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Abstract. Building accurate lexicon free handwritten text recognizers
for Indic languages is a challenging task, mostly due to the inherent com-
plexities in Indic scripts in addition to the cursive nature of handwriting.
In this work, we demonstrate an end-to-end trainable CNN-RNN hybrid
architecture which takes inspirations from recent advances of using resid-
ual blocks for training convolutional layers, along with the inclusion of
spatial transformer layer to learn a model invariant to geometric dis-
tortions present in handwriting. In this work we focus building state of
the art handwritten word recognizers for two popular Indic scripts – De-
vanagari and Bangla. To address the need of large scale training data for
such low resources languages, we utilize synthetically rendered data for
pre-training the network and later fine tune it on the real data. We out-
perform the previous lexicon based, state of the art methods on the test
set of Devanagari and Bangla tracks of RoyDB by a significant margin.
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1 Introduction

The creation and dissemination of handwritten documents remains pervasive for
humans as a personal choice of communication other than speech. Handwritten
text recognition is the process of automatic conversion of such handwritten doc-
uments into machine encoded text. It has been a popular research area for many
years due to various applications such as digitizing handwritten manuscripts [1],
postal automation [2], matching documents [3], digitizing handwritten medical
forms [4], etc. Most of these works have focused on Latin scripts, with very few
works in the space of Indic scripts. In this work, we address the challenges of
building a handwritten word recognizer for two popular Indic scripts – Devana-
gari and Bangla. A lot of handwritten documents in these scripts have been made
available by scanning historical documents, ancient manuscripts and literary re-
sources with cultural significance. Extracts from such Bangla and Devanagari
manuscripts is shown in Figure 1.

Devanagari and Bangla are the two most popular Indian scripts, also being
the fifth and sixth most popular language in the world [5]. Both these scripts



Fig. 1. The top box shows an excerpt from the Bangla poem "Namashkar" (1907) writ-
ten by Rabindranath Tagore, while the bottom box shows an example of Devanagari
writing from a Hindi poem written by Amitabh Bachchan.

are read left to right. Both scripts contain 11 vowels whereas the number of
consonants is 38 for Devanagari and 39 for Bangla. Figure 2 shows the basic set
of characters in both the scripts. As one can notice both the scripts contains
a horizontal line running across the characters and words (for word images see
fig. 4) which is referred as Shirorekha. The shape of the consonant is modified in
case it is followed by a vowel in either script, and such a character is referred to
a modified character or modifier. In certain cases, when a consonant follows one
or more consonant(s), a new character gets formed which has an orthographic
shape and is called a compound character. For more details about the Bangla and
Devanagari scripts, the reader can look at [6]. Due to the presence of modifiers
and compound characters, the number of distinct characters possible in both
Bangla and Devanagari is far higher than Latin scripts (roughly 400 distinct
characters in Bangla compared to only 62 in English), making word recognition
for these Indic scripts more challenging as compared to English.

In addition to the script level challenges, a handwritten word recognizer for
Indic scripts has to deal with challenges associated with writers with different
styles and the cursive nature of the handwriting. The cursive way of writing [7]
results in merging of adjacent characters, variable skew and modified shapes
which further increases the complexity in recognition. Another important chal-
lenge is the lack of publicly available handwritten data in Indian languages. This
inhibits training of modern deep learning architectures, which contain millions
of parameters and require substantial data for generalization of features.

Most of the previous works [8–10] on recognizing Devanagari and Bangla
scripts were limited to printed documents. In this work we focus on handwritten
word images which are more challenging than machine printed words. Initial



Fig. 2. Few examples of vowels, modifiers, consonants and conjuncts in (a) Bangla and
(b) Devanagari

works in offline Bangla and Devanagari handwritten word recognition used Hid-
den Markov Models (HMM). HMM based approaches can be categorized as –
(i) trained on recognizing the whole word or finding the holistic representation
(ii) segmenting the image into different zones and using the HMM to recognize
individual characters. Works such as [11,12] for Bangla and [13,14] for Devana-
gari, extract features from the entire word and use lexicon dependent HMM
decoding to recognize the whole word. In [15] for Bangla and Devanagari word
recognition, the authors first segment the word image into three regions, namely
the upper, middle and lower zone, using image processing techniques such as
skeletal analysis and shape matching. The upper and lower zones are recognized
by using support vector machines while the middle zone was recognized using
a HMM decoded with a lexicon of middle zone characters. Finally, the results
from the recognizers in all three zones are combined. Both these methods are
limited to lexicon based decoding. More recently, with the proliferation of deep
learning based methods, modern text recognizers are built using a combination
of convolutional neural networks (CNN) and recurrent neural networks (RNN)
such as BLSTMs [16]. In [17], Garain et al. uses BLSTM’s with CTC loss, while
in [7] CNN’s are used for feature extraction along with RNN’s for sequence
classification. Both these methods show results for offline Bangla handwritten
recognition. While our work is similar to that in [7] in terms of basic architec-
ture, our network is much deeper, uses residual connections and contains spatial
transformation layer to better handle geometric distortions present in handwrit-
ing. Also, in [7] each modifier and compound character is treated as a unique
character, while we model it as a sequence of characters.

In this work, we address the challenges associated with recognizing the hand-
written word images of Devanagari and Bangla scripts, in an unconstrained set-
ting, by using a CNN-RNN hybrid network. The main contributions of this work



are as follows- (i) To address the lack of data we pre-train our network on syn-
thetic data created from fonts and fine tune the network of real world images,
(ii) We use a network similar to the one used in [18], containing a spatial trans-
former layer, residual convolutional blocks and BLSTM layers along with the
CTC loss function for sequence to sequence transcription and (iii) We present
results in both lexicon-based and lexicon-free (unconstrained) setting. Our pro-
posed method gives state of the results on both Bangla and Devanagari tracks
of RoyDB [15].

Fig. 3. Overview of the proposed CNN-RNN hybrid architecture. The various impor-
tant components of the architecture are highlighted such as the spatial transformer
network, residual convolutional blocks, BLSTM layers and the CTC loss function.

The paper is structured as follows: In section II, we discuss about the CNN-
RNN hybrid architecture and its notable components. In section III, we discuss
how we train our deep model and the result of applying our pre-trained model
to both the Bengali and Devanagari track of the RoyDB dataset. Section IV
concludes our work.

2 Methodology

Figure 3 illustrates the proposed deep architecture for lexicon free handwritten
word recognition which consists of a spatial transformer layer (STN) [19], fol-
lowed by a set of residual convolutional blocks, which is proceeded by a stacked
bi-directional LSTM module and ends with a transcription layer for label pre-
diction.

2.1 Synthetic Data

The availability of huge amount of data is crucial for successful training of deep
architectures which typically contain millions of parameters. In [20,21], a frame-
work for rendering synthetic word images from standard fonts is proposed which
practically enables building an nearly infinite vocabulary dataset. In this work,
we follow a pipeline similar to [21] for rendering word images from Bangla and



Devanagari fonts to pre-train our deep network. The word is rendered onto the
image in one of the following three ways: with a horizontal bottom text line or
following a random curve or following a straight line. We apply varying amounts
of kerning while rendering along with gaussian noise.

2.2 CNN-RNN Hybrid Architecture

In this work, we use the convolutional recurrent neural network (CRNN) [22]
architecture along with STN layer [18, 23] proposed for scene text recognition.
In our work we show that such a network can be adapted for robust recognition
of handwritten word images for Indic scripts. A CRNN architecture consists of
a set of convolutional layers, followed by a recurrent neural network units whose
output is given to a transcription layer which is modeled using connectionist
temporal classification [24]. In general, convolutional neural networks have been
found to be excellent spatial feature extractors [25–27] with translation invariant
properties while recurrent neural units can take a sequence of feature vectors of
variable length and can perform sequence to sequence (seq-2-seq) transcription
tasks. In our case, the input sequence of features is constructed from the feature
maps of the last convolutional layer by concatenating column features across
different channels. For example given the feature map of size 512 × 5 × 10,
it results in a sequence of 10 feature vectors with dimension R5×512. Here we
choose the column width to be single pixel. Given a sequence of feature vectors
f1, f2, . . . , fT , we forward it to a stacked set of recurrent layers which is our case
is a bi-directional LSTM [16] network. The BLSTM network considers both the
forward and backward context (history) while making prediction from the label
space at each time step. In our case, the label space consists of the basic (no
modifiers and conjuncts) character set of the given language, plus a blank symbol.
Finally, the CTC layer converts the predictions generated by the BLSTM output
layer into a maximal probable label sequence for the target language. One of the
key advantages of the above framework is that the input images can take varying
input sizes, thus avoiding distortion in the aspect ratio, since both convolutional
and recurrent layers can operate with variable size images and feature sequences
respectively.

2.3 Spatial Transformer Network (STN)

The spatial transformer network [19] is an end-to-end trainable layer which can
perform an explicit geometric transformation to the input. The transformation
parameters are learnt through backpropagation. As seen in Figure 3 it has three
main components, the localization network, the grid generator and the sampler.
The localization network takes as input a feature map and outputs θ, the trans-
formation parameters that is to be applied to the input feature map. The size
of θ depends on the kind of transformations being modeled- affine, thin plate
spline, etc. The localization network in itself is modeled as a neural network
having a |θ| dimensional FC layer at the end. The grid generator generates a
grid of coordinates in the input feature map corresponding to each pixel from



Table 1. Summary of the network configuration. The width, height and number of
channels of each convolution layer is shown in square brackets, with the number of
layers that are stacked together. After all but the last block, max pooling is applied.
The width and height of the max pooling kernel are shown below each block. The
number of units in each BLSTM layer is shown in square brackets, with the number of
layers that are stacked together.

Block1
(2x2)

Block2
(2x2)

Block3
(1x2)

Block4
(1x2) Block5 BLSTM

[3x3,64]x5 [3x3,128]x4 [3x3,256]x4 [3x3,512]x4 [3x3,512]x1 [256]x2

the output feature map. Finally, the sampler generates the output feature map
using bilinear interpolation by sampling the pixels given by the grid generator
after applying the learnt transformation. As [18, 23] show, this layer transforms
the input feature map such that the geometric transformation is removed from
the input and only the relevant part of the input is forwarded to subsequent
layers. In the case of handwritten images the role of STN layer is particularly
important to handle the variations caused due to the variable hand movements.

2.4 HW Word Recognition Network

Recent studies in deep learning [27, 28] on the Imagenet challenge have shown
that deeper architectures lead to an improvement in classification accuracy. How-
ever, merely increasing the number of layers would bring challenges during train-
ing such as exploding/vanishing gradients, internal covariate shifts [29], and the
degradation problem [30]. In our architecture, we take into account the best
practices proposed in the recent literature to overcome these problems. We use
smaller size 3× 3 convolutional filters which enable us to obtain a bigger recep-
tive field with lesser number of parameters. Batch Normalization [29] is applied
before each convolutional layer to prevent internal covariate shifts. The convolu-
tional filters are arranged into multiple residual blocks with skip connections as
proposed in [31]. The residual layers enables to overcome the degradation prob-
lem which prevents the network to learn efficiently. Also, as [32] demonstrated
that using dropout in the recurrent layers improved accuracy, we apply dropout
with p = 0.2 at the BLSTM layers in our proposed model.

3 Recognition Experiments

In this work, we use the public benchmark Indic Word Database / RoyDB
[15] to conduct experiments and validate our results. It has been compiled by
60 writers and consists of a Bengali and a Devanagari track. The Bengali track
comprises of 17,091 binarized HW word images, while the Devanagari track com-
prises of 16,128 HW grayscale word images. On an average, an image in either
track represents a word consisting of 4 characters. We use the word level anno-
tations that is provided along with RoyDB and follow the training, validation



Table 2. Word recognition performance of the CNN-RNN hybrid model in comparison
with state of the art methods on the test set of RoyDB.

Track Method WER CER

Bangla

Roy et al. [15] – Lexicon 16.61 -
Adak et al. [7] – Lexicon 14.58 -
Ours – Lexicon 4.30 2.05
Ours – Unconstrained 10.71 3.49
Ours (Without Synth. Data)– Unconstrained 12.77 3.85

Devanagari

Roy et al. [15] – Lexicon 15.76 -
Ours – Lexicon 4.62 2.67
Ours – Unconstrained 11.89 4.9
Ours (Without Synth. Data) – Unconstrained 14.09 5.53

and testing partition provided along with the dataset. We use the standard eval-
uation metrics of Character Error Rate (CER) and Word Error Rate (WER) to
compare the various models. CER is defined as (where RT: recognized text and
GT: ground truth text in the below equation)-

CER =

∑
EditDistance(GT,RT )

#Characters

i.e. the sum of insertions, deletions and substitutions in terms of characters re-
quired to transform RT to GT, divided by the number of characters in the ground
truth. WER is the defined as the mean number of words wrongly transcribed.

Architecture Details: Table 1 lists the architecture of our network, along with
the details of the convolution and recurrent layers used. For the localization
network in our STN, we used three plain convolutional blocks and two linear
layers. All the convolutional blocks have filter size, stride and padding of 3x3,
1 and 1 respectively. The number of channels in these layers were 64,64,128.
2x2 max pooling is applied before the first convolutional block and after each
convolutional block as well. The first linear layer has 30 units and the second
one has 6 units for learning the parameters of the affine transformation.

Pre-Training: To address the lack of enough training data, we use 1M word
images, generated for both Bangla and Devanagari as described in Section 2.1,
comprising of 50 different fonts for both the scripts. We use the train and vali-
dation corpus of RoyDB, for either track, as the rendering vocabulary to avoid
undue advantages while comparing with other methods. In practice, the gener-
ation of synthetic data can span to nearly infinite vocabulary.

Data Augmentation and Fine-Tuning: To make the network invariant to
affine transformations, we augmented each train image in RoyDB by applying
a random amount of rotation (+/- 5 degrees), shearing (+/- 0.5 degrees along
horizontal direction) and perform translation in terms of padding on all fours
sides to simulate incorrect segmentation of words. After the model converges on



the synthetic dataset, we fine tune the network using the augmented train data
of RoyDB in individual tracks.

Fig. 4. Recognition results for the CNN-RNN hybrid model on RoyDB dataset. First
4 rows show results for Bangla and the rest for Devanagari. Other than binarization
and segmentation issues in the images, most of the errors are caused by ambiguities in
the original handwritten image.

3.1 Results and Analysis

Table 2 shows the quantitative results of our model on both Bengali and De-
vanagari tracks of RoyDB, alongside the state of art methods in either track.
We present our results in three different settings- (i) Lexicon based decoding,
where the CTC layer selects a sequence from the test corpus lexicon with the
highest likelihood during decoding. The methods proposed in [7,15] show results
in this setting, (ii) Lexicon free or “unconstrained” setting in which decoding is
not restricted to any target lexicon and finally (iii) we also present our results
without using any synthetic data, in the lexicon free setting. In all these scenario
we improve the state of the art results with significant margins. When compared
to previous lexicon based methods [7, 15], we report an WER 4.30 and 5.13 for



Bangla and Devanagari respectively. In this work, we primarily focus on the un-
constrained lexicon setting. In this setting, we report better results from lexicon
based methods with a relative improvement in WER of about 26% in the Bangla
and 22% in the Devanagari tracks. We also observe that our networks perform
better even without using synthetic data when compared with previous methods.
The use of synthetic data provides us an absolute additional reduction of WER
by 2% in both scripts. Figure 4 shows the recognized outputs for few sample
images from both tracks of RoyDB. Figure 5 visualizes the activations of a few
channels from the 2nd convolution layer when an image is passed through the
network.

Fig. 5. Visualization of few channels from layer 2 activations. (From Left) first column
shows the two input images. Second column shows the activation of a channel which
detects vertical lines. The third column shows a channel which activates on the image
background while the fourth column shows a channel which acts like a horizontal line
detector.

3.2 Implementation Details

In all the experiments, the network is trained using stochastic gradient descent
with the adadelta [33] optimizer. We initialize the parameters of the STN to
represent the identity transformation. The input images are resized to 96x256.
We used a batch size of 64 for training. Both Bangla and Devanagari models
took around 15 hours to train on a single NVIDIA GTX 1080 Ti GPU. The
character set for each language was taken from the set of unique characters in
the respective Bangla and Devanagari track of the RoyDB database.

4 Conclusion

We demonstrate state of the art lexicon free handwritten word recognizers for
Devanagari and Bangla scripts using a CNN-RNN hybrid model using modern
architectural components. The idea of pre-training the network on synthetic data
can pave way for solving text recognition problems for languages where datasets
of adequate sizes are not available. As a future work, we would like to work with
historical manuscripts and also relax the assumption of having pre-segmented
words by incorporating automatic text localization.
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