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Abstract—The power of ConvNets has been demonstrated
in a wide variety of vision tasks including pose estimation.
But they often produce absurdly erroneous predictions in
videos due to unusual poses, challenging illumination, blur,
self-occlusions etc. These erroneous predictions can be re-
fined by leveraging previous and future predictions as the
temporal smoothness constrain in the videos. In this paper,
we present a generic approach for pose correction in videos
using sequence learning that makes minimal assumptions on
the sequence structure. The proposed model is generic, fast
and surpasses the state-of-the-art on benchmark datasets.
We use a generic pose estimator for initial pose estimates,
which are further refined using our method. The proposed
architecture uses Long Short-Term Memory (LSTM) encoder-
decoder model to encode the temporal context and refine
the estimations. We show 3.7% gain over the baseline Yang
& Ramanan (YR) [1] and 2.07% gain over Spatial Fusion
Network (SFN) [2] on a new challenging YouTube Pose Subset
dataset [3].
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I. INTRODUCTION

Estimating 2D human pose from images is a challenging
task with many applications in computer vision, such as
motion capture, sign language, human-computer interac-
tion and activity recognition. Profuse amount of work
has been done on articulated pose estimation from single
images [4], [5], [6], [7], [8], [9]. Despite steady advances,
pose estimation remains as an intricate problem. Recent
advances in 2D human pose estimation exploit complex
appearance models and more recently convolutional neural
networks (ConvNets) [10], [11], [12], [2], [13], [14],
[15]. We focus on the task of 2D human pose estimation
in videos in the wild : single-view, uncontrolled settings
typical in movies, television and amateur videos. This task
is made difficult by the considerable background clutter,
camera movement, motion blur, poor contrast, body pose
and shape variation, as well as illumination, clothing and
appearance diversity. Even the state-of-the-art ConvNets
often produce erroneous predictions in videos due to these
challenges (Figure 1).

To date, CNN models for video processing have suc-
cessfully considered learning of 3-D spatio-temporal filters
over raw sequence data [16], and learning of frame-
to-frame representations which incorporate instantaneous
optic flow or trajectory-based models aggregated over
fixed windows or video shot segments [17]. Such models

(a) (b)

Figure 1: Human Pose Correction. Pose predictions on
sample images from the datasets used in this work. Red
and yellow correspond to joints predicted using baseline
(initialization) and our method respectively. (Best viewed
in color)

explore two extrema of perceptual time-series represen-
tation learning: either learn a fully general time-varying
weighting, or apply simple temporal pooling. Following
the same inspiration, the video sequence learning models
which are also deep over temporal dimensions; i.e., have
temporal recurrence of latent variables. Recurrent Neural
Network (RNN) models are deep in time - explicitly so
when unrolled - and form implicit compositional repre-
sentations in the time domain.

Pose predictions from neighbouring frames are not
independent of each other and they form a sequence. We
formulate the correction problem as sequence-to-sequence
learning problem, while leveraging the temporal smooth-
ness implicitly encoded in the target sequence. There
have been a number of related attempts [18], [19], [20],
[21] to address the general sequence-to-sequence learning
problem with neural networks. Instead of correction of
one prediction at a time (CRF based post processing),
this model can capture the complex pose configurations
over time while the body undergoes numerous appearance
changes, resulting in a more reliable correction model.

In this paper, we propose pose correction model in
videos as a sequence-to-sequence learning problem (Fig-
ure 2). The neural network architecture, which we will
refer to as an LSTM encoder-decoder, consists of two
recurrent neural networks that act as an encoder and a



Figure 2: Overview of our method. (a) Input videos, (b) Generic pose estimator, (c) Initial pose estimates (xi, yi) for
all joints, (d) Correction model where ht, st are the hidden states at time t and aij is an alignment model which scores
how well the inputs around position j and the output at position i match, (e) Refined pose estimates (x′i, y

′
i) for all

joints and (f) Pose visualization. A bidirectional LSTM encoder is used in the refinement model as shown in (d). The
correction model corrects the erroneous poses (predicted by a generic pose estimator (b)).

decoder pair. The encoder maps an input source sequence
to a fixed-length vector, and the decoder maps the vector
representation back to a target sequence. The two networks
are trained jointly to maximize the conditional probability
of the target sequence given a source sequence. In Section
2, we present related work and also background for the
architecture followed by discussion on our approach in
Section 3. We show the results of proposed approach in
Section 4 followed by conclusions and pointers to future
work in Section 5.

II. RELATED WORK

Early methods using ConvNets regressed the pose
coordinates of human joints directly (as (x, y) coordi-
nates) [14]. An alternative, which improved over earlier
ConvNets, is an indirect prediction by first regressing a
heatmap over the image for each joint, and then obtaining
the joint position as a mode in this heatmap [11], [2],
[15].

There were attempts to use motion cues in videos such
as optical flow to handle the erroneous predictions and
also to prune the poses which are not possible kine-
matically [2]. But optical flow itself is erroneous (also
mentioned in [2]). For videos with high variations across
neighborhood frames, the optical flow errors commensu-
rates to the motion across frames. Charles et al. [3] use
person-specific information to localize joints and boosts
the predictions along with occlusion-aware methods. The
proposed methodology can be used along with any existing
pose estimation method as a correction mechanism.

We propose a simple and generic framework for error
refinement of joint predictions using an encoder-decoder
attention model for sequence learning. A bidirectional
encoder is used by default. There is no hidden state
transfer in this model. It is a generic, reliable model which
captures the latent variables using non-linear mechanism.
Graves et al. [20] introduced a novel differentiable
attention mechanism that allows neural networks to focus
on different parts of input, and an elegant variant of
this idea was successfully applied to machine translation
by Bahdanau et al. [21]. Our approach is very close to
[21], which learns a soft alignment between the input

and output sequences which improves the performance
(only for text, however). The Connectionist Sequence
Classification is another popular technique for mapping
sequences to sequences with neural networks, although it
assumes a monotonic alignment between the inputs and
the outputs [22].

RNN Encoder-Decoder. In the Encoder-Decoder
framework (proposed by Cho et al. [19] and Sutskever
et al. [23]), an encoder reads the input sequence, a
sequence of vectors x = (x1, · · · , xTx), into a vector
c. The most common approach is to use an RNN such
that ht = f(xt, ht−1) and c = q({h1, · · · , hTx

}) where
ht ∈ Rn is a hidden state at time t, and c is a vector
generated from the sequence of the hidden states. f and
q are some nonlinear functions. Sutskever et al. [23] used
LSTM as f and q({h1, · · · , hT }) = hT , for instance.

The decoder is trained to predict the next token yt′ given
the context vector c and all the previously predicted tokens
{y1, · · · , yt′−1}. The decoder defines a probability over
the mapping y by decomposing the joint probability into
the ordered conditionals:

p(y) =
∏T

t=1 p(yt|{y1, · · · , yt−1}, c)

where y = {y1, · · · , yTy
}. With an RNN, each conditional

probability is modeled as

p(yt|{y1, · · · , yt−1}, c) = g(yt−1, st, c) (1)

where g is a non-linear, potentially multi-layered, function
that outputs the probability of yt, and st is the hidden state
of the RNN.

III. POSE CORRECTION MODEL

An overview of our algorithm is shown in Figure 2. Our
approach can be broadly divided into 2 stages. Each stage
is independent, and the details of each stage are discussed
below.

Initialization. Our method receives frames from videos
and generates initial pose estimates for all the frames
independently. We can use any generic pose estimator
to generate initial pose estimates. It is often observed
that these estimates are erroneous in videos, due to self-
occlusion, blur, unusual poses, etc (Figures 1 and 3). For



our experiments, we use the Spatial Fusion Network (SFN)
[2] and the more traditional Yang & Ramanan [1] models
to generate initial pose estimates.

A. General Decoder

The conditional probability in Eq. 1 is defined as

p(yi|{y1, · · · , yi1}, c) = g(yi−1, si, ci) (2)

where si is an RNN hidden state for time i, computed by

si = f(si−1, yi−1, ci)

It should be noted that unlike the existing encoder-
decoder approach (see Eq. 1), here the probability is
conditioned on a distinct context vector ci for each target
yi.

The context vector ci depends on a sequence
(h1, · · · , hTx

) to which an encoder maps the input sen-
tence. Each token hi contains information about the whole
input sequence with a strong focus on the parts surround-
ing the ith token of the input sequence. The context vector
ci is then computed as:

ci =

Tx∑
j=1

αijhj (3)

The weight αij of each hj is computed by

αij =
exp(eij)∑Tx

k=1 exp(eik)
(4)

where

eij = a(si−1, hj)

is an alignment model which scores how well the inputs
around position j and the output at position i match. The
score is based on the RNN hidden state si−1 and hj .
The alignment model directly computes a soft alignment,
which allows the gradient of the cost function to be
backpropagated through. This gradient can be used to
train the alignment model as well as the whole translation
model jointly.

Let αij be the probability that the target token yi is
aligned to a source token xj . Then, the ith context vector
ci is the expected annotation over all the annotations with
probabilities αij . The probability αij , or its associated
energy eij , reflects the importance of hj with respect
to the previous hidden state si−1 in deciding the next
state si and generating yi. Intuitively, this implements
a mechanism of attention in the decoder. The decoder
decides parts of the source sequence to pay attention
to. By letting the decoder have an attention mechanism,
we relieve the encoder from the burden of having to
encode all information in the source sequence into a fixed
length vector. With this approach the information can be
spread throughout the sequence, which can be selectively
retrieved by the decoder accordingly.

B. Bidirectional LSTM Encoder for pose correction

The usual RNN, described in Section 2, reads an input
sequence x in order starting from the first symbol x1 to the
last one xTx . However, in the proposed scheme, we would
like each word to summarize not only the preceding words,
but also the following words. Hence, we use a bidirectional
RNN, which has been successfully used recently in speech
recognition (see, e.g., Graves et al. [20] ).

For each token xj , hj is obtained by concatenating the
forward hidden state ~hj and the backward one

�

hj . In this
way, the hj contains the summaries of both the preceding
tokens and the following tokens. Due to the tendency of
RNNs to better represent recent inputs, hj will be focused
on the words around xj . This sequence is used by the
decoder and the alignment model later to compute the
context vector (Eqs. 3, 4).

We have initial pose estimates for each frame from
the initialization stage. The correction model is trained
to refine these sequences. We train the model to map
the input pose sequence to target sequence (ground truth
pose). There is a soft alignment between the input and
output sequence elements. We now demonstrate the results
of our approach on standard baselines and benchmark
datasets.

IV. EXPERIMENTS

We test our approach on two methods, SFN [2] and
YR [1] on benchmark datasets. Experimental details are
discussed below.

A. Datasets

YouTube Pose. This new dataset consists of 50 videos
of different people from YouTube by [3], each with a
single person in the video. Videos range from approx-
imately 2, 000 to 20, 000 frames in length. For each
video, 100 frames were randomly selected and manually
annotated (5, 000 frames in total). The dataset covers a
broad range of activities, e.g., dancing, stand-up comedy,
how-to, sports, disk jockeys, performing arts and dancing
sign language signers.

YouTube Pose Subset. A five video subset from
YouTube Pose. The videos distribution for subset dataset
is as follows: two disc jockeys, a mime artist, a dancing
sign language signer, and one aerobics instructor.

CVIT-Sports. For our experiments, we use the CVIT-
SPORTS- videos dataset by [24]. It is an extremely
challenging dataset of humans playing sports. This set has
a total of 11 videos of a human playing sports retrieved
from YouTube. It includes intricate activities like cricket-
bowling, cricket-batting, football. In total, this set has a
total of 1457 frames averaging out to 131 frames per
video. All the frames in the dataset have been annotated
with 14 key-points i.e full human pose. In our experiments,
we use only the upper body joints.

These datasets vary in terms of activities, sampling
rate, shape variance, and illumination. We demonstrate our
experiments on a wide variety of datasets, which indicates
the robustness of the proposed model.



(a) (b) (c) (d) (e) (f)

Figure 3: Comparing human poses on sample images from YouTube Pose Subset and CVIT Sports videos dataset.
(a), (b), (c), (d) show examples of pose corrections and (e), (f) show failure cases where red and yellow correspond to
joints predicted using initialization (baseline) and our method respectively.

B. Baselines

SFN. SFN [2] is a state-of-the-art ConvNet for human
pose estimation. It consists of a spatial ConvNet (8 con-
volution layers) and spatial fusion layers (5 convolution
layers). It is a fully convolutional network with an implicit
spatial model predicts a confidence heatmap for each body
joint in images.

YR. [1] is a method for detecting articulated people
and estimating their pose from static images based on a
new representation of deformable part models. The flexible
mixture model jointly captures spatial relations between
part locations and co-occurrence relations between part
mixtures, augmenting standard pictorial structure models
that encode just spatial relations.

C. Evaluation Measures

In all the experiments, we compare the estimated joints
against frames with manual ground truth. We present
results as graphs that plot accuracy vs normalized distance
from ground truth, where a joint is deemed correctly
located if it is within a set threshold distance from a
marked joint centre in ground truth. Higher pck implies
more accurate estimations.

Training. The videos are split into fixed length se-
quences. To increase the total number of samples to train
the model, we perform data augmentation. The frames are
randomly rotated between−30◦ and 30◦ and only horizon-
tally flipped. Data augmentation has to be done carefully
so that the video generated after augmentation should
be semantically meaningful. By considering overlapping
sequences, there are two-fold advantages: (i) this increases
the number of samples for training, and (ii) overlapping
sequences generate multiple estimates for a single frame,
which reduces the total error.

The data is split into mini-batches of size 64. The
correction model is trained on the YouTube Pose dataset.
We used Keras for our experiments. For experiments
on CVIT-SPORTS, the correction model is fine-tuned on
a subset of CVIT-SPORTS videos dataset. The model is
trained for 100 epochs, using RMSProp optimizer. The
learning rate is set to 0.01.

Table I: Component analysis on YouTube Subset Pose
datasets. Accuracy (%) at d = 20 pixels. SFN++ and YR++

indicates refinement using the proposed method. (We have
highlighted all results where the proposed method shows
improvement.)

Method Head Wrsts Elbws Shldrs Average

Pfister et al. [2] 74.4 59.0 70.7 82.7 71.3

SFN [2] 79.2 58.4 71.1 82.4 71.9

SFN++(Ours) 84.9 56.8 71.0 88.3 73.9

YR [1] 44.6 30.3 37.9 64.1 44.0

YR++(Ours) 62.8 29.4 38.9 67.3 47.7

Table II: Component analysis on CVIT SPORTS videos
dataset. Accuracy (%) at d = 20 pixels. SFN++ and YR++

indicates refinement using the proposed method.(We have
highlighted all results where the proposed method shows
improvement.)

Method Head Wrsts Elbws Shldrs Average

SFN [2] 20.7 46.7 38.9 55.7 43.2

SFN++(Ours) 46.9 42.7 38.9 56.7 46.3

YR [1] 78.9 43.9 49.8 73 59.1

YR++(Ours) 78.6 44.0 51.2 74.3 59.8

D. Results

The YouTube Pose Subset accuracy (%) at d = 20
pixels is shown in Table I. Our method surpasses SFN [2]
by 2.07% . There is 5% boost in accuracy for head
and shoulders improve by 6% (Table I). Our method
performs equal to the baseline on wrists and elbows.
Table I shows that we surpass YR [1] by 3.7%. We see
that our method corrects head, elbows and shoulders but
doesn’t improve on wrists (which are harder to define
in complex poses). We show 18%, 1%, 3% boost over
YR on head, elbows and shoulders respectively. Charles
et al. [3] mentioned that YR model doesn’t perform well
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Figure 4: Results of our approach on YouTube Pose Subset dataset. We observe that the refined estimates using our
approach have higher recall compared to the baselines: Yang & Ramanan [1] and Spatial Fusion Network [2].

on the YouTube Pose dataset. Hence, they have re-trained
the model to improve the estimates. Hence, we see that
the YR average pck is 44.0% (ref table I) which is less
compared to the accuracies mentioned in [3]. Experiments
demonstrate that the proposed approach refines predictions
given generic pose estimates.

The PCK (Percentage of Correct Keypoints) accuracy
on the CVIT-SPORTS videos dataset is shown in Table II.
We see improvement in head, elbows and shoulders over
SFN. The head joint accuracy enhances by 26.2%. The
accuracy averaged over all joints exceeds baseline by
3.1%. While using YR baseline, there is boost in wrists,
elbows and shoulders and the average pck gain is 0.7%.

Figures 3 and 1 show the visualizations of pose
corrections on sample dataset images. The red and yellow
represent the initialization (baseline predictions) and the
corrected pose predictions respectively. In Figure 3(a) and
(b), the initial predictions for left elbow and left wrist are
erroneous, but our approach corrects the poses as shown
in the figure. Figure 3(c) predicts left wrist on the right
wrist while Figure 3(d) predicts right wrist on the left
wrist, and our method successfully corrects the pose. Our
method fails to correct the poses, if the initial predictions
are erroneous across the neighborhood. In Figures 3(e)
and (f), it is not able to refine the pose well enough, as
the neighborhood frames also have erroneous predictions,
which makes it difficult for refinement. Adding to that,
these videos have low sampling rate and large motion
changes across frames. For example, Figure 3(f) is the
only frame where the head position lies in center but its
previous and next frames have head position in the top (as
shown in Figure 3(a)) and this leads to the errors.

The PCK plots for head, wrists, elbows and shoulders
on the YouTube Pose Subset dataset are shown in Figure 4.
It is clear from the figure that the proposed approach
has high recall. Also, the gain in accuracy is highest for
head, followed by shoulders, elbows and wrists. Higher
recall is an indication of refinement in joint predictions
(Figure 1and 3).

V. CONCLUSION

In this paper, we showed that the proposed pose correc-
tion model refines pose estimates obtained from generic

models, independent of the pose estimator used to generate
the initial pose estimates. We successfully posed the pose
correction problem as a sequence-to-sequence learning
problem. We demonstrated our results on challenging
datasets which cover a wide range of activities, and are
sampled at different sampling rates. The results show great
promise in this approach to get more accurate pose esti-
mation results in a simple, fast and generalizable manner.
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