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ABSTRACT

In this paper, we propose an end-to-end trainable Convolu-
tional Neural Network (CNN) architecture called the M-net,
for segmenting deep (human) brain structures from Magnetic
Resonance Images (MRI). A novel scheme is used to learn to
combine and represent 3D context information of a given slice
in a 2D slice. Consequently, the M-net utilizes only 2D con-
volution though it operates on 3D data, which makes M-net
memory efficient. The segmentation method is evaluated on
two publicly available datasets and is compared against pub-
licly available model based segmentation algorithms as well
as other classification based algorithms such as Random For-
rest and 2D CNN based approaches. Experiment results show
that the M-net outperforms all these methods in terms of dice
coefficient and is at least 3 times faster than other methods in
segmenting a new volume which is attractive for clinical use.

Index Terms— Magnetic Resonance Images, Convolu-
tional Neural Networks, Segmentation, Deep Brain Structures

1. INTRODUCTION

Diagnosis of neuro-degenerative diseases, analysis of devel-
opment of neonatal brain etc., rely heavily on quantitative and
qualitative measurements of different human brain structures,
especially deep brain structures [1]. For instance, morphom-
etry and volumetry of hippocampus plays an important role
in Alzheimer’s disease assessment [2]. Thus, segmentation of
these deep brain structures, in less time, is critical.

This problem is generally solved either using Non-rigid
Registration [3] or Model based techniques [4], with both re-
lying on training atlases (with manual segmentation) to seg-
ment new volumes, albeit in different ways. The former class
of techniques label a new volume by registering (non-rigid)
training atlases to it and then fusing the propagated labels
whereas, the latter techniques predict the labels from a math-
ematical model learnt from the training atlases. Model based
techniques typically require 15-20 minutes to label new vol-
umes as against 20-25 hours required by registration based
methods [5].
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In this paper, we focus on model based segmentation tech-
niques given their computational efficiency and hence poten-
tial for clinical use. FSL-FIRST is a popular technique based
on statistical shape modeling [4]. Here, the relationship be-
tween shape and intensity are modeled via the conditional dis-
tribution of intensity given shape aiding in producing smooth
shapes.

Voxel-level classification models have also been used for
deep brain structure segmentation. A set of random forests
are learnt in [6] for each training atlases separately using in-
tensity and contextual features, majority voting of the pre-
dicted output of these set of random forests is used to label
voxels in a new volume. Deep learning techniques, espe-
cially Convolution Neural Networks (CNN), have also been
explored for many medical image analysis tasks including
deep brain segmentation, given the network’s ability to learn
features for the given task from training data. A Multi-Scale
CNN (MS-CNN) architecture is proposed in [7] using inten-
sity as well as contextual information as inputs. Final voxel
labeling is achieved by postprocessing the CNN output using
Random Walker (RW) based graphical model. A Fully Con-
volutional Network (FCN) based on 2D-CNN architecture is
proposed in [8] to label voxels with a single slice of MRI vol-
ume as input, here label consistency across slices is achieved
using Markov Random Field (MRF). Both [7] and [8] perform
well in terms of labeling accuracy but need separate graphical
models-based post-processing for final segmentation which
precludes end-to-end CNN training in addition to increasing
the run time.

In this paper, we present a novel CNN architecture, which
eliminates the need of any post-processing step making it end-
to end trainable. It is designed to leverage 3D information
around a slice at the input level and yet operate only on 2D
information beyond the first stage to produce a labeled slice as
output. This ensures labels are consistent and accurate across
slices without using any post-processing steps, which in-term
reduces run-time and memory requirement.

The paper is organized in the following way, in Sec:2 we
introduces as well as give detail description about the pro-
posed architecture. In Sec:3, we analyze the performance of
our proposed architecture on two publicly available datasets
and compare its performance with other methods. In Sec:4,
we conclude the paper.
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Fig. 1: Schematic representation of the M-net CNN architecture. Solid blue boxes represent multi-channel feature maps.
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2. METHODOLOGY

CNN is a deep learning architecture inspired by the biolog-
ical networks akin to the multilayer perceptron. It has been
widely used for the segmentation and recognition tasks. Ba-
sic blocks of a CNN are Convolutional Layer, Maxpooling
layer, Dropout layer [9] and Activation Functions. For a de-
tailed description of these blocks readers are refered to [10].
The proposed architecture is shown in Fig:1

Our architecture is inspired by the U-net [11][12]. In [11],
a 2D U-net is used for segmentation of neuronal structures in
electron microscopic stacks while in [12], the same architec-
ture with 3D filters is used for segmentation of the Xenopus
kidney from 3D volumes of confocal microscopy. Although,
both give good performance for their respective tasks, they
are not appropriate for segmentation of MRI volume of size
256x256x256, as 2D U-net does not utilize any 3D informa-
tion, while 3D U-net does it but at the cost of a high mem-
ory (~10 GB) requirement for a small input of 200x200x50.
The latter is a bottleneck when working with MRI volume
of size 256x256x256 as maximum memory available in most
advanced GPU is only 12 GB.

We address this issue of memory constraint, while still
utilizing necessary 3D information for MRI segmentation, in
a novel way in our proposed CNN architecture, henceforth
known as M-net. As shown in Fig:1, a slice s and its neighbors
are used to form a stack s-n:s+n which serves as an input. The
value of n is determined empirically. This allows us to utilize
3D information. The stack of slices is passed through a 3D-
to-2D converter block, which learns a 3D convolution filter
of size 7x7x(2n+1), to combine the stack of 2D slices into
one single 2D slice 5. This § is then processed through the
M-net architecture to obtain the desired segmentation. Thus,
segmentation of a whole volume is done slice by slice.

M-net has mainly 4 pathways of 2D filters: two main en-
coding and decoding paths, and two side paths which gives
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our architecture functionality of deep-supervision [13]. Each
pathway has 4 steps. In the encoding path, each step has a
cascade of 2D convolution filters of size 3x3 and maxpool-
ing by 2x2, which reduces the size of input by half and al-
lows network to learn contextual information. In the cascade
of convolution filters, skip connection is introduced to enable
the network to learn better features [14]. The decoding layer
is identical to encoding layers with one exception: maxpool-
ing is replaced by upsampling layer to double the size of in-
put and recover an output image of original size. Similarly,
skip connections are also implemented between correspond-
ing encoding and decoding layers to ensures that the network
has sufficient information to derive fine grain labeling of an
image without the need for any post-processing [11]. The
left leg operates on 5 with 4 maxpooling layers of size 2x2
and the outputs are given as input to the corresponding en-
coding layers. The right leg upsamples the output of each of
the decoding layers to the original size of s. Finally, the out-
put of the decoding layer and the right leg is processed by a
1x1 convolution layer with L channels, where L is the number
of structures of interest including background. Dropout (with
probability 0.3) [9] and batch normalization (BN) [15] are ap-
plied after each step and each convolution layers respectively,
to reduce overfitting. For all the layers except the last, a ReLU
activation is applied after every convolution layer. For the last
layer, a softmax activation is applied, which gives the proba-
bility of each voxel belonging to different structures. The final
label for any voxel is the structure with maximum probability.

A weighted Categorical Cross Entropy function was used
to tackle the class imbalance problem. This loss function and
weights are defined such that the weight increases whenever
there are fewer voxels in a particular class.

The advantage of the M-net is that barring one 3D convo-
lution filter, all other filters are 2D filters which allows end-
to-end training of the network with considerably low memory
requirement (~5GB).



Table 1: Quantitative comparison of performance on the IBSR dataset. Reported Dice coefficient values for a structure are
averaged over the values for the 2 hemispheres.

Freesurfer FSL-FIRST RF + MRF FCN + MRF MS-CNN + RW M-net
Amygdala 0.69 0.70 0.62 0.64 0.67 0.73
Caudate 0.82 0.83 0.78 0.78 0.87 0.87
Hippocampus 0.77 0.81 0.59 0.71 0.82 0.82
Pallidum 0.71 0.76 0.62 0.75 0.80 0.82
Putamen 0.81 0.84 0.77 0.83 0.88 0.90
Thalamus 0.86 0.88 0.80 0.87 0.90 0.90
Accumbens Area 0.69 0.73 0.60 0.63 0.69 0.75
Overall 0.76 0.79 0.69 0.75 0.80 0.83

3. EXPERIMENTS AND RESULTS

The proposed architecture was used for the task of segmenting
deep brain structures like Thalamus, Putamen, Pallidum, Hip-
pocampus, Amygdala, Caudate and Accumbens area. Data of
varying size is drawn from two publicly available datasets.

First dataset considered is the International Brain Seg-
mentation Repository (IBSR) dataset' which has 18, 3D T1
MR images of 1.5 mm thick cortical slices. The size of the
MRI volume is 256x256x128. Manual Segmentation of 32
structures is available, however we restrict our attention to
only the deep brain structures.

Second dataset considered is a Diencephalon dataset re-
leased as a part of the MICCAI 2013 SATA Challenge?. [16].
The data consists of 35 training and 12 testing T1 MR im-
ages of 1 mm thick cortical slices from the OASIS project
with corresponding 14 sub-cortical label maps as provided by
Neuromorphometrics Inc. Input volume size is 256x256x300.
This dataset is more challenging than the IBSR dataset, as
the test volumes are of patients with different abnormalities.
Manual segmentation is only available for the training set and
evaluation on testing set requires submitting the segmentation
results to the challenge organizers.

3.1. Implementation Details

The proposed CNN was trained on a NVIDIA K40 GPU, with
12GB of RAM for 30 epochs. Approximate training time
was 3 days. The CNN was trained using Adam Optimizer
[17] with following hyper parameters: learning rate =0.001,
betal=0.9, beta2=0.999 and epsilon=10"°%, Learning rate
was reduced by a factor of 10 after 20 epochs. Code was
written in Keras Library using Python. A hyperparameter of
M-net is n, which denotes the number of neighbor slices given
as additional input to CNN. This was empirically finalized to
be 25. Thus, segmentation of any given slice s is done by tak-
ing that as a central slice and (25+25=) 50 of its neighboring
slices as input (total 51 slices).

'http://www.nitrc.org/projects/ibsr
2http://tinyurl.com/SATAchallenge
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Fig. 2: Qualitative comparison of segmentation results for a
sample slice from IBSR dataset. Left to Right: Ground truth,
RF+MRF, FCN+MREF, Freesurfer, FSL-FIRST and M-net

The IBSR dataset was randomly divided into two equal
sets with 9 volumes each. CNN was trained 2 times on the
two sets separately, considering the other set as a testing set.
For SATA challenge dataset, CNN was trained on all the 35
training volumes. Performance on testing set was evaluated
by uploading the segmented volumes on the challenge server.

3.2. Results and Comparison with other methods

The segmentation performance is quantitatively evaluated us-
ing the mean Dice Coefficient (DC) across a dataset. Let A
and B denote the binary segmentation labels generated man-
ually and computationally, respectively. DC is defined as

2|AB|
PO = B
where |A| denotes the number of positive elements in the bi-
nary segmentation A, and |AB]| is the number of shared posi-
tive elements by A and B. DC€[0, 1].

On IBSR dataset, we compare the output of M-net with
5 different model based methods: FSL-FIRST [4], MS-
CNN+RW [7], FCN+MREF [8], RF+MREF [6] and Freesurfer
[18]. The approximate CPU run time, for segmenting a new
volume, for all of these methods are: FSL-FIRST (~15 min),
Freesurfer (~90 min), MS-CNN+RW (~20 min), FCN+MRF
(~15 min) and M-net (~5 min).

The mean DC values for each structure as well as for the
whole volume is listed in Table:1. Segmentation result for a
sample slice is shown in Fig:2. Based on these results, we can
observe that M-net is able to outperform all the other segmen-
tation methods on all the deep brain structures. It should be
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Fig. 3: DC values for different structures obtained with M-net
on the Diencephalon dataset

Fig. 4: Qualitative comparison of segmentation results, us-
ing 3D rendering, for the Diencephalon dataset. From left to
right: Freesurfer, FSL-FIRST and M-net

noted that there is major boost in DC (0.06) for small struc-
tures like amygdala and Accumbens area. Results in Fig:2
indicate tendency to undersegment by RF+MRF, FCN+MRF
and Freesurfer methods, which is not the case with M-net de-
spite not using any post-processing.

Next, we experimented with Diencephalon dataset. As
per the evaluation results displayed in the website hosted by
SATA challenge organizers (Diencephalon Challenge Mid-
brain - Free Competition) , the mean dice coefficient for M-
net was 0.85780. This is considerably better than the values
for other model based methods: FSL-FIRST (0.82437), Atlas
Forrest based method (0.82819), Freesurfer (0.75761).

A bar plot of DC values for all the deep brain structures
across the dataset is shown in Fig:3. We can see that, as is
the case with all the other methods, the performance of M-net
is marginally lower for smaller structures compared to bigger
structures. Qualitative comparison of segmentation using 3D
rendering for M-net, FSL-FIRST and Freesurfer is shown in
Fig:4. The results for FSL-FIRST and M-net are smooth for
all the structures, compared to Freesurfer.

4. CONCLUSION

In this paper, we proposed a novel CNN architecture which
utilizes 3D information with the help of comparatively less
expensive 2D convolution filter, this is achieved by using a
single 3D convolution filter to combine a slice and its neigh-
boring slices into one slice as a first step. We also introduced
skip connections between convolution filters and deep super-
vision functionality in our network which allows it to learn
better features. Experimental results on two publicly available
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datasets, with different volume dimensions, shows that pro-
posed network outperforms the current state of the art model
based segmentation techniques and at considerably (Nﬁ)
less processing time. These aspects paves way for its use
in clinical scenario. The M-net segments a volume slice by
slice and hence it can potentially be used to segment any 3D
dataset, which is to be explored in the future.
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