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ABSTRACT

Smartphones have become the de-facto capture devices for

everyday photography. Unlike traditional digital cameras,

smartphones are versatile devices with auxiliary sensors, pro-

cessing power, and networking capabilities. In this work,

we harness the communication capabilities of smartphones

and present a synchronous/co-ordinated multi-camera cap-

ture system. Synchronous capture is important for many im-

age/video fusion and 3D reconstruction applications. The

proposed system provides an inexpensive and effective means

to capture multi-camera media for such applications. Our co-

ordinated capture system is based on a wireless protocol that

uses NTP based synchronization and device specific lag com-

pensation. It achieves sub-frame synchronization across all

participating smartphones of even heterogeneous make and

model. We propose a new method based on fiducial markers

displayed on an LCD screen to temporally calibrate smart-

phone cameras. We demonstrate the utility and versatility of

this system to enhance traditional videography and to create

novel visual representations such as panoramic videos, HDR

videos, multi-view 3D reconstruction, multi-flash imaging,

and multi-camera social media.

Index Terms— Synchronous Media Capture, Coordi-

nated Capture, Multi-camera, Social Capture

1. INTRODUCTION

Over the years, smartphone cameras have continuously im-

proved due to better optics and more compute power for post-

processing. Once popular for casual photography, point and

shoot digital cameras are now obsolete and replaced by smart-

phone cameras due to comparable image quality and ease

of access. Despite the revolution in capture technology and

paradigm, the primary consumer-captured media forms have

not deviated much from traditional photos and videos.

Present day smartphones are powerful in the sense that

they provide more functionality than conventional cameras in

form of auxiliary sensors such as GPS, accelerometer, gyro-

scope and network connectivity. There is potential to utilize

Supported by �TCS Research Scholarship Programme and �Google In-
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these auxiliary functionalities to enhance conventional imag-

ing and produce new forms of compelling visual representa-

tions. In this paper, we leverage the networking capabilities of

smartphones and propose a system for creating multi-camera

media.

Several computer vision and image processing tasks such

as object tracking, depth estimation, edge detection, etc. be-

come significantly easier with multi-camera input. Multi-

camera feeds can also be combined in interesting ways to cre-

ate compelling new representations such as panorama videos,

HDR videos, multi-shot videos, etc. However, synchroniza-

tion and co-ordination of camera devices is an important issue

while capturing dynamic real-world scenes. To exemplify,

consider a panorama video of a dynamic scene created by

stitching multiple video feeds. Lack of synchronization re-

stricts automatic temporal alignment of frames. Even if cam-

eras are triggered simultaneously, slight drift or lag can create

severe artefacts in the final outcome. Our system provides

a flexible framework to achieve sub-frame accurate synchro-

nization for a heterogeneous (different make and model) sys-

tem of smartphone cameras using a wireless protocol and vi-

sual marker based temporal calibration.

Traditional methods for multi-camera video synchroniza-

tion can be broadly categorized into (i) capture-time syn-

chronization and (ii) post-processing based synchronization.

Capture-time synchronization can be achieved using hard-

ware [1, 2] or software [3] triggers. Hardware triggers re-

quire a physical trigger device to be attached to the camera

(operated remotely using a connected controller) and tend to

be expensive. In comparison, software triggers based on Net-

work Time Protocol (NTP) are cheaper. They rely on server-

client architectures, in which the server sends capture signals

over a LAN connection. However, these methods do not work

well with heterogeneous systems of cameras as they do not

compensate for device specific capture latencies. Also, they

require extensive setups at the time of capture and rely on

the quality of service of the network [4, 5, 6, 7]. In con-

trast, our system provides a flexible framework for accurate

capture-time synchronization even for heterogeneous smart-

phone cameras.

Post-processing based synchronization methods leverage

audio cues [8] or visual features based temporal alignment

[9, 10]. However, the effectiveness of visual feature based
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Fig. 1. System workflow. Each of the blocks represent different stages in the workflow of capturing media using a heterogenous system of

uncalibrated camera phones.

alignment heavily depends on the scene elements and camera

movements. Audio-based synchronization is more common

in commercial video editing tools such as Adobe Premiere

Pro, Final Cut Pro, and Adobe After Effects. Our system pro-

vides accurate capture-time synchronization, eliminating the

need for time consuming and error-prone post-processing for

synchronization.

We achieve sub-frame synchronization in two steps: (i)

by compensating for system time lag using NTP, (ii) by com-

pensating for device-specific shutter lag estimated using a

marker-based calibration clock displayed on an LCD device

(phone/tablet/monitor). The synchronization protocol in our

work is closest to [11]. However, they use a homogeneous

set of smartphones (of the same make and model) in their

experiments and require custom hardware in the form of an

array of LEDs. We provide an end-to-end system to capture

multi-camera synchronized image sequences without the need

of custom hardware and show its flexibility and usefulness by

capturing and compositing a number of compelling examples.

Summarily, the contributions of this paper are, (i) a uni-

versal application to control heterogeneous camera phones

with fine control over their camera parameters. (ii) a flexible

and easy-to-use coordination and synchronization framework

that is useful for a number of computer vision and creative au-

thoring applications. In the following section, we provide an

overview of the system and explain the workflow from user’s

perspective. In Section 3, we describe our synchronization

protocol with supporting statistics. We discuss example ap-

plications with results in Section 4 and finally conclude the

paper with a discussion on future work.

2. SYSTEM OVERVIEW AND WORKFLOW

The proposed system has a server-client fan out architecture,

where clients are Android-based smartphones participating in

the capture event and the server is responsible for managing

the participating clients. Each client runs an Android applica-

tion which provides control over several camera parameters.

Upon installation of the application, the participating smart-

phones are registered on the server. Apart from the client

and server devices, we use an additional smartphone/tablet

to display the marker based clock for device-lag estimation.

We now discuss the end-to-end workflow (depicted in Fig-

ure 1) of our system with a brief overview of the individual

steps/modules.

Application Settings SynCam allows each participating

smartphone camera to select the application configuration

corresponding to the capture event. Each camera is then setup

using the default settings for the event, which are decided

based on the type of media such as HDR video, Panorama

video, multi-flash imaging, etc.

Camera Settings For creative authoring applications, it is

crucial that the user can control the capture quality and style.

Using our app, a user can configure the camera parameters

for each device independently at the time of registering the

event. Before capture time, a user can change ISO settings,

exposure time, flash, switch to front camera, and change fo-

cus distance. Depending upon the media application, the app

also provides a default setting of camera parameters for all de-

vices. For example, to capture video panoramas, all cameras

are set by default to video mode, with focus at infinity, flash

turned off, ISO set at 400, and exposure locked. The user is

free to use the default settings or reconfigure, depending on

the requirements.

Synchronization In the next step, the participating devices

are calibrated to achieve sub-frame synchronization. Using

NTP, we achieve a coarse level of synchronization (in hun-

dreds of milliseconds) across all devices. To achieve sub-

frame synchronization, we estimate the shutter-lag for each

participating devices using a fiducial marker-based system.

These two steps ensure that the capture event starts at the

same time on all participating devices. Section 3 explains

each step of the synchronization module in detail.

Scene Capture Different multi-cam visual media requires

different camera setup configurations. Section 4 illustrates

a few examples. HDR video requires the cameras to be static

relative to each other whereas video captured by multiple peo-

ple in a social setting cannot have such a restriction. Be-

fore capture, the user arranges the cameras in a spatial layout
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Fig. 2. Different stages of synchronization. (a) shows the initial configuration without synchronization. (b) shows the alignment after

adjusting trigger time. (c) shows the ideal result after adjusting capture time. (d) and (e) show the relationship between exposure time and

refresh cycle with (d) representing 2 timestamps visible and (e) shows 3 timestamps visible with same exposure time.

which is according to the type of media application selected in

the second stage. The synchronized capture event is executed

once each device is spatially setup according to the desired

camera array configuration.

Aggregation Post-capture, the captured media (im-

age/video) files are sent to the server using REST API. The

files are stored in a central repository for easy user access.

For applications where human intervention is not necessary

(such as panorama video, HDR video, edge-detection, etc.),

the system automatically aggregates the captured media as

programmed. Representative snapshots of the final outcomes

for a few such applications are shown in Section 4.

3. SYNCHRONIZATION

In order to achieve sub-frame synchronization among captur-

ing devices, we need to first sync the device clock with the

global time scale of the server. We also need to compensate

for the shutter lag of each device which is the offset between

the time of initiation of a capture request and actual capture

time of a frame. There are three timestamps central to the

synchronization system:

1. Global Trigger Time Tg - The global time at which the

capture event is to be executed according to the server.

2. Device Trigger Time Tt(i) - The device time at which

the capture request is executed on device i.

3. Device Capture Time Tc(i) - The device time at which

the camera exposure starts on the device i. For a video,

this timestamp represents the time at which the expo-

sure starts for the first frame.

Additionally, there is a per-device offset Δo(i) = Tg − Tt(i),
between the device i’s clock and server time. The initial un-

synchronized configuration is shown in Figure 2(a) where the

Tt(i) values for the devices may be misaligned. The capture

time of a device Tc(i) is ideally expected to be the same as

the trigger time Tt(i) of the same device. However, this is not

the case as there is a varying shutter lag for capture due to the

various processes running on the smartphone at that instant

1 3 5 7 9 11 13 15 17

40
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100

Sample #

L
ag
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s)

Shutter Lag on Nexus 5

Offset read from display

Fig. 3. Shutter lag observed on a Nexus 5 camera. It can be ob-

served that the shutter lag varies over multiple capture samples.

– as shown in Figure 3. Δc(i) = Tc(i) − Tt(i) represents

camera latency or shutter lag. As it varies from device to de-

vice, we synchronize the smartphone cameras according to

Tc(i) rather than Tt(i). This ensures that each frame across

multiple cameras begins exposure at the same global time.

3.1. Adjusting Trigger Time

We first calibrate the participating devices such that their trig-

ger times align with the global trigger time Tg . This involves

estimation of the Δo(i) for each device. We setup a stratum

4 NTP clock server and all devices use this clock as a refer-

ence. Using the NTP [3] protocol, the error in adjusting the

clocks is capped by half of RTT. On a university network, we

find the average RTT delay to be 11 msec. This contributes

a maximum network time error (eN ) of ±5.5 msec from the

global trigger time. Figure 2(b) shows the state of the system

after adjusting the trigger time. It can be seen that the trig-

ger time Tt(i) for each device is now aligned with the global

trigger time Tg .

3.2. Adjusting Capture Time

To calculate the shutter lag Δc(i) = Tc(i) − Tt(i) for each

device, we use the LCD of the server device which displays

561



Fig. 4. Fiducial Markers – each of which represent time in millisec-

onds on the reference clock, are displayed on the LCD screen. Cam-

era phones to be calibrated, capture images of the clock and markers

on the screen. A dictionary of 1000 such markers is generated such

that there is maximum possible inter-marker distance.

the reference clock time at milliseconds resolution. We regis-

ter a capture event for all the participating devices. The LCD

is kept in the field of view of all cameras. The reference clock

displayed on the LCD refreshes every 16.67 msec as the LCD

has a refresh rate of 60 Hz. We use high timestamp resolution

and read timestamps autonomously. Instead of using digits to

represent time, we use 1000 fiducial markers as shown in Fig-

ure 4. Each of the markers correspond to a specific millisec-

ond. The distinctiveness of the markers makes them easily

recognizable under varying lighting conditions.

Each camera captures an image of the LCD displaying the

server time. The server time is shown using numeric digits

upto the last second while markers are used to display the

number of milliseconds. Multiple markers are visible in the

captured image owing to finite exposure time of the frame

(The relationship is shown in Figure 2(d,e)). Each marker

gets activated at the time it represents and stays active for the

duration of the refresh cycle. The number of markers k visible

in an image is related to the refresh rate RR of the display and

the exposure time of the camera E by,

k ∈ {x, x+ 1}

where, x = �RR ·E�. To detect and recognize the markers in

an image as shown in Figure 4 we use the method described

in [12]. The timestamp information of each visible marker in

the image is then identified. Each marker can be visible for

one full refresh cycle (1/RR) or for a smaller duration. The

duration for which the marker is visible is proportional to the

intensity of the marker in the image. We calculate the normal-

ized intensity of each marker to estimate the amount of time

for which the marker was visible during the exposure. We

compute intensity of a marker as the mean of intensity values

of white pixels in the marker. If the intensity of a marker i is

Ii, then the relative intensity αi of the marker is,

αi =
Ii

Imax

where, Imax = max
i

Ii

Nexus 5 Nexus 5x Moto E

Adjusted trigger time 19.1 16.5 17.6

Adjusted capture time 11.35 10.63 14.12

Table 1. Camera offsets in ms. The offsets represent the mean of

absolute error |Tc(i)− Tg|

Using this relative intensity, we can estimate the time at which

the camera exposure ends and thus estimate the capture time

Tc(i) by:

Tc(i) = t+
αt

RR
− E

where, t is the timestamp represented by the most recent

marker visible in the image and αt is the relative intensity

of the corresponding marker. t + αt

RR
represents the time at

which the exposure ends, from which E is subtracted to get

the time at which the exposure starts.

Figure 2(c) shows the final calibration configuration

where the Tc(i) values are temporally aligned. Table 1 shows

the average error in alignment of Tc(i) values over 30 capture

events, confirming sub-frame synchronization. After syn-

chronization the actual trigger time for a device i is set to:

T ′

t (i) = Tt(i)−Δc(i) = 2 · Tt(i)− t−
αt

RR
+ E

4. RESULTS

Panorama Sub-frame synchronization of multiple smart-

phone cameras enables high quality panorama stitching for

scenes with active subjects. Figure 6(a) shows a still frame

from a video panorama stitched using a network of four het-

erogeneous mobile phones. The devices used for the experi-

ment are synchronized using the algorithm described in Sec-

tion 3 and a time-synchronized video capture event is regis-

tered using the event interface. During event registration, the

exposure, FPS and auto-focus for each device is fixed and set

to locked mode. The phones are placed such that they re-

main fixed for the duration of the capture. Using a stitching

pipeline similar to [13], the final video panorama is stitched

frame by frame.

HDR To capture scenes with dynamic subjects in HDR, we

use a pair of synchronized cameras with a large overlap in

their field of view. Figure 7 shows a resultant frame from an

HDR video captured using two low dynamic range videos,

one with 1/33 s exposure time and the other with 1/100 s.

Both cameras are placed close to each other with roughly the

same vertical and horizontal alignment. We register an event

to capture videos using the two cameras and create a frame-

by-frame HDR video of the scene. The FPS resolution for

both the cameras is locked at 30fps to ensure frame synchro-

nization despite of the differences in exposure time. We use

the Enhanced Correlation Coefficient(ECC) alignment [14]

algorithm to register frames from one video to the correspond-

ing frames in the other. We use the generalized random walks
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(a) (b) (c) (d) (e) (f) (g)

Fig. 5. Depth-edge detection using multi-flash coordinated capture. (a) shows the input images that were taken with phones

acting as flash units kept in four positions around a central camera. The central camera is triggered consequently with differ-

ent lighting conditions produced by the “flash” phones. (b) is the resultant image showcasing the detected edges which are

significantly better than (c) obtained using canny edge detection. (d), (e), (f) and (g) highlight the difference between (b) and

(c).

(a) An example frame of a video panorama with dynamic subjects. (b) Multi-Frame Composition. A photomontage created us-

ing multiple frames of a video panorama.

Fig. 6. Media obtained by stitching synchronized videos captured by multiple phones.

Low Exposure

High Exposure

Fig. 7. HDR composition of a frame using two synchronous cam-

eras with different exposure times.

algorithm [15] for temporally coherent multi-exposure fusion.

Bilateral filter is used to temporally smoothen out variation in

parameters.

Multi-Flash Edge Detection Our system also enables novel

multi-camera compositions such that a few devices can be

used as illumination units while the others capture images.

We show a synchronized time-sequential capture application

for multi-flash imaging for depth edge detection as described

in [16]. We use an array of five cameras, where the central

camera is the capture unit and the four surrounding cameras

are used as flash triggers in a sequential manner. Using our

synchronization algorithm, the central camera captures an im-

age at exactly the same instant when each of the flash units il-

luminate the scene. Using the top, left, bottom and right illu-

minated images of the scene, we can isolate the depth and tex-

ture edges in the scene at a much better resolution than apply-

ing image-processing techniques such as Canny/Sobel edge

Fig. 8. Dense 3D model obtained using 5 cameras. The figure

shows 4 out of the 5 simultaneously captured images alongwith the

generated 3D mesh model.

detection over no-flash images, as described in [16]. Figure 5

shows the result on a scene with two objects having varying

degrees of textural details.

Dense 3D Reconstruction Structure from motion uses mul-

tiple images of an object or a scene to create elaborate 3D

point-cloud reconstructions. We use our system to demon-

strate an outside-in capture framework. We capture five

images of a small 3D scene and reconstruct a dense 3D

model. Using these images, we obtain a sparse point cloud

using the Bundler toolkit [17] and synthesize a dense point

cloud using CMVS/PMVS(Clustering Views for Multi-view

Stereo/Patch-based Multi-view Stereo) algorithms [18][19].

Poisson surface reconstruction [20] is then applied to gener-

ate a smooth 3D mesh as shown in Figure 8.

Multi-Cam Social Media Multi-camera images and videos

can also be used for creative social media. Multiple co-
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located viewers capturing a synchronized videos of an event

can cycle through different viewpoints and can composite dif-

ferent shots from different viewpoints during post-processing.

An illustration can be found on our project page.

Multi-Frame Compositing Interesting image composites

and photomontages from videos can be created by combining

visual elements from several frames into one single image.

This can be achieved for a larger field of view by using multi-

ple synchronized video streams. To demonstrate this with an

example, we capture a dynamic scene using 2 cameras with

overlapping FOVs – from which a video panorama is created.

By extracting a few frames spaced out evenly on the timeline,

a photomontage is created using the method described in [21]

as shown in Figure 6(b).

5. CONCLUSION

In this work, an end-to-end multi-camera capture framework

for smartphones is introduced, which does not require any

specialized hardware. This goes beyond the existing soft-

ware systems which calibrate multi-camera feeds in post-

production. It also improves upon the state-of-the-art hard-

ware solutions which do not account for shutter lag. The

proposed framework is able to achieve sub-frame synchro-

nization using NTP and a marker-based timestamp detection

algorithm. The suggested system can serve as a standard plat-

form for multi-mobile capture applications.
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generation and detection of highly reliable fiducial markers un-

der occlusion,” Pattern Recognition, 2014.

[13] Matthew Brown and David G Lowe, “Automatic panoramic

image stitching using invariant features,” International journal

of computer vision, 2007.

[14] G.D. Evangelidis and E.Z. Psarakis, “Parametric image align-

ment using enhanced correlation coefficient maximization,”

IEEE Transactions on Pattern Analysis and Machine Intelli-

gence, 2008.

[15] R. Shen, I. Cheng, J. Shi, and A. Basu, “Generalized random

walks for fusion of multi-exposure images,” IEEE Transac-

tions on Image Processing, 2011.

[16] Ramesh Raskar, Kar-Han Tan, Rogerio Feris, Jingyi Yu, and

Matthew Turk, “Non-photorealistic camera: depth edge detec-

tion and stylized rendering using multi-flash imaging,” in ACM

transactions on graphics (TOG). ACM, 2004.

[17] Noah Snavely, Steven M Seitz, and Richard Szeliski, “Photo

tourism: exploring photo collections in 3d,” in ACM transac-

tions on graphics (TOG), 2006.

[18] Yasutaka Furukawa, Brian Curless, Steven M. Seitz, and

Richard Szeliski, “Towards internet-scale multi-view stereo,”

in CVPR, 2010.

[19] Yasutaka Furukawa and Jean Ponce, “Accurate, dense, and

robust multi-view stereopsis,” IEEE Trans. on Pattern Analysis

and Machine Intelligence, 2010.

[20] Michael Kazhdan, Matthew Bolitho, and Hugues Hoppe,

“Poisson surface reconstruction,” in Proceedings Eurograph-

ics symposium on Geometry processing, 2006.

[21] Aseem Agarwala, Mira Dontcheva, Maneesh Agrawala, Steven

Drucker, Alex Colburn, Brian Curless, David Salesin, and

Michael Cohen, “Interactive digital photomontage,” in ACM

Transactions on Graphics (TOG), 2004.

564


