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Abstract— Road networks in cities are massive and is a
critical component of mobility. Fast response to defects, that can
occur not only due to regular wear and tear but also because
of extreme events like storms, is essential. Hence there is a
need for an automated system that is quick, scalable and cost-
effective for gathering information about defects. We propose a
system for city-scale road audit, using some of the most recent
developments in deep learning and semantic segmentation. For
building and benchmarking the system, we curated a dataset
which has annotations required for road defects. However, many
of the labels required for road audit have high ambiguity
which we overcome by proposing a label hierarchy. We also
propose a multi-step deep learning model that segments the
road, subdivide the road further into defects, tags the frame for
each defect and finally localizes the defects on a map gathered
using GPS. We analyze and evaluate the models on image
tagging as well as segmentation at different levels of the label
hierarchy.

I. INTRODUCTION

Cities across the globe are growing incredibly fast, both in
area as well as population. Road network is a very important
component of a city and any small disruption like traffic
jams have a high cost in terms of safety, efficiency, and
quality of life of citizens. Over time, even well-built roads
degrade to form defects due to regular wear and tear, or even
due to dynamic weather conditions like rain or storm. So, a
process for frequent monitoring and identification of defects
is required to resolve them. We call this process the “road
audit”. However, the sheer scale of the problem rules out
any manual intervention at the reporting stage. An automated
system that is cost-effective, scalable and easy to implement
is essential.

Processing images and inferring insights has been a well-
known task in computer vision. The use of computer vision
methods for road inspection was first proposed by [1]. Later,
deep convolutional neural networks were used to build a
classifier for classifying image patches as ’crack’ or ’non-
crack’ in [2]. Since then, the problem of semantic seg-
mentation has seen significant improvements in performance
due to deep learning based methods like Fully Convolu-
tional Network [3] and availability of large datasets for
autonomous navigation [4], [5]. These models and data sets
enabled training versatile image feature representations for
road scenes. However, autonomous navigation datasets only
have a generic road label that needs to be further finely
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Fig. 1. The four stages of our system: i) Visual Information Capture ii)
Dataset Creation iii) Model Training iv) Audit (or Testing) Phase.

classified into the various road defects for the purpose of road
audit. Many of the road defects like potholes, water logging
can be ambiguous due to subtle differences in the texture
of the surface and hence require more carefully designed
methods.

We build a cost-effective city-scale road audit system using
some of the most recent developments in deep learning.
Our system uses uncalibrated camera setup to capture visual
information that can be mounted on vehicles that normally
ply the roads compared to sophisticated setups required for
autonomous navigation (see Section III-A). We present a
road-audit dataset collected from highly unstructured driv-
ing environments having annotations specific to the road
audit requirements (see Section IV). To minimize ambiguity
among labels, we design a label hierarchy. We extract the
relevant information about road quality from the dataset by
modeling the problem as a cascaded semantic segmentation
problem (see Section III). This is followed by tagging each
frame for defects using the semantic segmentation maps (see
Section III-D). We analyze and evaluate the models on image
tagging as well as segmentation at different levels of the label
hierarchy (see Section VI). Finally, we localize the defects
and plot them on a map according to severity. We ensure that
all processing steps can be implemented in real time and be
installed with little effort in a normal vehicle. Hence using
our system, a few vehicles can do a city-wide road audit
greatly decreasing the man-hours required.

https://cvit.iiit.ac.in/research/projects/cvit-projects/city-scale-road-audit
https://cvit.iiit.ac.in/research/projects/cvit-projects/city-scale-road-audit
https://cvit.iiit.ac.in/research/projects/cvit-projects/city-scale-road-audit


Fig. 2. A high-level overview of our proposed system. It is a multi-step procedure that uses more recent advances in real-time semantic segmentation.
We segment the road, use it as an attention mechanism for obtaining road pixels, then use a powerful semantic segmentation model to segment multiple
road defects. Finally, we tag the image frame for the defects and localize it in the map using GPS.

II. RELATED WORKS

Road audit is mostly conducted by manual inspectors.
This could also be crowdsourced to volunteers. Some of the
initial automated systems used GPS and accelerometer only,
followed by computer vision techniques for road audit.

A. Non-Computer Vision methods.

A system for pothole detection was proposed using just
vibration and GPS sensor in [6] and using smartphone
sensors like accelerometer and GPS in [7]. These sensors are
highly error-prone and fail to detect other road defects like
water-logging, muddy roads, and even minor rough patches
that cannot be easily inferred from them. While our system
depends on more reliable visual information with robust deep
learning techniques and also caters to detecting more defects
than just a pothole.

B. Computer Vision methods.

The first paper to propose the use of computer vision
techniques for road inspection was [1]. They used super-
pixel based segmentation techniques to identify road dis-
tress mostly restricted to cracks, in highly organized road
conditions such as in a developed countries. Image-based
road distress detection was surveyed in [8]. Various crack
segmentation methods are compared in [9]. The communitys
interest in crack detection has been growing recently [10],
[11], [12]. An integrated system for crack detection is
proposed in [13]. A CNN based neural networks to detect
cracks was proposed by [2], [14].

All these efforts were more focused on detection of cracks,
potholes, and are more specialized for a specific region of
roads, making it less adaptable to other, mostly unstructured
regions. Most cities outside the developed world suffer from
a much more diverse set of defects like water logging, rough
roads, wet roads, muddy roads, etc. These defects are in
some sense similar to cracks but they are more complex,
ambiguous and the number of different defects makes it a

challenging problem. Also, most of the previous methods
use handcrafted features and traditional classifier like SVM
with some using deep learning techniques for limited tasks.
In this paper, we try to address more generic setting of
road audit in unstructured road conditions. We also leverage
the advancements in real-time semantic segmentation and
autonomous navigation datasets to build an end-to-end deep
learning model.

III. APPROACH

We now describe our proposed system. Our system has
four phases: i) Visual Information Capture ii) Dataset Cre-
ation iii) Model Training iv) Audit (or Testing) Phase as
shown in Figure 1. Dataset creation phase will be described
in Section IV. We describe the rest of the phases as well
as the details of the deep learning model architecture in this
section.

A. Phase I: Visual Information Capture

Our system uses videos/images captured using a camera
mounted on vehicles for information gathering. We achieve
this by using a single uncalibrated camera setup, that could
even be a GPS enabled smartphone camera, making it cost-
effective and scalable. The camera is mounted inside the
vehicle so that there are lesser chances of exposure to
climatic conditions, ambient dust and also to avoid accidental
loss of the camera. Using this setup, the system can be
implemented with little or no additional cost making it cost-
effective and scalable.

B. Phase II: Model Training

We model the problem of localizing the road defects
as a cascaded semantic segmentation problem, followed by
image tagging and localization. All models and algorithms
are chosen such that the system can be run in real-time at
audit phase. This is required since the information gathering
method described above generates a huge amount of data and
it is not easy to store it and process it later. So our model



focuses on extracting the required information in real time.
It also captures the fine-grained information necessary to get
statistics of road defects that are further localized.

a) Road Segmentation: As our primary goal is to
segment road defects, the context extracted from dynamic
and ambient objects like other vehicles, the sky, buildings,
pedestrians etc. provides very little additional information for
the model to segment road defects. Moreover, these might
mislead the model. So, as the first stage, we segment road
pixels from the background. As shown in Section V, this
proves to be effective.

b) Fine-grained Segmentation of Roads: Traditional
semantic segmentation datasets like Cityscapes [4], KITTI
[5] have the notion of objects, which implies that they are
reasonably well defined in the space of shape and color.
However, as part of our road audit dataset, we have to deal
with defects which are agnostic to the notion of shape, in a
way, which can only be semantically differentiated through
texture. Incorporating these cues in the architecture as a
second step, we further segment the road pixels into more
fine-grained labels.

C. Real-time Model Architecture

In this section, we describe the different deep learning
models used for solving this problem. We use a baseline net-
work, as well as a custom designed network that incorporates
the road segmentation and fine-grained defect segmentation
into the network architecture. In the interest of creating a
practical application, we have considered various models.
Considering a right balance between efficiency and speed,
we chose ERFNet [15] (69.8% with 41fps on Cityscapes) as
our base-model.

With ERFNet as base-model, we experiment with two
models: i.) fine-tuning a pre-trained cityscape model on our
dataset ii.) train the model from scratch on our dataset. Note
that both these models are initialized with the image features
trained for Imagenet classification. ERFNet was designed for
the application of autonomous navigation. Hence we also
propose a modified architecture, which is more suited for
the task of road defect segmentation.

Our proposed model is called the refined ERFNet, that
contains a Cascade module and Spatial Feature Pooling mod-
ule on top of ERFNet. These modules incorporate the road
segmentation as well as the fine-grained defect segmentation
into the model architecture as shown in Figure 2. As an
overview, our network takes an image as an input and outputs
a semantic mask of the road and road related defects. Our
model works in multiple stages with Cascade Module and
Spatial Feature Pooling Module designed specifically for the
problem.

1) Cascade Module: Cascade module consists of two
submodules - road segmentation module and road defect
segmentation modules sequentially. The task of the road
segmentation module is to segment out road pixels from the
background (non-road) pixels. For this, we use shortened
ERFNet, trained on cityscapes and fine tune it to segment
road pixels. Then, the segmented mask generated is used

to pass input road pixels to the second module using the
attention mechanism. These road pixels are run through road-
defect segmentation module, which further segments out
road defects. These two models are trained in an end-to-end
procedure.

2) Spatial Feature Pooling Module: The Spatial Feature
Pooling Module aggregates the features for different scales
of the image segments and tries to capture texture level cues.
This caters to different scale variation in the road defects.

D. Phase IV : Audit

In the audit phase, we deploy the real-time cascaded
semantic segmentation model on a computer installed in the
vehicle. It generates segmentation masks for the frames cap-
tured from the camera and does the following sequentially:

1) Image Tagging: After inferring the segmentation out-
put from the input image, we decide on the appropriate labels
for an image by thresholding the number of pixels segmented
as that label. The threshold is decided by searching in the
hyperparameter space on the validation data of the dataset.

2) Localization: The final stage of our system is to plot
the road defects according to their severity on a map. We use
the GPS information captured along with the image frame
for this purpose. To indicate the severity, we use the number
of pixels in the image classified as that particular label.
However, doing this alone might not capture the severity,
since a large defect could occupy only a small region due
to viewing angles or even other vehicles blocking the view.
Hence the severity score also needs to be averaged across
nearby frames for getting a more accurate estimate.

IV. DATASET

In this section, we describe the dataset creation phase of
our system. Our motto behind the methodology of construct-
ing the dataset was to capture very complex real-world scenes
in an even more generic way. We collected data from many
drive sequences (distinctive captures) spanning close to 60
kilometers, out of which we have selected around 18 driving
sequences. These drive sequences cover a variety of highway
roads, flyovers, and street roads. It covers a multitude of
scenarios, right from having differently sized defects to
various combination of defects in a single image. The dataset
also incorporates a variety of traffic scenarios with distinct
levels of diversity in terms of vehicles covering from sparsely
crowded to densely crowded. It also incorporates diverse road
settings, with partial to complete occlusions of the various
road defects. In order to cover seasonal defects like water
logging and wet roads, we had driven just after the rainy
days.

In the frame selection process, we have ensured that we
have taken well-curated images in terms of avoiding any kind
of glare due to reflection. In order to counter the motion
blur induced by residual vibration of the vehicle and due to
sudden movements of the vehicle, we have carefully selected
images that had blur below a threshold.

We sample frames from each of the sequences. Our
sampling was driven by the idea to cover a wide variety



Fig. 3. The urban road is segmented for road defects. We can observe that
road pixel annotation also includes pixels belonging to other objects like car,
bike, etc., on the road which are later masked out as a post processing step.

of road defects. We annotate them coarsely. The dataset
has images of size 1024 × 2048 px. This dataset segments
various semantic defects a road can have.

1) Labels: After careful collection of data, we have
analyzed the kinds of road defects and have come up with
tar road, pothole, water log, muddy road, obstruction, wet
road, shoulder, cement road, bump labels. These labels are
grouped in a three-level hierarchy. At the top, we have road
and road-defects. Road is branched into class level labels
namely cement road, tar road and shoulder labels and the rest
go into road-defects. Then, road defects are subdivided into
four categories category 1, category 2, category 3, category 4.
Category 1 is subdivided into pothole, water log and wet road
class labels, category 2 contains muddy road label. category
3 contains rough road label while category 4 is subdivided
into obstructions and bump.

2) Annotation Method: We employ pixel-level annotation.
We do this for two reasons 1) Annotation by image tagging
is very subjective (How much area of a road image occupied
by pothole be tagged as the pothole?). However, employing
a supervised pixel level annotation allows annotators to mark
all pixels that belong to label (say, pothole), thereby decreas-
ing the subjectivity from one annotator to another. 2) Pixel
level annotation provides more supervision for the model to
learn better. However, in the interest of resources, we have
restrained ourselves to complete the task of annotation and
basic quality control to about 15 minutes on average for a
single frame. This is significantly less when compared to
45 minutes taken for annotation of typical urban road scene
as reported by the cityscapes dataset [4] in their annotation
protocol. Coming to our protocol, annotators were first asked
to figure out the boundaries of road and shoulder. Then
they annotate the road by ignoring all vehicles/objects/people
present on the road. Later they segment the shoulder (or side-
road). Then, they segment out road defects from already
segmented road pixels circumventing the occlusions. The
annotation was carried out in a coarse way; ensuring that all
the essential pixels of a label are captured while loosening
out the precision at label boundaries. Though this would
hinder the performance of supervised algorithms, it was a
necessary move, keeping in mind the sparsity of resources.
Figure 3 provides a sample annotation.

Fig. 4. Here ’Cat’ means Category. Pixel distribution for various defects.

3) Post Processing: In order to mask out other vehi-
cle/object pixels included along with the road segments,
we run a pre-trained cityscapes model on these images
which segments other object pixels separated from road
pixels. This generated cityscapes label mask and annotator
generated annotation mask are combined to come up with a
segmentation mask for the road and its defects excluding all
other object pixels. Though this was not completely error-
free, from our qualitative analysis, it was good enough for
the task at hand. We have used cityscapes trained ERFNet
for generating cityscape label mask and this is appropriate
as the road pixel IoU was 97.9 which is close to state of the
art (98.6) evaluated on cityscapes dataset.

4) Label Statistics: The pixel distribution for each label
in the train and in the test are ensured to be almost the same.
Dataset labels pixel distribution is provided in Figure 4. The
labels and the coarse annotation are sufficient in detecting the
road defects in a satisfactory manner for the following two
reasons. The labels that were incorporated cover all the major
issues, which are generally reported in various surveys. The
coarse annotation works for the task at hand as our primary
focus is to detect the defects, which does not require pixel-
level precision.

V. EXPERIMENTS

For all our experiments we have used the newly collected
Indian Road dataset that was described in Section IV. We
train three semantic segmentation networks: ERFNet from
scratch, fine-tuning cityscapes pre-trained ERFNet and re-
fined ERFNet. We consider the first 2 as our baseline and
compare them against the refined ERFNet.

a) Refined ERFNet: We integrate the proposed Cas-
caded Spatial Feature Pooling module on the ERFNet ar-
chitecture. We first train the initial module that segments out
road pixels. We generate ground truth mask for road pixels
as the union of ground truth of all the road defects. We train
this module until the accuracies reach a satisfactory level. On



Fig. 5. (a) Qualitative Results for class level segmentation. These figures show the input image along with its segmentation mask as predicted by the
refined ERFNet model. (b) Examples of Failures. Observations in the second column from top to bottom 1) Waterlog is segmented as wet road, 2) Only
part of the wet road is segmented. 3) road is segmented as rough road 4) Bumps are not properly segmented.

top of this, we now attach a module whose task is to segment
out road defect pixels. This module has an additional spatial
feature pooling module. The generated output is compared
with road defect ground truth to generate loss that is back-
propagated.

We used the publicly available ERFnet code. It replaces
the bottleneck module in the Resnet [16] with more efficient
and better-performing 1D-non-bottleneck module. We mod-
ified this network by adding the cascade module along with
the spatial feature pooling module. For training, we have
an input image of size 1024 × 512. We have used Adam
optimizer with a learning rate of 5e-4 for a batch size of 14.

1) Metrics: Since we are modeling the problem as a
semantic segmentation problem, we use Intersection over
Union (IoU) scores as accuracy metric. We evaluate the mean
Intersection-over-Union. We also report the weighted mean
Intersection over Union (wIoU) score. As pixel distribution
among labels varies a lot, wIoU would give a good measure
on how the algorithm is performing for all the pixels overall.

2) Training complete setup end to end: As described
above, our model is trained end to end with a two-step
training procedure. To gain more insights into the training
procedure, we have independently trained the road level
segmentation and defect level segmentation. This is con-
trasted with training in a two-step manner by first training
road segmentation module to a satisfactory level and then
attaching road-defect module and further train both together.
We observed that the latter approach was better, resulting in
a faster network convergence with similar performance.

TABLE I
MEAN IOU AND INFERENCE SPEED ON THE TEST SET OF INDIAN ROAD

DATASET FOR CATEGORY LEVEL AND CLASS LEVEL FOR THREE

SEGMENTATION NETWORKS (TABLE IA). (TABLE IB) IOU SCORES

COMPUTED FOR DIFFERENT LEVELS IN DATASET HIERARCHY USING

OUR REFINED ERFNET. HERE ’CAT4’ MEANS CATEGORY 4 (TABLE IC)
IOU SCORES FOR INDIVIDUAL CLASSES USING REFINED ERFNET.

Method (Category Level) IoU (%) wIoU (%) fps (1024 × 512)
ERFNet (Fine-tuned) 41.8 59.8 41.7
ERFNet (Scratch) 42.1 59.8 41.7
Our refined ERFnet 45.7 60.7 26.2
Method (Class Level) IoU (%) wIoU (%) fps (1024 × 512)
ERFNet (Fine-tuned) 24.1 55.2 41.7
ERFNet (Scratch) 24.4 57.2 41.7
Our refined ERFnet 28.1 59.0 26.2

(a)

Hierarchy(Our Method) IoU(%)
Road-defects 65.1
Category level 45.7
Class Level(-cat4) 38.0
Class Level 28.1

(b)

Our Method(Class) IoU (%)
Tar Road 72.5
Pot hole 23.5
Rough Road 34.5
Cement Road 13.8
Obstruction 10.7
Wet Road 32.3
Water log 28.8
Muddy Road 33.4
Bumps 03.3
Shoulder 28.1

(c)



TABLE II
OUR EXPERIMENT OF TAGGING EACH IMAGE AND THRESHOLDING THE

GENERATED SEGMENTATION MASK HAS GIVEN AN F1 SCORE OF 50.3%

Our Method (Image Tagging) Precision (%) Recall (%)
Pot hole 59.3 83.3
Rough Road 67.7 61.7
Cement Road 6.2 25.0
Obstruction 6.6 100.0
Wet Road 81.3 53.3
Water log 56.2 54.5
Muddy Road 74.1 76.6
Bumps 28.5 50.0
Shoulder 16.0 25.0

VI. RESULTS

The segmentation results of refined ERFNet and baseline
are listed in Table I. Refined ERFNet outperforms the
original baselines by 3.6%, 3.5% for class level labels and
category level labels respectively.The qualitative results are
provided in Figure 5. As present in Table I, refined ERFNet
gives a mean Intersection over union score of 65% for (road
vs defects), 45.77% for category level (4 labels), 38.00%
for class level (8 labels excluding category 4) and 28.13%
for class level (10 labels). The significant drop in accuracy
from category level to class can be attributed to fine-grained
separations among labels making it hard for the model.
To some extent, the visual complexity in differentiating
these labels was unavoidable during annotation. However,
the municipal authorities can decide on what level of label
hierarchy would suit their task and work accordingly. Our
model infers at a speed of 26.2 fps on the Titan X GPU for
an image of size 1024 × 512. Per class IoU scores are also
provided in Table I.

a) Cascade Module and Spatial feature pooling Mod-
ule: We have experimented with a hierarchical segmenta-
tion of segmenting road pixels followed by road defects.
Experiments show a boost in IoU scores by 3.6%, 3.5%
for class and category levels respectively. This validates
that our model of first segmenting out road pixels (which
predominantly uses object cues like shape, color) and then
segmenting out road defects is well suited for this task. It
can also be inferred that our spatial feature pooling module
is better at capturing the essential information necessary
for segmenting out the fine-grained pixel differences among
labels.

b) Image Tagging: As our primary objective is to tag
an image with road defects. We conducted an experiment on
how would the model perform for an image tagging task.
As ground truth, we asked the annotators to tag each image
with all the class labels. Now, after generating a segmentation
mask, we threshold the number of pixels belonging to each
class and accordingly tag image with the corresponding label.
With this, we achieve an F1 score of 50.3% as shown in Table
II. This shows that the model is good enough to recognize
appropriate labels for an image. This provides additional
validation for the appropriateness of the model to be used
for practical purpose.

c) Failure Modes: Figure 5 gives examples of the
failure modes of our model. The primary reason for failure

is the essential similarity among labels. For example, in
the top right example, we see that a water logging but is
mislabeled as a wet road. However, precisely identifying such
fine-grained differences are beyond human skills as many
factors like illumination, lighting, surface reflectance play a
crucial role. Other less common modes of failure are due to
the color variations in the texture of road due to sediments,
inconsistency in road material.

VII. CONCLUSION

We propose an automated system for road audit in large
and unstructured cities. Our system is designed to be cost-
effective, scalable and real time. Our data collection can be
done using smartphones mounted inside normal vehicles. We
curate a dataset with the required annotations for identifying
fine-grained road defects, in unstructured road conditions.
We propose a cascaded semantic segmentation model that
can be trained using the dataset for segmenting the road
defects. Furthermore, we tag the image with the defects using
the segmentation masks and finally localize them on a map.
We analyze and evaluate our models and show that they give
reasonable performance for the task at hand. We expect that
works along similar lines can help urban authorities identify
areas vulnerable to damage by analyzing the changes roads
underwent over a period of time. It could also be extended
to infer reasons for traffic congestion, accident-prone areas
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