
Unsupervised Learning Based Approach for Plagiarism Detection in

Programming Assignments

by

Jitendra Yasaswi Bharadwaj katta, Srikailash G, Anil Chilupuri, Suresh Purini, C V Jawahar

in

Innovations in Software Engineering Conference, ISEC

Report No: IIIT/TR/2017/-1

Centre for Software Engineering Research Lab
International Institute of Information Technology

Hyderabad - 500 032, INDIA
February 2017

Unsupervised Learning Based Approach for Plagiarism
Detection in Programming Assignments∗

Jitendra Yasaswi
IIIT Hyderabad

Sri Kailash
IIIT Hyderabad

Anil Chilupuri
IIIT Hyderabad

Suresh Purini
IIIT Hyderabad

C. V. Jawahar
IIIT Hyderabad

ABSTRACT
In this work, we propose a novel hybrid approach for au-
tomatic plagiarism detection in programming assignments.
Most of the well known plagiarism detectors either employ
a text-based approach or use features based on the prop-
erty of the program at a syntactic level. However, both
these approaches succumb to code obfuscation which is a
huge obstacle for automatic software plagiarism detection.
Our proposed method uses static features extracted from
the intermediate representation of a program in a compiler
infrastructure such as gcc. We demonstrate the use of unsu-
pervised learning techniques on the extracted feature repre-
sentations and show that our system is robust to code obfus-
cation. We test our method on assignments from introduc-
tory programming course. The preliminary results show that
our system is better when compared to other popular tools
like MOSS. For visualizing the local and global structure
of the features, we obtained the low-dimensional representa-
tions of our features using a popular technique called t-SNE,
a variation of Stochastic Neighbor Embedding, which can
preserve neighborhood identity in low-dimensions. Based on
this idea of preserving neighborhood identity, we mine inter-
esting information such as the diversity in student solution
approaches to a given problem. The presence of well defined
clusters in low-dimensional visualizations demonstrate that
our features are capable of capturing interesting program-
ming patterns.

Keywords
Source code metrics, Visualization, Code obfuscation, Fea-
ture representations, Neighborhood embedding, Unsuper-
vised learning, Plagiarism

∗

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ISEC ’17, February 05-07, 2017, Jaipur, India
c© 2017 ACM. ISBN 978-1-4503-4856-0/17/02. . . $15.00

DOI: http://dx.doi.org/10.1145/3021460.3021473

1. INTRODUCTION
Martins et al. [8] define plagiarism as “the usage of work

without crediting its authors”. The easy and cheap access
to enormous web content has turned plagiarism into a seri-
ous problem be it for researchers, publishers or educational
institutions. Especially, due to the rapid advancement of
technology, handwritten assignments have been replaced by
electronic assignments. With the intention of achieving good
grades with less or almost no effort, students often try to
copy the assignments from their friends. In educational in-
stitutions, freshmen who plagiarize in their courses are more
likely to continue this malpractice in their later courses.
Therefore this malpractice needs to be curbed at its initial
stages. The instructor of a course can receive a false feed-
back about the level of the course and performance of the
students. This makes the problem of assignment plagiarism
detection an important task. It is hard to manually inspect
and (decide whether a submission is genuine or plagiarized)
detect similar student submitted solutions in a large class.
Though manual inspection is effective, it is laborious and
time consuming. One possible way to address this is to seek
the help of automated code comparison tools like MOSS [12],
JPlag [10] which help in identifying similar submission pairs.
Most of the well known automatic comparison tools employ
a text-based approach or use the features based on the prop-
erty of the assignments at a syntactic level to detect plagia-
rism. However, both these approaches succumb to code ob-
fuscation [9] which is a huge obstacle to automatic software
plagiarism detection. Often students use clever techniques
to obfuscate the code and evade from being detected. In
the context of programming assignments of an introductory
computer science course, few examples of code obfuscation
are altering a variable name, careful conversion of while loop
into for loop and dead code injection etc.

Most of the well known plagiarism detectors like MOSS
use a text-based approach or use the features based on the
property of the assignments at a syntactic level that use
winnowing [12], a local fingerprinting algorithm. MOSS fin-
gerprint selection is not very accurate (selects the finger-
print with minimum value in a window). On top of this
fingerprint, a longest common sequence search is performed.
Usually when teaching assistants evaluate the student sub-
mitted solutions, they consider only the solution pairs as
copy cases where similarity score is above some threshold
(say 80%). This threshold varies from assignment to assign-
ment depending on the type of problem asked to solve in

117

http://dx.doi.org/10.1145/3021460.3021473

(a) Code snippet-1 (b) Code snippet-2 (c) Code snippet-3

Figure 1: Sample code-snippets showing the dead code injection, one of the most commonly adopted technique
by students to obfuscate the code. Carefully note the usage of the variable asdf in code snippet-2.

the assignment. The approaches proposed in [4] is based
on searching similar n-grams or small character sequences
(strings) between two source codes. In [11] the authors pro-
posed a representation of source code pairs by using five
high level features; namely: lexical features, stylistic feature,
comments feature, programmer’s text feature, and structure
feature. Particularly, for the lexical, comments and pro-
grammer’s text features, they represent source code as a
set of characters n-grams. These features are more oriented
to detect aspects that the programmers leave in natural lan-
guage more than in a particular programming language [11].
In one way or other, each of the above works focuses on the
source code file content. However these type of approaches
fail against code obfuscation. With minor changes students
can successfully evade from getting detected as copy cases.
For example consider the code-snippets shown in fig. 1. Both
these code-snippets are for sorting. However in fig. 1b, the
student who wrote this code intelligently added the dummy
variable adsf, injected a conditional block and increments its
value, which are of no utility. This is one simple example of
code obfuscation. Our proposed method successfully detects
these type of copy cases. More analysis and performance of
our method on this type of plagiarized cases is mentioned in
Section 3.4.

In this work we propose a novel hybrid approach to ad-
dress automatic plagiarism detection. A common approach
of the prior works mentioned here is to use code-features to
detect plagiarism in programming assignments. In [3], the
authors gathered a set of measurable features and trained
a neural network on a set of hand-tagged assignment sub-
missions. Instead of hand-tagging and using the labels (su-
pervised learning), we try to cluster (unsupervised learning
method) the similar student solutions based on their similar-
ity. However, they make use of certain text-based features
like string literals, misspelled comments along with results
from other existing plagiarism detectors like MOSS, restrict-
ing to twelve features in total. Moreover, it requires consid-
erable human effort to label these assignment submissions

and it is difficult for humans to detect partially plagiarized
cases. Our idea is to extract features from the code during
compilation and make use of them, which can capture the
variations observed in the code as belonging to three distinct
themes: structure, syntax (syntax refer to the tokens that
occur within basic blocks) and presentation as mentioned
in [6]. The key contributions of our work are:

• Use of source code metrics (static code-based features)
extracted during code compilation as feature represen-
tations of the the student solutions to the given pro-
gramming assignments.

• Unsupervised learning based approach to detect po-
tential plagiarized cases.

In Section 2 we describe our proposed approach, feature
extraction and description. In Section 3 we describe the
datasets used, the experiments, feature visualization, present
our preliminary results and discuss about specific cases where
we perform better than MOSS. We mention our future work
in Section 4 and conclude our work in Section 5.

2. APPROACH
Given a programming problem to solve from an introduc-

tory computer science course and a set of corresponding cor-
rect student submitted solutions written in C language. The
task is to automatically detect all the plagiarized submission
pairs. Our proposed method automatically detects the so-
lution pairs that are most susceptible to be the plagiarized
pairs or the cheating cases. Our method accepts as input a
set of correct student solutions. Let {x2, x2, . . . , xm} be the
student submissions for a given problem, one submission per
student. We extract source code metrics from the student
solutions, use them as feature representations so that each
student solution is mapped to a point in an n-dimensional
(here n = 55) space. The feature representations from the
solutions are then compared pairwise (computing for each
pair a total similarity value). We consider student solu-
tions that lie close to each other to be possible plagiarized

118

Figure 2: A plot showing the performance of our method when compared with MOSS. The blue colored bars
represent the performance of our method, the red and yellow bars represent the MOSS performance when
the threshold on score is 90% and 80% respectively.

cases. The closeness or similarity is defined by the Euclidean
distance measure between candidate solution pairs which is
given by

d(a, b) =
√

(a1 − b1)2 + (a2 − b2)2 + . . .+ (an − bn)2, (1)

where a, b are two different student solution points in n
dimensional Euclidean space. Based on the pairwise Eu-
clidean distance, we cluster together the similar solutions.
If the pairwise euclidean distance value for a pair of solu-
tions is less than some threshold (δ), then these pairs are
more likely to belong to the same cluster. For acceptable
values of δ (say δ = 0), the pairs are either full copy case
or partial copy cases. At least there is some similarity in
the logic in the submitted solutions. For more details please
refer to the discussion section.

2.1 Feature Extraction and Description
Our idea is to design and use features that can alleviate

the effect of code obfuscation and be able to detect the pla-
giarized student solutions. With this intention in mind, we
arrived at the idea of using source code metrics as feature
representations for programming solutions. In order to avoid
getting caught as plagiarized cases, students change the text
of the code as that is the simplest thing that can be done
with very less effort. However, the internal logic and imple-
mentation is many times the same and it can be captured
by the intermediate representations after compilation (like
edges in control flow graph). Instead of using text based ap-
proach, here we use source code metrics as static code-based
features that are extracted using MILEPOST GCC [1] fea-
ture extraction plugin. MILEPOST framework transforms
GCC into a powerful machine learning enabled research in-
frastructure suitable for adaptive computing. It uses pro-
gram feature extractor to modify internal optimization de-
cisions. MILEPOST GCC version2.1 can extract sixty five
static features in total. These extracted features depends
on the type of code optimized selected by the user. Out of
these sixty five dimensions features we choose the first fifty
five features as our feature vector.

The features in our feature vector can be roughly divided

into four subsets depending on the type of program char-
acteristic they capture. The first subset consists of twenty
three features which are basic block features. They describe
a given program based on the number of basic blocks, basic
blocks with successors, predecessors etc. The next subset
consists of three features that can be termed as control flow
graph features. These three features describe edges, critical
edges and abnormal edges in the control flow graph. The
next subset of eighteen features are method features. They
contribute in capturing information related to methods. The
last subset contain features that capture characteristics like
occurrence of integer constants, static/local variables etc.
For a complete list of features and their description please
refer here [2]. Consider the code snippets shown in fig. 1.
The main method for both the code snippets is shown in
fig. 1c. The first feature (ft1) refers to the number of basic
blocks in the method which are 15. The number of edges
in the control flow graph for both the code snippets is 18,
which is captured by our sixteenth feature (ft16). One can
observe there are no static/extern variables referred in the
main method which assigns the value of our feature 52 (ft52)
with a zero. These simple instances mentioned above prove
that our features are able to capture variations in the code
at a structural and presentation level.

Once we have features representing student solutions, we
turn to classical unsupervised machine learning techniques
like clustering to complete the task of plagiarism detection.
Unlike supervised learning techniques which requires labeled
data, unsupervised learning techniques finds a structure in
a collection of unlabeled data. We use pairwise euclidean
distance between the features as a distance metric to form
clusters of similar student solutions.

3. EXPERIMENTS

3.1 Datasets
The dataset we adopted is a collection correct student

solutions of assignments (each assignment is a problem set
with a single problem) from an introductory C program-
ming course. There are 22 problem sets, each problem set

119

(a) 2-dimensional embedding (b) 2-dimensional embedding

Figure 3: A scatter plot showing the low-dimensional embedding obtained by using t-SNE. Observe the
clustered points circled in blue in fig. 3a. These are the student solutions that used similar logic to solve the
given sorting problem. Observe the spread of the data in both the figures. The students solutions in fig 3b
are more diverse.

.

containing about 70 to 250 student submissions. Totally
there are nearly 4,700 submissions. The questions asked
in the problem sets range from more specific (as in case of
tree-traversal) to diverse. Each problem set is of varying dif-
ficulty, with student solutions ranging from 50 to 400 lines
of code.

3.2 Experimental Details
As mentioned in section 2.1, we extracted features repre-

sentations for all solutions from all the problem sets. The
pairwise Euclidean distance is calculated using the features.
As a preliminary work, we have identified that the solution
pairs as copy cases by using a distance threshold δ = 0. With
the current threshold we are able to identify exact copy cases
as well as some partial copy cases. We use MOSS score as a
baseline. The results are shown in fig. 2.

3.3 Feature Visualization
Having proposed source code metrics as feature represen-

tations of student solutions, we are interested in answering
the question “What information is captured by the extracted
static code-based features and what it is not capturing ? ”.
For this purpose, we used t-SNE [7], which can help us in
developing and evaluating our feature representations. For
visualizing the local and global structure of the feature repre-
sentations, we obtained the low-dimensional representations
(a two-dimensional map in Euclidean space) of our features
using t-SNE [7], a variation of Stochastic Neighbor Embed-
ding [5], which can preserve neighborhood identity in low-
dimensions. The intuition to use t-SNE came from its inher-
ent ability to preserve neighborhood identity and semantic
similarity in low-dimensions. We claim that if our feature
representations are good enough, clustering using these rep-
resentations should give us well defined clusters, each cluster
containing all the student solutions that used similar logic to
solve a given problem. We arrived at some interesting con-
clusions like finding out explicit diversity in student solution

approaches i.e. different ways in which students developed
a solution to the given problem. The presence of well de-
fined clusters in low-dimensional visualizations demonstrate
that our features are capable of capturing this interesting re-
sult. For example, consider the scatter plots shown in fig. 3.
The mapped student solutions in the cluster circled in blue
color used two variables to achieve swapping. Similarly, they
make use of register variables to speed up sorting. While,
all other solutions used three variables to achieve swapping.
The student solutions corresponding to fig. 3b are more di-
verse. The spread of the data in fig. 3b along both the axis
is more when compared to spread of data in fig. 3a. The
spread of the features in the two-dimensional map itself re-
veals the nature of the solution submitted (the scatter plot
looks cluttered for a problem which can be solved in a lim-
ited number of ways and wide spread for a problem which
can be solved in multiple ways).

3.4 Preliminary results and Discussion
In most of the cases, our results are consistent with scores

from MOSS. The potential plagiarized solution pairs de-
tected by our method falls in top-five cases detected by
MOSS. There are solution pairs where MOSS does not show
any similarity and the pairwise distance is comparatively
very low. However, our proposed method does a better
job in most cases. From fig. 2, we can observe the re-
sults of our method compared with MOSS. When comparing
our method with MOSS, we have to decide two thresholds
namely: a threshold on pairwise Euclidean distance and a
threshold on the obtained MOSS scores. Depending on the
domain knowledge (here the type of problem asked to solve
in the problem set) these thresholds vary. The threshold
on pairwise Euclidean distance selected we used is zero (δ
= 0). The thresholds on MOSS scores is 90% and 80% re-
spectively. Depending on the distance threshold (δ), we can
report more confident and refined accurate results. We an-

120

alyze our results in the cases presented below:
Case1: Absence of plagiarized cases
From fig. 2, we can observe that there are no reported copy
cases for problem sets P22, P24 and P26. Similarly, for these
problem sets, the similarity scores of MOSS are also very low
(less than 50%).

Case2: Interchanging if-else code
If the code contains if-else blocks and if the conditions are
interchanged then MOSS does not give us any acceptable
similarity score as a plagiarized case. However, our feature
vector does not differ in this case.

Case-3: Type define the frequently called functions
In one of code if the frequently called functions like printf
and scanf are type defined, then MOSS shows only 50-60%
but it should be a 100% copy case. In this scenario, our
method works perfectly well, resulting in a pairwise distance
value of zero.

Case-4: Presence of dead code
If dead code is added to one of the codes the MOSS score is
very low. In such cases, compiler optimization can be used
to extract the features which can successfully eliminate the
effect of dead code. The example in figure 1b shows a code
snippet containing dead code.

Case-5: Interchange the position of functions
If function code is interchanged MOSS shows 60-70% for
copy pairs for the exact match of the code. However, our
measured pairwise distance is zero which makes it easy to
detect the copy cases.

All the above five cases provide enough proof about the ro-
bustness of our features and its ability to detect plagiarized
cases even in obfuscated solution pairs. This demonstrates
the superiority of our method when compared to MOSS.

4. FUTURE WORK
Our proposed work in this paper is in its initial stages.

We identified promising directions in which this work can be
extended. In future, we would like to address the following:

• Identify and use additional dynamic features that could
boost the performance of our method.

• Proposing a method to decide a good distance thresh-
old (δ), which enables to detect partial plagiarized so-
lution pairs confidently.

5. CONCLUSION
Static program features extracted from the intermediate

representations during the various phases of compilation pro-
cess are used successfully to address the compiler phase opti-
mization problem. In this work, we explored the possibility
of using those features for plagiarism detection and, min-
ing programming patterns and the associated visualizations.
Our initial experiments suggests that the approach is very
promising and can be used in many different ways.

6. REFERENCES
[1] http://ctuning.org/wiki/index.php/CTools:

MilepostGCC.

[2] http://ctuning.org/wiki/index.php/CTools:
MilepostGCC:StaticFeatures:MILEPOST V2.1.

[3] S. Engels, V. Lakshmanan, and M. Craig. Plagiarism
detection using feature-based neural networks. ACM
SIGCSE Bulletin, 39(1):34–38, 2007.

[4] E. Flores, A. Barrón-Cedeño, P. Rosso, and
L. Moreno. Towards the detection of cross-language
source code reuse. In International Conference on
Application of Natural Language to Information
Systems, pages 250–253. Springer, 2011.

[5] G. E. Hinton and S. T. Roweis. Stochastic neighbor
embedding. In Advances in neural information
processing systems, pages 833–840, 2002.

[6] A. Luxton-Reilly, P. Denny, D. Kirk, E. Tempero, and
S.-Y. Yu. On the differences between correct student
solutions. In Proceedings of the 18th ACM conference
on Innovation and technology in computer science
education, pages 177–182. ACM, 2013.

[7] L. v. d. Maaten and G. Hinton. Visualizing data using
t-sne. Journal of Machine Learning Research,
9(Nov):2579–2605, 2008.

[8] V. T. Martins, D. Fonte, P. R. Henriques, and
D. da Cruz. Plagiarism detection: A tool survey and
comparison. In OASIcs-OpenAccess Series in
Informatics, volume 38. Schloss
Dagstuhl-Leibniz-Zentrum fuer Informatik, 2014.

[9] J. Ming, F. Zhang, D. Wu, P. Liu, and S. Zhu.
Deviation-based obfuscation-resilient program
equivalence checking with application to software
plagiarism detection. 2016.

[10] L. Prechelt, G. Malpohl, and M. Philippsen. Finding
plagiarisms among a set of programs with jplag. J.
UCS, 8(11):1016, 2002.

[11] A. Ramı́rez-de-la Cruz, G. Ramı́rez-de-la Rosa,
C. Sánchez-Sánchez, H. Jiménez-Salazar,
C. Rodŕıguez-Lucatero, and W. Luna-Ramı́rez. High
level features for detecting source code plagiarism
across programming languages.

[12] S. Schleimer, D. S. Wilkerson, and A. Aiken.
Winnowing: local algorithms for document
fingerprinting. In Proceedings of the 2003 ACM
SIGMOD international conference on Management of
data, pages 76–85. ACM, 2003.

121

http://ctuning.org/wiki/index.php/CTools:MilepostGCC
http://ctuning.org/wiki/index.php/CTools:MilepostGCC
http://ctuning.org/wiki/index.php/CTools:MilepostGCC:StaticFeatures:MILEPOST_V2.1
http://ctuning.org/wiki/index.php/CTools:MilepostGCC:StaticFeatures:MILEPOST_V2.1

