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Abstract. In this paper, we demonstrate a score based indexing ap-
proach for tennis videos. Given a broadcast tennis video (btv), we index
all the video segments with their scores to create a navigable and search-
able match. Our approach temporally segments the rallies in the video
and then recognizes the scores from each of the segments, before refining
the scores using the knowledge of the tennis scoring system. We finally
build an interface to effortlessly retrieve and view the relevant video seg-
ments by also automatically tagging the segmented rallies with human
accessible tags such as ’fault’ and ’deuce’. The efficiency of our approach
is demonstrated on btv’s from two major tennis tournaments.

1 Introduction

Sports streaming websites are very popular with many services like TennisTV
and WatchESPN offering full game replays on demand. Millions of users use
these services for entertainment, education and other purposes. However, ten-
nis matches are usually very long, often running into hours. It’s very hard to
infer playing styles and patterns of players without investing hundreds of hours
of viewing time. Thus, it’s cumbersome to find “useful” parts. Streaming web-
sites provide the video as-is, i.e. it’s only possible to access the video stream
sequentially. However, in case of sports and other event-rich video streams, an
useful extension is to provide random access (like accessing an array) grounded
in events along with sequential access, so that extensions like skipping to next
event, filtering events etc can be provided.

In this paper, we focus on constructing a point wise index of a tennis match
and thus providing random access to the match. We propose a method to segment
out the match into a set of rallies, then automatically extract the scorecard and
the scores.Using tennis domain knowledge, we construct a novel algorithm to
refine our extracted scores. We then demonstrate the utility of the automatically
constructed index by building an interface to quickly and effortlessly retrieve and
view the relevant point, game and set segments along with providing human
accessible tags.

There are multiple challenges in this scenario. The tennis match videos are
recorded from multiple camera angles and edited to have different kind of shots,
to capture various emotions and drama along with the game play. With respect



Fig. 1. We aim to provide random access to tennis match videos and construct a point
wise index of a tennis match so that a user can access, jump and skip “points”, “games”
and “sets”.

to extracting scores, the score board is never at a fixed position or in a specific
format and the score digits are not constrained by font, size, and color.

The major contributions of this paper are,

1. An effective score recognition algorithm using domain knowledge which can
be adapted for different games. Here, we do our experiments on tennis videos
by using the tennis domain knowledge.

2. We propose a score based indexing system, to navigate and retrieve segments
from large volumes of video data with considerable ease.

3. Our method also enables many applications of indexing, we demonstrate one
such application, human accessible event tagging.

Section 2 discusses advances and related work in literature. Section 3 forms
the core of the paper, describing our core approach. Lastly, Section 4 provides
a brief background of tennis and a high level description of our dataset(s), de-
scribes the implementation details and the experiments we performed along with
obtained results.

2 Related Work

Sports Understanding: Using domain specific cues, several researchers have
previously worked on improving sports understanding (specially tennis), with



Fig. 2. Our approach is illustrated in this figure. We start by temporally segmenting
out the rallies, extracting the scoreboard and then recognizing the scores where we use
contextual and domain knowledge to refine the recognized scores.

strides made in video summarization and automatically generating highlights [3,
?,?], generating descriptions [10] and automatically segmenting coarse temporal
scenes [5], annotating players [14, ?] and tracking the ball [13, ?].

Sports Video Indexing and Applications: Xu et al. [12] and Miyamori
et al. [9] focus on semantic annotations exploiting tennis domain knowledge
to build retrieval systems based on positions and actions. Sukhwani et al. [11]
proposed a dictionary learning method for frame level fine grained annotations
for a given video clip, but their annotations are also computed at the level of
actions, useful in the context of computing player statistics. Kolekar et al. [6]
use audio features to detect events in soccer scenes and generate highlights.
Liu et al. [7] perform mutlimodal analysis to generate tennis video highlights
while Connaghan et al. [8] attempt to segment out game into point, game and
set, however, perform no score keeping and use multiple cameras to perform
the task. However, these methods do not attempt to robustly index point level
information to enable retrieval from the point of view of a viewer. Our work
differs from all of these as we attempt to annotate point level information for a
match.

Scorecard and Score Extraction: Liao et al. [16] focus only on detecting
the scorecard while Miao et al. [17] focuses on both detection and extraction
of scores, however the algorithm is specific for Basketball. Tesseract [18] is the
commonly used ocr pipeline to detect text from images and documents which
have a plain background. Convolutional Recurrent Neural Network (crnn) [20] is
applicable for performing end-to-end scene text recognition while Textspot [19]
introduces a Fully Convolutional Regression Network (fcrn) which performs
end-to-end scene text detection and for recognition, uses the intermediary stage
of the pipeline based on the lexicon-encoding CNN from Jaderberg et al. [21].



3 Approach

Our goal is to automatically create an index for tennis videos. We begin by de-
scribing a method to automatically segment rallies. Then we detect and localize
the scorecard in each of these rallies and recognize the text to abstract out the
game score state to annotate the video with the accessible tags. An overview of
our pipeline can be seen in Fig. 2.

3.1 Rally Segmentation

Our method of segmenting out rallies stems from the observation that in btv’s,
the camera is only overhead when the rally is in play and nowhere else. The
background is mostly static after the serve begins, and remains the same till a
player wins a point. hog features are appropriate in such a scenario, so we extract
frames from the Segment Dataset, downscale them, and extract hog features.
We then learn a χ-squared kernel SVM to label a frame either as a rally frame or
a non-rally frame. Then, we use this learned classifier to label each frame of the
BTV as part of a rally or otherwise and smoothen this sequence using Kalman
filter to remove any false positives/negatives to obtain the segmented rallies.

Fig. 3. (a) depicts some of the extracted scorecards from different matches from our
dataset. As one can see, the scorecards detected are of different sizes and formats, and
differences across tournaments is noticeable. We have also included some of our failure
cases, (v) and (vi) have extra regions that have been detected. (b) depicts the tennis
point automaton that can be constructed from the tennis scoring system which is used
to refine our extracted scores.

3.2 Scorecard Extraction

We utilize the observation that the scorecard position is stationary in a rally,
while the camera pans and moves around to cover the game. However, the score-
card may disappear and is not necessarily of the same size across the game as



opposed to the assumptions in [17]. So, to overcome these issues, we extract the
scorecard independently from each rally segment instead of assuming a single
scorecard template.

We adapt the method described in [16]. We start by finding the gradient
for each frame (say Ix(i, j, t)) using the sobel filter, and then calculate the nor-
malized temporal sum for each frame using, Inorm(i, j, n) = 1

n

∑n
t=1 Ix(i, j, t).

Then, we subtract Ix and Inorm to obtain the temporally correlated regions Ig.
Further, we binarize the image using the following equation,

Ir(i, j, t) = (1− Ix(i, j, t)

maxt,i,j(Ix)
)Inorm(i, j, t) (1)

Empirically, the scorecard is found in one of the corners of the frame, we
identify the four regions of size (h/5, w/2) in the corners as the regions to search
for the scorecard. Note, w and h are the width and height of the frame respec-
tively. We identify the coarse scorecard region by selecting the region with the
maximum number of white pixels in the specified regions in Ir(i, j, t) summed
over time. Further, after we have identified the coarse region, we apply morpho-
logical operators to remove small aberrations present and fit a rectangle which
encloses the scorecard area. Our qualitative results can be seen in Fig. 3 (a).

3.3 Score Recognition

Traditional ocr based methods like Tesseract [18] can recognize text printed on a
clear background however need the image to be preprocessed if the background
is textured and shaded, and the contrast in the text fragments varies widely.
However, with the advent of deep learning based ocr and scene text detection
methods, a more general approach can be formulated.

To recognize scores, we experiment with three different methods, Tesseract,
crnn and Textspot. Textspot combines fcrn [19] which is an end to end text
detection network, which constructs a field of predictors where each predictor is
responsible for detecting a word if the word centre falls within the correspond-
ing cell, akin to the yolo network architecture. The recognition is performed by
the intermediary stage of the pipeline based on the lexicon-encoding cnn from
Jaderberg et al [21]. crnn [20] is a scene text recognition network which treats
the image as a sequence of strips. It proceeds by treating a cnn as a feature ex-
tractor to extract feature maps and construct a sequence of feature vectors. The
sequence is fed into a bi-directional lstm to obtain label sequence probabilities
and ctc loss is employed to obtain labels. We adapt and perform a comparison
of the various score recognition baselines in Section 4.

3.4 Score Refinement

To further refine our recognized scores, we use the knowledge of the tennis scoring
system. As any structured game, score keeping in tennis is governed by a set of
rules and thus, can be modeled as a finite automaton. Tennis in specific can be



modeled as 3 automatons, one each for tracking the point, game and set score
(See Fig. 3 (b)). Also, the vocabularies for point, game and set are restricted,
so, we find errors by checking if the value belongs to the vocabulary or not. For
instance, the the vocabulary for a point score is restricted to {0, 15, 30, 40, AD}.

Let J = (game1, set1, point1, game2, set2, point2) be the score state where
game, set and point have the same meanings as in tennis. Firstly, we exploit the
fact that the game and set scores are usually remain constant in a window, and
thus replace errors with the mode of the value in the temporal window (with
exceptions for score change within the window).

Consider the tennis scoring automaton T which is composed of score states
and the transition function is constructed using the tennis scoring rules. Then
we define a function nextStates(s) which returns all possible states for the
next game state. Likewise, previousStates(s) provides the set of originating
states for the current state s. For instance, from Fig. 3 (b), if we assume that
we are at state s = (0, 0, 30, 0, 0, 30) (referred to as 30 all in the figure), the
function previousStates(s) will return {(0, 0, 30, 0, 0, 15), (0, 0, 15, 0, 0, 30)} and
nextStates(s) would return {(0, 0, 40, 0, 0, 30), (0, 0, 30, 0, 0, 40)}.

Assuming that the set of scores is S = {s1, s2...sn}, and that si is erroneous
(using vocabulary constraints), we compute the set P = nextStates(si−1) ∩
previousStates(si+1), then we find the corrected score using,

s′i = arg max
p∈P

1

|J |
∑
j∈J

δ(si(j), pi(j)) (2)

where J is the set of game score states and δ is the Kronecker delta function.
This equation is only needed if there are more than one possible score. It is to
be noted that this method is extensible to any game which follows a structured
scoring system like tennis.

4 Experiments and Results

4.1 Dataset

A tennis match is divided into sets, each set is divided into games and each
game has certain number of points or rallies. We restrict ourselves to “singles”
matches and work with broadcast tennis video (btv) recordings at 720p for 10
matches. 5 matches are taken from the French Open 2017 and remaining matches
are from London Olympics 2012 for all our experiments. For performing rally
segmentation, we created a ”Rally Dataset” by manually annotating 2 matches
into rally and non rally segments. The training and test set images are derived
by dividing all the images in a 50-50 split. For evaluating score extraction, we
further annotated 4 matches with score of each segment using the automated
segmented rallies from our described algorithm. All together, we have annotated
1011 rallies to create the ”Match Scores Dataset”.



Fig. 4. The developed interface supports the indexing and retrieval of a match as a
point, game and set.

4.2 Rally Segmentation

For learning the rally segmentation classifier, we extracted every 10th frame from
Rally Dataset and cross validated using a 0.8 split to find the optimal values of
the hyper-parameters C and the period of the χ-squared kernel. The optimal
value of C is 0.05 and the period of the χ-squared kernel svm is found to be 3.

The mean F1 score on the test set for the task was found to be 97.46%,
the precision for the non-rally segments was 98.94% and the rally segments was
95.41%.

4.3 Score Recognition

Table 1. Averaged Edit Distance for score recognition (Lower is better)

Match Textspot crnn Tesseract-P

Match 1 (186 rallies) 0.2070 0.4272 0.2612
Match 2 (218 rallies) 0.2178 0.4476 0.3780

For employing Tesseract, we carefully preprocess the scorecard image and
threshold the image manually. For each tournament such a preprocessing step
needs to be manually defined. To train the crnn, which is constrained to rec-
ognize words as sequences, we divided the scorecard to two parts horizontally.
For employing Textspot, we don’t train the network and use the model trained
on “SynthText in the Wild” dataset as [19] note state-of-the-art performance



on standard benchmarks. However, we post-process the text detection boxes
and sort them to extract the scores. We used edit distance instead of the usual
text recognition metrics because the “spaces” between scores (in the recognized
string) are relevant in our case. For instance, crnn removes repetitions of num-
bers, which causes the decrease in accuracy. Table 1 here presents our experi-
mental results on a subset of the matches and as we can see, Textspot performed
the best and thus, for the next set of experiments we use that as our baseline.

4.4 Score Refinement

It is important to reiterate that our aim is not to recognize the text in the
scorecard, but rather capture the game score state. To evaluate our results, we
formulate a new metric, which inputs computed game state Ci and the actual
game state Gi, and computes the following (for a set of rallies say R),

AC(R) =
∑
i∈R

1

|J |
∑
j∈J

δ(Ci(j), Gi(j)) (3)

where J and δ as defined earlier.

Table 2. Averaged Score Accuracy AC(R) for our method and the defined baseline,
fcrn (Higher is better)

Match Textspot Ours

Match 1 (186 rallies) 79.30% 91.66%
Match 2 (218 rallies) 77.90% 80.58%
Match 3 (201 rallies) 92.45% 95.19%
Match 4 (194 rallies) 85.22% 92.18%

As can be seen from Table 2, our refinement algorithm shows a consistent im-
provement in the averaged score accuracy across matches over the best perform-
ing baseline method, Textspot [19]. However, as it is apparent, the performance
of our method is dependent on the performance of the baseline score recognition
and that is possibly the reason in the relatively meager improvements in score
accuracy in the second match.

4.5 Event Tagging

Further, we automatically tagged common tennis events of importance to view-
ers such as “fault”, “deuce” and “advantage” using simple rules which define
these tennis terms and our extracted scores. We compare our accuracy with and
without score refinement and can observe that there is an improvement corre-
sponding to improvement in the score accuracy. Accuracy for each tag per match
(the matches are same as Table 2) can be seen in Table 3.



Table 3. Averaged Accuracy score of automatic event tagging (in percentage)

Match 1 Match 2 Match 3 Match 4

Textspot Ours Textspot Ours Textspot Ours Textspot Ours

Fault 66.66 70.83 52.24 56.71 87.87 90.90 84.44 84.44
Deuce 100.0 100.0 73.68 78.94 100.0 100.0 94.73 94.73
Advantage 100.0 100.0 77.77 77.77 100.0 100.0 95.65 95.65

Overall 75.00 79.41 60.58 64.43 92.45 94.33 89.65 89.65

5 Conclusion

We have presented an approach to create a tennis match index based on recog-
nizing rallies and scores, supporting random access of “points” (Fig. 4) tagged
with common tennis events. Further extensions to this work are numerous, such
as providing point based semantic search and performing tennis player analytics
using videos instead of expensive sensor-based technologies.
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