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Abstract—The success of deep learning based models have
centered around recent architectures and the availability of large
scale annotated data. In this work, we explore these two factors
systematically for improving handwritten recognition for scanned
off-line document images. We propose a modified CNN-RNN
hybrid architecture with a major focus on effective training using:
(i) efficient initialization of network using synthetic data for pre-
training, (ii) image normalization for slant correction and (iii)
domain specific data transformation and distortion for learning
important invariances. We perform a detailed ablation study
to analyze the contribution of individual modules and present
state of art results for the task of unconstrained line and word
recognition on popular datasets such as IAM, RIMES and GW.

Index Terms—Handwriting recognition, CNN-RNN network,
Data augmentation, Image pre-processing.

I. INTRODUCTION

Handwritten text recognition (HWR) is one of key problems
studied by the document community due to its pervasiveness
in the places where people interact, communicate and transact.
With better algorithms and technologies, we move a step
closer to address the problem of content level access to
ancient historical books and manuscripts which were written
by hand and digitized in the form of scanned images as part of
modern digital library [1], [2] projects. Other than searching
in historical databases, HWR technologies can benefit the way
we organize and manage modern classrooms [3], [4], search
from instructional videos [3], and performing data analytics
on medical transcripts [5] etc. The major challenges in recog-
nizing text from handwritten images comes from the inherent
variability in data. Every individual has a different style of
writing and moreover, depending on the various underlying
factors, even the style of a single person also changes in
different instances of writings. In the historical documents
one has to also deal with different degradation artifacts which
hugely reduce the performance of the recognition systems.

A HWR problem is typically formulated into two parts,
where given an image (word or line image), the task of the
recognizer is to predict the character string (w) which is later
given to a linguistic engine which constrains w to form a
valid word. These constraints can be either from lexicon £ or
a language model P(w). Although there are methods which
don’t apply linguistic constraints, they are relatively worse in
performance and cannot reliably be given to end applications.

In recent times, there has been a tremendous improvements
in recognition rates [6]-[8] owing to the success of underlying
machine learning models using deep neural networks. The
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Fig. 1. Few sample qualitative results for word recognition on the IAM and
RIMES dataset using the proposed method.

improvement in performance can be credited due to: (i) better
architectures such as convolutional neural networks (CNN),
recurrent neural networks (RNN), (ii) better learning schemes
and regularizers, (iii) availability of large scale of annotated
data, and (iv) increased computational capacity using GPUs.
Traditionally, in the domain of text recognition HMMs [9] or
RNNs (especially BLSTMs [10] or MDLSTMs [11]) along with
CTC loss [12] have been popularly used due to its inherent
ability to process temporal sequences. More recently, it was
shown that a hybrid scheme of using convolutional recurrent
architecture [13] where the convolutional layers are meant for
feature extraction, which are subsequently given to a BLSTM
network along with CTC loss, work better than other schemes.
In this work, we further analyze the effectiveness of a CNN-
RNN hybrid architecture by incorporating various ways of
data augmentation and normalization schemes which helps
the network to learn better invariances specific to handwritten
images. We also present our analysis on the role of using
synthetic data for pre-training such deep networks which
greatly helps in improving the recognition performance. Fig. 1
presents recognition results from the proposed network for
sample word images taken from IAM and RIMES dataset
respectively.

A. Related Works

Modeling HWR as a seq2seq problem using RNN’s and CTC
has been a widely used approach. With the popularity and
robustness of CNNs, most works use convolutional layers as
their feature extractors, while having different variations on
the recurrent part of the network for transcription. Sueiras et
al. [14] run a sliding window over the input image, where each
patch is given to a convolutional feature extractor and later



given to an encoder-decoder BLSTM network with attention
for the transcription. Sun et al. [15] use a fully convolutional
network as their feature extractor and use multi-directional
(MDir) LSTM’s as recurrent units. Pham et al. [16] use
multi-dimensional LSTM’s (MDLSTM) as their recurrent units
while using convolutional layers as feature extractors. Chen
et al. [17] use a multi-task network that is able to do both
script identification and handwriting recognition simultane-
ously. They use a variation of the LSTM unit, referred to as
SepMDLSTM.

Recently, Wigington et al. [18] use a network similar
to [13], with BLSTM’s as their recurrent layer. However they
used novel normalization and image distortion strategies and
achieved competitive results. Other than doing unconstrained
and lexicon based decoding, a lot of works like [11], [19] use
language model based decoding to reduce errors, especially in
the line level recognition setting.

Another set of approach specifically for word-level recog-
nition has been done using CNN architecture that evaluates
whether a certain n-gram is present in a given portion of the
image [20]. Krishnan et al. [21] also used a CNN to learn
PHOC like attributes for images and embed the text represented
through the PHOC features along with the embedded images
into a common subspace. Both these methods are inspired on
the PHOC representation proposed in [22].

A method by Toledo et al. [23] tries to combine both the
above approaches for recognizing word level images, by first
training a PHOCNet [24] for word attribute embedding and
then embedding patches of word images into the attribute
space. From the projections in the attribute space, a sequence
is created and given to a recurrent network to perform tran-
scription. Stuner et al. [25] use a cascades of LSTM’s, rejecting
a word during decoding if it is not close enough to a word
in the lexicon after passing through the cascade and applying
viterbi based decoding on the rejected words.

II. CNN-RNN HYBRID NETWORK

Word recognition [10] is the problem of converting the
handwritten content present in an image into machine un-
derstandable text. In this work we use a CNN-RNN hybrid
architecture, first proposed by [13]. Fig. 2 illustrates the ar-
chitecture that we use, which consists of a spatial transformer
layer (STN) [26], followed by a set of residual convolutional
blocks, proceeded by a stacked BLSTM (bidirectional LSTM)
and ends with a linear layer for transcribing the labels. The
STN network is an end-to-end trainable layer which performs
geometric transformation on the input, so as to correct the
distortions that are present in handwriting due to variable hand
movements [27]. It can be used to correct various geometric
transformations such as affine, thin plate spline, etc. The con-
volutional layers (ReseNet18 [6]) here are used for learning a
sequence of feature maps, which are then passed on as input
to the stacked BLSTMs. The last convolutional layer which
obtain a feature map F; € R®*A*7 is given as an input to
the recurrent layers (here BLSTMs) as a sequence of ~y feature
vectors, each Fjy; € R>*#, We use the cTC [12] loss function
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Fig. 2. Overview of the CNN-RNN hybrid network architecture used in this
work. The various important components of the architecture are highlighted
such as the spatial transformer network, residual convolutional blocks, bi-
directional LSTM’s and the CTC loss.

to train our network. It converts the predictions generated
by the recurrent layers as a maximum probable sequence
for the input. While testing the final classification layer, the
SoftMax activation outputs the probability distribution over the
class labels at each time step. In case of naive, lexicon free
decoding, the output sequence is found by concatenating the
most probable labels at each step and then removing recurring
labels and blank labels. When a lexicon is available at the time
of testing, the decoding can be constrained to output only the
sequence of labels present in the lexicon.

III. IMAGE NORMALIZATION AND AUGMENTATION
A. Pre-processing

We use the image slant and slope normalization technique
proposed by [28] as an pre-processing step for both word
and line level recognition. The algorithm works by shearing
the image with an angle from a certain range of values and
evaluating those transformations with respect to a function
defined from the histograms of contours of nearly vertical
strokes. The method requires no parameter tuning and is used
directly on both isolated word level and line level images. The
second row of Fig. 4 shows the output of our pre-processing
step for a few sample word images.

B. Pre-training with Synthetic Data

A typical deep learning architecture contain millions of
parameters to be learnt and thereby require a large amount
of data in order to generalize well and prevent over-fitting. To
overcome the lack of availability of real handwritten training
data we use the IIIT-HWS dataset [29] for pre-training our
isolated word recognition networks. The dataset is formed out
of 750 publicly available Latin fonts and contains images with
varying kerning level, stroke width and Gaussian noise. A
vocabulary of size 90K words is used for creating the dataset.
Fig. 3 shows few examples of natural looking synthetic images
that were rendered through the mentioned pipeline in [29]. In
order to pre-train our line recognition model, we followed a
pipeline similar to the above, except that instead of rendering
isolated words, we rendered lines, with the transcriptions being
taken from the train set of the dataset that we were building
our line recognition model.

C. Distortions and Transformations

Given a pre-trained network using synthetic data which
gives a good initialization for the deep network, we now focus
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Fig. 3. Examples of generated synthetic images in the IIIT-HWS dataset. The
first two rows shows the same word rendered by different fonts. The last two
rows shows different words being rendered by different fonts.

onto the various data augmentation schemes which supple-
ments the real data in learning the desired invariances. While
training a CNN network, it is a common practice to introduce
artificial variations in data to make network robust to intra-
class variations and prevent over-fitting. Popular techniques
include: random crops, horizontal reflection, random flipping
of pixels, and affine transformations such as scaling and
translation. In this work, we use three types of augmentation
schemes: (i) affine transformation, (ii) elastic distortion and
(ii1) multi-scale transformation both while training and testing.
Under affine transformation we apply translation, scaling,
rotation, and shearing. The second last row of Fig. 4 shows
different possible variations while performing affine transfor-
mation to a word image. Here we restrict rotation to a random
amount between (4/—)5 degrees, while shearing is restricted
to (+/—)0.5 degrees along the horizontal direction which
mimics the skew and cursiveness present in natural handwrit-
ing. We perform translation in terms of padding on all four
sides, of upto 20 pixels in any direction, to simulate incorrect
segmentation of words. We randomly apply a combination of
the above 3 transformations to an input image.

Elastic distortion: Human handwriting has a high degree
of oscillation due to the non-uniform hand muscle forces
being exerted while writing. These variations can be captured
to certain extend using elastic distortions which was first
proposed in [30] for data augmentation of handwritten digits.
We adapt a similar scheme for augmenting both word and
line images. The basic idea is to generate a random displace-
ment field which dictates the computation of new location
to each pixel through interpolation. The displacement field is
smoothed using a Gaussian filter of standard deviation o and
scaled using constant factor o. The last row of Fig. 4 shows
different possible variations created for each word image while
performing elastic distortion. We apply this distortion directly
to word images as mentioned in [30], while in case of line
images we apply the distortion in a sliding window fashion,
with a window size of 25 x h, where h is the height of the
line image.

Multi-scale transformations: The idea of multi-scale trans-
formation is to learn to predict characters at multiple scales.
The scale of a character is dependent on the context in which
it occurs in a word. For example, a word image for “car”

/éfwgﬁﬂ 4| )OZJM f, 9
J[”.rsw}t’l whw kg
J [:*rsu\o}l'l %thg Mg

Orplh o g

G

) ltswjlﬂ %\Y)M'}m’l&

Fig. 4. Examples of various pre-processing and augmentation techniques used
in the paper. The first row shows the original image. The 2nd row shows the
images after pre-processing. The 3rd row shows the images after multi-scale
augmentation is applied on the corresponding image from 2nd row. The 4th
row shows the image after affine distortion is applied on the corresponding
image from 2nd row. The final row shows the images after elastic distortion
is applied on the corresponding image from 2nd row.

resized at a fixed height would have all characters in the
same scale while another image corresponding to word “Car”
would have different scale for the first character w.r.t to other
characters. The above problem can also be generalized to
ngrams occurring at different scales. To learn a scale invariant
classification, we present the images at multiple scales, as
shown in 3rd row of Fig. 4, allowing the network learn these
while training. More recently in [18], Wigington et al. also
presents a method which address this issue by normalizing
the scale of all images present in a dataset using profile
normalization. Our approach address the same issue with the
help of data augmentation while training the network.
Test-time augmentation: We also performed test time aug-
mentation similar to [20], where we generate N = 25 jittered
images, by applying the pre-processing and data augmentation
mentioned above, for each input test image, we average out
the final layer probabilities for all the N images before the
decoding step.

IV. EXPERIMENTS

We use the character error rate (CER) and word error rate
(WER) metrics to compare the various models. CER is defined
as (where GT:ground truth and PT:predicted text):

> ivsamples EditDistance(GT;, PT;)
ZiVsamples #Chars (GTZ)

and WER is defined as the number of words inserted, sub-
stituted or deleted, averaged over the total number of words
present in the ground truth. In case of word level recognition,
since there is no word alignment to be performed, the WER
simplifies to the number of predicted words which don’t match

CER =



TABLE I
THE LIST OF DATASETS USED IN THIS WORK.

Dataset #Words #lines | #Writers
1AM [31] 1,15,320 | 13,353 657
RIMES [32] 66982 12093 1300
GW [33] 4894 656 1

the ground truth, divided by the total number of words present
in the ground truth.

We use the three most popular datasets used by handwritten
document analysis community. Table I mentions different
statistics about the datasets such as the number of words,
lines and writers. Both 1AM and RIMES dataset are modern
collections, while the George Washington (GW) dataset is a
historical collection.

IAM Handwriting Database [31]: It includes contributions
from 657 writers, having a total of 13,353 handwritten lines,
comprising of 115,320 words. The database is annotated at the
sentence, line and word levels. We use the standard partition
for training, testing, and validation provided along with the
dataset. For the case of word level recognition, we use a
lexicon made up of all the unique words in the dataset.
RIMES [32]: The ICDAR 2011 competition version of the
RIMES database has contributions from over a thousand writers
and has a total of 12,093 lines and 66,982 words. A train, val
and test split was released for the isolated word recognition
as part of the competition which we follow here. We use
the lexicon that was released as part of the competition. The
competition dataset also contained 11,333 training lines and
778 test lines. Since the competition release did not include
a validation partition, we sampled 10% of the total training
to create our validation set. Thus, the final dataset division
consisted of the train, validation and test containing 10,203,
1,130 and 778 lines, respectively. For word level recognition,
we use a lexicon that was released as part of the ICDAR 2011
competition.

For both 1AM and RIMES dataset we don’t consider punctu-
ation or capital letters for recognition, similar to [20]. In line
level recognition we follow the same setting as used in [19].
George Washington (GW) Database [33]: It contains 4894
word images written by George Washington and his associates
in 1755. We use the first partition of the dataset for all our
experiments, same as [23], resulting in 2433, 1293, 1168 word
images for training, validation and testing respectively. Since
the images provided were already normalized and binarized,
no pre-processing was applied on the images of this dataset
from our side. We use this dataset only for word level
recognition and and keep all the punctuation and capital letters
in the database, similar to the setting in [23]. In one experiment
we use a lexicon made up of all the words in the dataset, while
in another we use a lexicon made up of only the words in the
train set.

A. Ablation study on IAM Dataset

Table II shows the recognition results of various variants
of the CNN-RNN hybrid architecture on the test set of IAM

TABLE II
ABLATION STUDY OF THE CNN-RNN HYBRID ARCHITECTURE ON THE 1AM
DATASET CONSIDERING WORD LEVEL SEGMENTATION.

Method WER | CER
CRNN-REAL [13] 22.86 11.08
CRNN-FULL 20.10 9.31
S-CRNN-FULL 18.3 7.82
S-D-CRNN-FULL 18.04 7.78
S-D-R-CRNN-FULL 16.19 6.34
S-D-R-CRNN-FULL-PP 15.79 5.98
S-D-R-CRNN-FULL-PP-DAUG 13.16 5.10
S-D-R-CRNN-FULL-PP-DAUG-TT | 12.61 4.88

dataset, considering word level segmentation. All of the de-
codings are performed in an unconstrained setting. The various
models and their training strategies are mentioned below:

e CRNN-REAL is the original architecture of [13] and
trained only on the IAM train set.

e CRNN-FULL is the original architecture of [13], first
pre-trained on INT-HWS and then fine-tuned on IAM.
Here we only use affine-transformations as mentioned in
Section III-C for augmenting our data.

e S-CRNN-FULL integrates the STN layer as an initial layer
of the original architecture of [13] and is trained using
the same strategy as above.

e S-D-CRNN-FULL integrates the STN layer and we also
apply dropout to the recurrent layers of the above archi-
tecture and is trained using the same strategy as above.

e S-D-R-CRNN-FULL integrates STN, dropout and resid-
ual learning. The network architecture now matches the
architecture used in [34]. It is trained using the same
strategy as above.

e S-D-R-CRNN-FULL-PP uses the same network architec-
ture and training strategy as above, along with the pre-
processing strategy mentioned in Section III-A.

e S-D-R-CRNN-FULL-PP-DAUG adds the data augmentation
strategies mentioned in Section III-C to the above model.

e S-D-R-CRNN-FULL-PP-DAUG-TT uses test time augmen-
tation as mentioned in Section III-C along with all of the
attributes of the model above.

Table II empirically validates the benefit of using realistic
synthetic data, as mentioned in Section III-B for pre-training
purposes. The effectiveness of the STN layer in correcting
distortions present in handwriting can also be seen. Since
handwriting is usually cursive in shape, it is important to
normalize for this by de-slanting, which we can observe
from the above table as well. Table also shows that using
multi scale transformation (to mimic variation in handwriting
scales), elastic distortion (to simulate distortions due to hand
movements) and test time augmentation lead to a significant
reduction in error rates as compared to just using affine
distortions based data augmentation. From the original CRNN-
REAL model we progressively reduce the error and obtain an
absolute reduction in our WER and CER by more than 55%
and 44% respectively.



TABLE III
WORD RECOGNITION RESULTS ON THE IAM DATASET UNDER DIFFERENT
EVALUATION SETTINGS SUCH AS THE KIND OF SEGMENTATION AND
WHETHER A LEXICON WAS USED FOR MAKING THE PREDICTIONS. HERE
FULL-LEXICON REFERS TO THE LEXICON CREATED FROM ALL THE
DISTINCT WORDS IN THE DATABASE, WHILE TEST-LEXICON CONTAINS
WORD ONLY FROM THE TEST SET.

Method Seg. Decoding WER | CER
Krishnan et al. [35] 16.19 | 6.34
Wigington et al. [18] . 19.07 | 6.07
Suciras et al. [14] Unconstrained | 3¢ | g g
This Work 12.61 | 4.88
Sun et al. [15] 11.51 -
Wigington et al. [18] 5.71 | 3.03
Stuner et al. [25] Word Full-Lexicon | 5.93 | 2.78
Poznanski et al. [20] 645 | 3.44
This Work 4.80 | 2.52
Sueiras et al. [14] 12.7 6.2
Wigington et al. [18] 497 | 2.82
Krishnan et al. [21] Test-Lexicon | 6.69 | 3.72
Krishnan et al. [35] 5.10 | 2.66
This Work 4.07 | 2.17
Pham et al. [16] 35.1 10.8
Puigcerver et al. [19] 18.4 5.8
Chen et al. [17] Line | Unconstrained | 34.55 | 11.15
Krishnan et al. [35] 32.89 | 9.78
This Work 17.82 | 5.7
TABLE IV

WORD RECOGNITION RESULTS ON THE RIMES DATASET UNDER
DIFFERENT SETTINGS. HERE COMP. LEXICON REFERS TO THE LEXICON
RELEASED AS PART OF THE ICDAR 2011 COMPETITION.

Method Seg. Decoding WER | CER
Wigington et al. [18] 11.29 | 3.09
Sueiras et al. [14] Unconstrained 159 4.8
This Work 7.04 | 2.32
Wigington et al. [18] 285 | 1.36
Sueiras et al. [14] | "ord 66 | 26
Stuner et al. [25] Comp. Lexicon | 3.48 | 1.34
Poznanski et al. [20] 3.90 | 1.90
This Work 1.86 | 0.65
Pham et al. [16] 28.5 6.8
Chen et al. [17] . o 30.54 | 8.29
Puigcerver et al. [19] | 1€ | Unconstrained | “g et |5 3
This Work 14.70 | 5.07

B. Word Recognition Results

Table III, IV, V shows the quantitative word recognition
results on the IAM, RIMES and GW dataset respectively, using
the best model from Table II, fine-tuned on the train set
of the respective dataset. Here we compare various methods
under different settings such as:- (i) level of segmentation
(words/lines), (ii) presence/absence of lexicon while decoding
the output.

For almost all the settings on the IAM and RIMES dataset we
report the state of the art results. This is despite the fact that
works like [14], [15], [18], [35], etc. are broadly using a CNN-
RNN hybrid network similar to ours. As Section IV-A shows
this improvement can be attributed to using all the following
techniques: pre-processing, data & test time augmentation,
pre-training with synthetic data and using architectural im-
provements such as using STN and residual blocks in feature
extraction.

TABLE V
WORD RECOGNITION RESULTS ON THE GEORGE WASHINGTON DATASET
UNDER DIFFERENT SETTINGS. HERE FULL-LEXICON REFERS TO THE
LEXICON CREATED FROM ALL THE DISTINCT WORDS IN THE DATABASE,
WHILE TRAIN-LEXICON ONLY CONTAINS WORDS FROM THE TRAIN SET.

Method Seg. Decoding WER | CER
Fischer [36] - 20

Toledo et al. [23] Unconstrained - 7.32
This Work 12.98 | 4.29
Almazan et al. [22] | Word Full Lexicon - 17.40
This Work 12.59 | 3.81
Almazan et al. [22] Train Lexicon - 22.15
This Work 29.54 | 12.29

Despite the GW dataset being a single writer dataset we
don’t obtain nearly as good word recognition results for it
as the other 2 datasets. This is explained by various factors.
First, the small size of the train set in GW and the use of
binarized images instead of grayscale images in the other
datasets. Secondly, none of the extra characters present in GW
(old English "G", punctuation, etc.) are part of our synthetic
dataset. These characters also reduce the effectiveness of
lexicon based decoding and we observe a lot of confusion
between capital and lower-case letters in the case of lexicon
based decoding. The train lexicon in GW has an out of
vocabulary (00V) rate of about 16%, which accounts for our
worse performance when using the train lexicon.

C. Visualization

To better visualize the working of the convolutional layers
of our network, in Fig. 5 we visualize the activations of a few
channels from the second convolutional layer, where certain
word images from the 1AM dataset are given as input to
the network. As we can see, certain channels in the second
convolution layer activate on the foreground and background,
while others activate on the horizontal or vertical ligatures in
the handwritten image. Fig. 6 show the recognized output on
a few sample word images from the 1AM and RIMES dataset.
Here we are decoding using an unconstrained setting. We
can observe that most of the errors occur due to the lack of
clarity in the original handwritten image regarding the shape
of alphabets or due to improper segmentation.
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Fig. 5. Visualizations of the activations learnt by the 2nd convolutional
layer of our network. The first column shows the pre-processed input image
(taken from the 1AM dataset). The second column shows the corresponding
activations of a channel which acts as a textual edge detector. The third column
shows a channel which activates on the image background. The fourth column
shows a channel which acts like a vertical line detector, while the last column
shows a channel which acts like a horizontal line detector.
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Fig. 6. Qualitative results of word recognition on the 1AM dataset.
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Fig. 7. Qualitative results of word recognition on the RIMES dataset.

V. CONCLUSION

In this work, we presented effective ways to train a CNN-
RNN hybrid architecture using synthetic data and domain spe-
cific image normalization and augmentation. We also showed

the

individual contributions of each of these modules for

improving the recognition rates at both line and word levels.
In future, we would also like to integrate our line-level
recognition model with language model based decoding so
as to further enhance our recognition performance.
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