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Abstract—This paper proposes a method for detecting pla-
giarism in source-codes using deep features. The embeddings
for programs are obtained using a character-level Recurrent
Neural Network (char-RNN), which is pre-trained on Linux
Kernel source-code. Many popular plagiarism detection tools
are based on n-gram techniques at syntactic level. However,
these approaches to plagiarism detection fail to capture
long term dependencies (non-contiguous interaction) present
in the source-code. Contrarily, the proposed deep features
capture non-contiguous interaction within n-grams. These
are generic in nature and there is no need to fine-tune the
char-RNN model again to program submissions from each
individual problem-set. Our experiments show the effective-
ness of deep features in the task of classifying assignment
program submissions as copy, partial-copy and non-copy.
Comparing our proposed features with handcrafted features
(source-code metrics and textual features), we report f1-score
improvement of 9.5% for binary classification and 5% for
three-way classification tasks respectively.

Keywords-deep features; recurrent neural networks; pla-
giarism detection; source-code;

I. INTRODUCTION

The task of plagiarism detection can be treated as
assessing the amount of similarity presented within given
entities. These entities can be anything like documents
containing text, source-code etc. Plagiarism detection can
be formulated as a fine-grained pattern classification prob-
lem. The detection process begins by transforming the
entity into feature representations. These features are
representatives of their corresponding entities in a dis-
criminative high-dimensional space, where we can mea-
sure for similarity. Here, by entity we mean solution
to programming assignments in typical computer science
courses. The quality of the features determine the quality
of detection.

Popular source-code plagiarism detection tools such
as MOSS [1] or JPlag [2] relay on analysis at textual
level, and compare two student submitted assignment
solutions for signs of plagiarism. These tools are based
on n-gram techniques and create fingerprints to measure
for similarity between submissions. Moreover, these tools
ignore some hints like similar comments and white-spaces
which are important cues for plagiarism [3]. Moreover,
these approaches to plagiarism detection can not capture
non-contiguous interaction present in the code and they
can only tolerate small local changes. Simple obfuscation,
such as noise injection, can evade from being detected as
copy cases [4].

We aim at automatically learning feature representa-
tions for solutions submitted by students to programming
assignments that can capture non-contiguous interactions.

Figure 1. Our model, consists of a char-RNN followed by a SVM
classifier. From two individual program submissions, pairwise deep
features are obtained and they are classified as copy/partial-copy/non-
copy.

We believe that features which capture such interactions
can detect plagiarism even if the source-code is obfus-
cated. However, programs are highly structured in nature
and applying machine learning directly to data in the
form of programs is difficult. We overcome this difficulty
by exploiting the fact that Programming Language Pro-
cessing (PLP) can be treated similar to Natural Language
Processing (NLP). Utilizing the “naturalness” in source-
code [5] and treating programs as natural language, the
traditional n-gram models may not be sufficient to model
the non-consecutive interaction within n-grams present in
the programs. This demands for powerful models that can
capture long-term interactions.

Inspired by recent success of deep neural networks
for learning features in other domains like Computer
Vision (CV) and NLP, we are motivated to use such
networks that enable us to learn the representations for
the programs. Tasks like image classification [6], sequence
prediction [7], image-captioning [8] and machine transla-
tion [9] are witnessing impressive results by leveraging
the ability of deep neural networks to learn features from
large amount of data. Similarly, deep learning has been
used in domains of and Programming Languages (PL) and
Compilers. Areas like program synthesis [10], induction,
iterative compilation and compiler optimization [11] have
benefited significantly with the use of deep neural net-
works.

In this paper, we employ a character-level language
model to map the characters in a source-code to
continuous-valued vectors called embeddings. We use
these program embeddings as deep features for plagia-
rism detection in programming assignments. These deep
features can capture the non-consecutive interaction within



n-grams present in programs at a syntactic level. These
features are hierarchical in nature and learned through
a series of non-linear transformations modeled by deep
neural networks. These features are non-linear, generic
which can generalize well [12]. We demonstrate the fact
that these deep features are generic. By generic we mean
that although they are learned using the task of sequence-
prediction, they are directly applied on different dataset
and to a different task like code plagiarism detection
without the need to fine-tune on each individual problem-
set.

Recently, character-level Recurrent Neural Networks
(char-RNN ) have been shown to generate text [13] and
Linux C code [14]. Recent works also show that RNNs
are particularly good at modeling syntactical aspects,
like parenthesis pairing, indentation, etc. We prefer RNNs
since they are inherently suitable for modeling sequences,
attributed to their iterative nature. However, RNNs are
difficult to train because of the vanishing gradient and
exploding gradient [15] problems. To alleviate these prob-
lems, the Long short-term memory (LSTM) [16] units
have been proposed. These LSTM units have special gated
mechanism that can retain the previous state and mem-
orize new information at the current time step. With the
help of memory and different gates in LSTM, it enables
us to capture non-consecutive interactions at syntactic
level [17]. Hence, we use LSTM units in char-RNN to
learn feature representations for programs. The detailed
architecture of char-RNN model is described in Sec. IV-B.
The contributions of our paper are as follows:

• We learn features that can capture non-contiguous
interactions among n-grams present in the source-
code, using deep neural networks.

• We demonstrate the generic nature, robustness and
the superiority of our deep features when compared
to source-code metrics and textual features in the task
of plagiarism detection.

We evaluate the performance of the proposed features
to detect plagiarism in programming assignments. Com-
paring our proposed features with popular handcrafted
features (both source-code metrics and textual features),
we report f1-score improvement of 9.5% for binary clas-
sification (copy/non-copy) and 5% for three-way classifi-
cation (copy/partial-copy/non-copy) tasks respectively. For
more details on classification tasks and results, refer to
Sec. IV-E.

II. BACKGROUND AND RELATED WORK

A. Language Modeling

The char-RNN used in our approach is an implicit
statistical language model. A statistical language model
is a probability distribution over sequences of words in a
sentence. The goal of statistical language modeling is to
predict the next word in textual data given context [18].
Traditional language models use the chain rule to model

joint probabilities over word sequences as:

p(w1, . . . , wN ) =

N∏
i=1

p(wi|w1, . . . , wi−1) (1)

Many NLP tasks are performed using these statistical
language models. Very recently, they have been put to use
for many Software Engineering (SE) tasks such as code
suggestions and fixing programming errors [19]. Hindle et
al. [5] were the first to apply NLP techniques to source-
code. They demonstrated that code written by humans is
also likely to be repetitive and predictable like natural
language. Hence, the code written by humans can be
successfully modeled by statistical language models. Such
models can be used to assist humans in code suggestions
and design.

B. Related Work

Existing code plagiarism detection techniques can be
put into four categories [20]. They are metric based,
token based, tree based and Program Dependency Graph
(PDG) based. However, each of these methods has some
limitations. Metric based approaches fail because most of
the metrics are highly sensitive to minor edits. Token based
approaches cannot be applied to a repository containing
multiple program submissions from different problem-sets.
Abstract Syntax Tree (AST) based approaches produce
many false-positives because of abstraction of the original
code. PDG based approaches are costly as they involve
comparing graphs.

In [3], the authors proposed a system that is based on
properties of assignments that course instructors use to
judge the similarity of two submissions. They proposed
12 textual features like similarity in comments and white-
space etc. However, both MOSS and JPlag filter out
these features when performing their analysis. Their main
motivation is to use these features as cues in plagiarism de-
tection. This system uses neural network based techniques
to measure the relevance of each feature in the assessment.
Their focus is on detecting plagiarized pairs within a
single problem set. However, our proposed method is
independent of problem set. The approaches proposed
in [21] are based on searching similar n-grams or small
character sequences (strings) between two source-codes.
However, n-grams have their own limitations. Since they
are simply frequency count of term co-occurrences, they
are limited by the amount of context they consider [22].

In all the papers mentioned above, the main idea is to
hand-craft certain features to capture similarity between
two code submissions by exploiting either syntactical and
stylistic (spaces, comments) aspects. Some of these are
highly based on knowledge from generic programming
constructs. Importantly, such handcrafted features are suit-
able only for specific tasks. This feature engineering itself
is a fundamental point of difference of our paper, when
compared with other papers. Here, we learn discriminative
features from the data, which are generic in nature as
opposed to specifying and engineering a set of specific
features. A recent paper [23] is closely related to ours, in



Figure 2. Our proposed approach step by step. First, we train a char-RNN model on the Linux Kernel source-code, then we fine-tune it to some sample
C programs. Later, we use this fine-tuned model to obtain embeddings for programming solutions submitted by students and use these embeddings
as features to detect plagiarized cases.

which the authors proposed a Tree-based Convolutional
Neural Network (TBCNN), that can be applied on program
AST. They use this architecture to classify programs by
functionality and also to detect code snippets of certain
patterns. However, features extracted from AST alone
cannot be used for plagiarism detection, since we may
loose some important cues like misspelled comments and
white spaces [3].

III. APPROACH

Our proposed approach can be summarized into four
steps as demonstrated in Figure 2.

A. Step 1: Train a char-RNN model

The first step in our approach is to exploit the “natural-
ness” in source-code by treating it as natural language and
training the char-RNN [14] model on Linux Kernel source-
code. A char-RNN is a character-level language model
that accepts a sequence of characters as input and the
model is trained to predict the next character in sequence
at each time step. Consider there are V unique charac-
ters in Linux Kernel source-code. Each of the characters
from the source-code is encoded as one-hot-vectors of V-
dimensions. Now, a sequence of one-hot vectors x = {
x1, x2, . . . , xT } are fed as input to a recurrent neural
network, where T is the last time-step of the sequence.
The model first computes a sequence of hidden vectors at
each hidden layer. Let hL = { h1, h2, . . . , hT } be the
sequence of N-dimensional hidden vectors computed by
the model at last layer. The last layer activations from the
model are projected using a [V × N] weight matrix Wy

to a sequence of output vectors y = { y1, y2, . . . , yT }
to predict for next character in the sequence. However,
these output vectors hold unnormalized log probability

for next character in the sequence, which is normalized
by employing the softmax function at the output layer.
The model is trained using cross-entropy loss and we use
LSTM units in place of vanilla RNN in our char-RNN. The
parameter settings of the model and other training details
are mentioned in Sec. IV-B.

B. Step 2: Fine-tuning char-RNN model

The second step is to use this pre-trained char-RNN
model to fine-tune it to sample C programs. For this task,
we have considered programming submissions from 4
problem-sets picked from 104-class program dataset [23].
In this step, the model is adapted to less complex C
programs (unlike Linux kernel source-code). More details
on fine-tuning are presented in Sec. IV-B.

C. Step 3: Obtaining Program Embeddings

The third step is to use this fine-tuned model to obtain
feature representations for programming solutions submit-
ted by students. The programs used here are picked from
the dataset we created (see Sec. IV-A) and importantly,
these are completely different from the ones used to fine-
tune the model in the previous step. We consider the
hidden-vectors from the last LSTM layer as the feature
representations of the programs. A program is represented
by the average of last layer LSTM hidden vectors from each
character (i.e at hidden vector at each time step) similar
to [24]. The embeddings obtained from the model are 512-
D vectors. More details on features are given in Sec. IV-C.

D. Step 4: Classification

From the individual program feature representations, we
construct pair-wise features and classify the submissions



Table I
OVERALL INFORMATION OF DATASETS USED. THE DATASET D2

REFERS TO THE 104-CLASS PROGRAM DATASET

Dataset #problem
sets

#code
submissions language

D1 (this paper) 22 4,700 C
D2 [23] 104 52,000 C

as copy/partial-copy/non-copy cases. Figure 3 demon-
strates the process of construction of pair-wise features
from individual program pair. These details are mentioned
in Sec. IV-C. However, plagiarism cases only make up
a small percentage student submissions in our dataset.
The dataset is highly class imbalanced. To overcome class
imbalance we use standard techniques like class-weighing
scheme. These details are mentioned in Sec. IV-E.

IV. EXPERIMENTS

A. Datasets

The dataset we appropriately adopted is a collection
of assignment solutions submitted by students from an
introductory C programming course. We call this dataset
as D1. Our dataset is formed out of 22 problem-sets. In
each problem-set there are 70 to 250 student submissions.
Program solutions falling in the same problem-set are
functionally consistent. In total, there are about 4,700
submissions. The questions asked in the problem-sets
range from more specific (as in case of tree-traversal)
to diverse. Each problem-set is of varying difficulty, with
student solutions ranging from 50 to 400 lines of code. The
programs in our dataset are obfuscated in the following
ways: variable name changing, careful conversion of while
loop into for loop, dead code injection etc.

To train a classifier for plagiarism detection, data pairs
(pairs of student’s submissions) are needed. The labels
make sense only for a pair of submissions and not for
individual student submission. Explicitly enumerating all
possible pairs for submissions in each problem set and an-
notating them is not feasible. Hence, we relied on MOSS
scores and handcrafted features [25] for creating pairs.
The constructed data pairs were annotated by teaching
assistants. In total, there are about 3,600 program pairs.
Out of these around 80 pairs are plagiarized, 110 pairs are
partial-copy and the rest are non-copy. Table I provides the
information about the datasets used.

For training our character-RNN model, we used the
source-code of Linux Kernel. All the files are shuffled and
concatenated to form a 6.2 Million character long dataset.
During preprocessing stage, all the unicode characters are
removed from the dataset. For fine-tuning our pre-trained
char-RNN model, we used submissions from 104-class
program dataset.

B. Char-RNN Training and Fine-tuning

We trained the char-RNN model on the source-code of
Linux Kernel for sequence prediction task. Cross-entropy
loss was used to train the model. Our char-RNN model

Figure 3. A schematic diagram showing our pairwise feature construc-
tion from two program submissions. The hidden vectors are from the
last layer of char-RNN model.

consists of three hidden LSTM layers stacked on top
of each other. Each of the layer consists of 512 LSTM
cells/units. We used mini-batch stochastic gradient descent
with RMSProp [26]. All the other hyper-parameters are
same as mentioned in [14]. This pre-trained model was
then fine-tuned to adapt it to the less complicated C/C++
program submissions, taken form from 4 problem-sets
from 104-class program dataset. We call this dataset as
D2. During fine-tuning, we freeze the weights of first two
hidden layers and only the last hidden layer weights are
allowed to update. Early stopping is used based on the
validation performance.

C. Constructing Pairwise Representations

Given the feature representations of two individual
programs from a problem-set, the pairwise features are
constructed by taking the element-wise difference be-
tween individual program feature representations. Figure 3
demonstrates the process of construction of pair-wise
features from individual program pairs.

D. Evaluation Measures

To analyze the classifier performance in supervised
learning approach, we compute per-label precision, recall
and f1-score. Suppose a label y is present in the ground-
truth of m1 instance pairs and it is predicted for m2 pairs
while testing out of which m3 instance pairs are correct.
Then its precision will be = m3 /m2 and recall will be =
m3 /m1. Using these two measures, we get the percentage
F1-score as F1 = 2.P.R/(P + R), where P is precision
and R is recall. After calculating precision, recall and f1-
score metrics for each label individually, we calculate their
unweighted mean.

E. Results

After obtaining pairwise feature representations for
given program pairs, we train a Support Vector Machine
(SVM) classifier in a variety of settings namely using deep
features, full feature set (source-code metrics + textual
features) and also using only textual features. We also treat
the classification task as:



Table II
RESULTS OF BINARY CLASSIFICATION ON OUR DATASET. OBSERVE THE SIGNIFICANT BOOST IN F1-SCORE BY USING OUR PROPOSED DEEP

FEATURES.

Features Precision Recall F1-score
Textual features [3] 0.590 0.860 0.640
Source-code metrics [25] 0.670 0.800 0.715
Textual features + Source-code metrics 0.745 0.830 0.785
Deep features (this paper) 0.840 0.940 0.880
Deep features + Textual features + Source-code metrics (this paper) 0.855 0.940 0.890

Table III
RESULTS OF THREE-CLASS CLASSIFICATION ON OUR DATASET. OBSERVE THE SIGNIFICANT BOOST IN F1-SCORE BY USING OUR PROPOSED DEEP

FEATURES.

Features Precision Recall F1-score
Textual features [3] 0.413 0.490 0.423
Source-code metrics [25] 0.430 0.570 0.460
Textual features + Source-code metrics 0.440 0.573 0.463
Deep features (this paper) 0.470 0.653 0.513
Deep features + Textual features + Source-code metrics (this paper) 0.490 0.660 0.543

• a binary classification task (including only copy and
non-copy cases).

• a three-way classification (includes partial-copy cases
along with copy and non-copy cases).

1) Feature Comparison: We compare the proposed
deep features with various other hand-crafted features like
source-code metrics [25] and also few textual features [3].
The textual features are as follows: Difference in Length
of Submissions (DLS) - the difference between the lengths
of each student submission, Similarity as Measured by
Diff (SMD) - the number of lines of common code in
original submissions, Similarity of Comments (SOC) -
the number of comments in common and Similarity in
String Literals (SSL) - the similarity between the two sets
of literals. To these features, we also add Edit Distance
(ED) between two programs as an extra feature. These
features are extracted at syntactic level of a source-code
and are inherently pairwise features. The source-code
metrics are typically a summary of the internal program
representation. They consist of various elements that can
capture basic block characteristics, method , control flow
characteristics, frequency of variables and constants. Basic
block features describe a program based on the number of
basic blocks, basic blocks with successors, predecessors
etc. Method features capture information related to calls
in the methods. However, both textual features and source-
code metrics fail to capture some of the essential aspects
of a program like non-contiguous interactions at syntax
level, needed to detect plagiarized program pairs.

2) Binary Classification: In the first task, we consider
plagiarism detection as a binary classification problem. So
we removed the instances belonging to the class of partial-
copy cases from the dataset and trained an SVM classifier.
Then, we opted for 4-fold cross-validation, training on 3/4
of the dataset and testing on the remaining 1/4. However,
even after regularizing we found that the classifier was
choosing to predict the class with the highest frequency.
We use a class weighing scheme to alleviate the effect of

Table IV
PER-LABEL PERFORMANCE IN BINARY CLASSIFICATION SETTING
USING DEEP FEATURES + TEXTUAL FEATURES + SOURCE-CODE

METRICS.

Class label Precision Recall F1-score
Not copy 1.000 0.990 0.990
Copy 0.710 0.890 0.790

Table V
PER-LABEL PERFORMANCE IN THREE-WAY CLASSIFICATION SETTING

USING DEEP FEATURES + TEXTUAL FEATURES + SOURCE-CODE
METRICS.

Class label Precision Recall F1-score
Not copy 0.970 0.890 0.930
Partial copy 0.110 0.300 0.170
Copy 0.390 0.790 0.530

class imbalance. The performance of classifier on the test-
set using different features is shown in table II. Using our
proposed deep features, we observe an improvement of
9.5% in f1-score when compared to source-code metrics+
textual features and an improvement of 24% in f1-score
when compared to textual features alone.

Table IV shows per-label performance using deep fea-
tures along with textual features and source-code metrics.
Given below are the details of f1-score on per-label basis
namely for copy and non-copy cases. The f1-score values
obtained using textual features alone are 0.960 and 0.310
for non-copy and copy cases respectively. Using source-
code metrics alone, the f1-score values are 0.980 and 0.450
for non-copy and copy cases respectively. By combining
the textual features and source-code metrics, the f1-score
values slightly increased and are 0.990 and 0.580 for non-
copy and copy cases respectively. However, using deep
features alone, we observed a significant boost in the f1-
score values for copy cases. The f1-scores are noted to be
0.990 and 0.770 respectively.



3) Three-way Classification: As mentioned earlier, we
also wanted to include the instances from the class of
partial copy cases to our dataset. We treat the problem as a
three-way classification problem and proceed by training a
SVM classifier. The performance of classifier on the test-
set using different features is shown in table III. Using
our proposed deep features, we observe an improvement
of 5% in f1-score when compared to source-code metrics+
textual features and an improvement of 9% in f1-score
when compared to textual features alone.

Table V shows per-label performance using deep fea-
tures along with textual features and source-code metrics.
Given below are the details of f1-score on per-label basis
namely for copy, partial-copy and non-copy cases. The
f1-score values obtained using textual features alone are
0.890, 0.080 and 0.300 for non-copy, partial-copy and
copy cases respectively. Using source-code metrics alone,
the f1-score values are 0.910, 0.110 and 0.390 for non-
copy, partial-copy and copy cases respectively. However,
using deep features alone, we observed a significant boost
in the f1-score values for copy cases. The f1-scores are
noted to be 0.920, 0.140 and 0.480 respectively.

V. CONCLUSION

In this paper, we have explored the possibility of
learning generic representations for source-code. Although
the proposed deep features are learned using the task
of sequence-prediction, they can be directly applied on
different dataset and to a different task like code plagiarism
detection without the need to fine-tune on each individual
problem-set. Our experiments suggest that these features
are very promising.
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