAD +
whitening (base model) 0 0 0% 0% 2486
0.001 25.77 0% 0% 414
8 bits 0.005 48.44 0% 0% 324
quantization 0.01 69.92 2.1% 1.8% 20.0
0.05 85.77 14.2% 13.3% 10.3
5 bits 0.005 52.39 2.9% 3.4% 19.5
quantization 0.01 74.95 7.3% 6.7% 10.6
VGG16 + NetVLAD +
whitening (base model) 0 0 0% 0% 329.5
0.001 25.52 0% 0% 89.6
8 bits 0.005 51.77 0% 0% 65.1
quantization 0.01 68.23 2% 2.1% 40.5
0.05 84.68 11.8% 14.1% 21.7
5 bits 0.005 55.77 2.2% 3.6% 42.1
quantization 0.01 75.66 6.8% 5.6% 21.2

Table 1. Compression results on Alexnet and VGG16 with NetVLAD and PCA whitening pre-trained on Pittsburgh30k dataset. The time
taken per query is about 0.31 seconds in each case. Arandjelovic et al. reports the MAP for Oxford Buildings and Paris Buildings as 69.8%
and 76.5% respectively with Alexnet+NetVLAD and 71.6% and 79.7% respectively with VGG16 + NetVLAD which we use as a baseline

for our experiments.
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Figure 5. This plot shows the Drop in MAP (final performance)
with the variation in Threshold used for pruning in VGG +
NetVLAD on the Oxford Buildings dataset.

the NetVLAD layer is used. We show that the original net-
work size is 248.6 MB and it can be compressed to 32.4
MB without loss in precision. Furthermore, we show that
it can be compressed to about 20 MB with only around 2%
loss in precision. Both of these are achieved while perform-
ing 8-bit quantization. These compression ratios enable the
network to be used in mobile applications and real-time sys-
tems.

5.2. VGG16 + NetVLAD

We also look at compressing VGG16 + NetVLAD net-
work since the bigger size of this network requires for it to
be compressed even more in order to be used in a mobile
application. This network with PCA whitening has a size
of about 528 MB. However, we compress the network to
about 65 MB without any loss in precision. The network
can further be compressed to about 40 MB with about 2%
loss in precision. The overall compression achieved is 12X
with only 2% loss in performance.

It should be observed that when we are pruning the net-
work an important hyperparameter is the value of 6 used for
pruning. This determines what percentage of weights will
be discarded in the network and eventually has an impact
on the final performance of the network. We observe that
the mAP reduces drastically with increasing threshold value
in Figure 5. This result also holds true intuitively since a
higher threshold value means that more number of parame-
ters are dropped according to Equation 2.

The plots for the experimental results are shown in Fig-
ure 5.

6. Conclusion

Deep learning models have improved the accuracy of
various pattern recognition and machine learning tasks.
However, the improvements were achieved by using mod-
els with increasingly larger number of parameters, making
them infeasible to be run in memory constrained devices.
Hence, the problem of compressing these models assumes
significance. In this work, we studied the effect of model
compression techniques like quantization and pruning for
the task of visual place recognition. We succeed in reduc-
ing the model size from 248.6 MB to 32 MB and from 529.5
MB to 65.1 MB without any drop in MAP. This enables our
model to be be run locally on memory-constrained devices
rather than sending the image to a server, thereby avoiding
additional latency.

From our experiments, we show that a greater percentage
of parameters can be pruned with 5-bit quantization primar-
ily by retraining the network iteratively. Also, this iterative
retraining of the network with pruning and quantization is
significant as it allows the un-pruned network parameters to
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Figure 6. Results for VGG16 + NetVLAD + whitening pre-trained on Pittsburgh30k dataset. Plots contain the corresponding titles.

adapt themselves to the parameter modifications.
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