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Abstract—Lecture videos are rich with textual information
and to be able to understand the text is quite useful for larger
video understanding/analysis applications. Though text recogni-
tion from images have been an active research area in computer
vision, text in lecture videos has mostly been overlooked. In this
work, we investigate the efficacy of state-of-the art handwritten
and scene text recognition methods on text in lecture videos. To
this end, a new dataset - LectureVideoDB1 compiled from frames
from multiple lecture videos is introduced. Our experiments show
that the existing methods do not fare well on the new dataset.
The results necessitate the need to improvise the existing methods
for robust performance on lecture videos.

Index Terms—Word recognition, Lecture video, MOOCs,
Video text, Word spotting

I. INTRODUCTION

With increasing interest in e-learning in the form of
OpenCourseWare (OCW) lectures and Massive Open Online
Courses (MOOCs), freely available lecture videos are abun-
dant. Understanding lecture videos is critical for educational
research, particularly in the context of MOOCs which has
become synonymous with distance learning. For example
a lecture video can be analyzed to understand a teacher’s
engagement with the learners, on which frames does the
viewers pay more attention [1] etc. The figures, images and
text in lecture videos are vital cues for understanding any
lecture video. Text is present almost everywhere in a lecture
video; particularly in lectures on Science, Mathematics and
Engineering. Text alone could be used for a variety of of tasks
like keyword generation, video indexing and enabling search
and extracting class notes [2]–[5].

Text in lecture videos comprise of handwritten text written
on a blackboard or a paper, text written using a stylus on
a tablet and displayed on a screen or font rendered text
appearing in presentation slides (digital text). Lectures are
recorded using one or more cameras, and the camera(s) are
typically positioned to directly face the blackboard or the
presentation slides. Usually text recognition from presentation
slides is less challenging as the text is more legible, there
is little variation in style and there is more contrast. At the
same time text on blackboard is handwritten and not very
legible due to poor lighting, smaller size or poor contrast.
On blackboard or on paper the lecturer may write over figures
and equations, and this makes the scene cluttered, making it
harder to detect the text. Figure 2 shows few samples from the
new, LectureVideoDB dataset, illustrating the different types

1https://cvit.iiit.ac.in/research/projects/cvit-projects/lecturevideodb

Fig. 1. Visualization of text localization and recognition results on frames
from the LectureVideoDB dataset.The left frame is taken from a video where
the instructor uses paper to explain the concept while in the right picture, the
instructor uses a blackboard. Please note that equations and symbols are not
annotated in our dataset.

of text present in lecture videos and the complexities involved
in detection and recognition.

Understanding the text appearing in images/videos has been
an active research area in computer vision, under three general
categories - printed, handwritten and scene text. Traditionally
text recognition had been centered around recognizing printed
text in documents or Optical Character Recognition (OCR).
An overview of the development of the popular OCR system
- Tesseract [6] is a good primer to the research in this space.
Handwriting Recognition (HWR) focuses on handwritten text
in documents. The major challenges in HWR stems from the
inherent complexity in recognizing human handwriting where,
practically each person has a different style of writing. Scene
text recognition unlike OCR or HWR, deals with recognizing
text in natural scene images. Scene text is harder to recognize
owing to variations in background, lighting, texture, and ori-
entation. Understanding text in videos, specifically broadcast
videos has also been an area of interest within the document
community. Text overlaid over the broadcast videos is useful
to understand the context of the part of the video and to enable
searching [7]. The detection in this case is relatively easier
since the overlaid text in broadcast videos appear at fixed
positions of the frame, is mostly horizontally oriented, little
variation and good contrast.

In the area of document analysis, word spotting has evolved
as a complementary approach to address the problem of
searching and indexing textual content in images. Word spot-
ting has typically been used in cases where the recognition
based approaches are yet to mature. Word spotting [8] basi-
cally refers to locating a keyword (e.g word image) given in



Fig. 2. Sample frames from the LectureVideoDB datatset. Scenes cluttered with text and figures, green boards where text background contrast is poor, low
resolution images and less legible handwritings make the text recognition harder in lecture videos.

the form of a query from an underlying corpus of word images.
Here the query could be either an exemplar word image or the
corresponding text itself.

What drew our interest to text recognition in lecture videos
is the unique case where the detection and recognition methods
need to deal with text in different modalities. Despite multitude
of works on lecture videos and MOOCs, there are very
few which specifically look into this problem. And we need
to investigate how would the existing methods which are
developed for printed, handwritten or scene text would fare on
text in lecture videos. This motivated us to explore it further
in the following directions:-

• Considering the fact that text in lecture videos is such
a vital cue in understanding the videos, we introduce a
new dataset - LectureVideoDB where textual words from
lecture videos are annotated. The dataset comprises of
over 5000 frames annotated with word bounding boxes
and the corresponding text ground truths.

• We demonstrate that existing state-of-the-art detection,
recognition and word spotting methods in scene text
and HWR do not yield similar performance on the new
dataset. This necessitates the need for further research in
this domain.

II. RELATED WORK

Scene Text Recognition: Earlier approaches [9], [10] to
scene text understanding generally worked at the character
or individual glyph level (bottom-up approaches). Characters
from the detected text regions are segmented out and are
fed to a classifier which classifies the character patches into
the characters in the language. More recent models follows

segmentation-free approaches where the words could be rec-
ognized without the need for sub-word segmentation. Such
models generally use a seq2seq framework built on Recurrent
Neural Networks (RNN). Segmentation-free approaches to
word transcription along with use of deep features derived
from Convolutioanl Neural Networks (CNN) helped to achieve
state-of-the art results for scene text recognition [11], [12].

Handwritten Recognition: Similar to scene text recogni-
tion, newer methods in HWR also uses seq2seq formula-
tion [13], [14] which typically uses an underlying CNN-
RNN hybrid network for feature extraction and prediction.
There are also methods which uses multi-dimensional RNNs
(MDRNNs) [15] instead of regular, uni-dimensional RNNs.
Given the limited performance of unconstrained prediction,
most of the methods in this space, use either a lexicon [14]
or language model [15] for arriving at the final output string.

Word Spotting: In the domain of word spotting, the key
challenge lies in finding an efficient holistic representation
for word images. Most of the recent works use deep neural
networks for learning the features. In [16], the author uses the
features from the penultimate layer of a deep CNN network,
while [17]–[20] learns the features by embedding a word
image into different attributes spaces such as PHOC, semantic
attributes (ngrams, word2vec) etc. These embedding gives
a unified representation of both text and its corresponding
images and are invariant to different styles and degradations.

Lecture Videos: Text in lecture videos has largely been
unexplored, except for few isolated works. One of the early
works in this space detect and recognize text in presentation
slides to synchronize the slides with the lecture videos [3]. The



Fig. 3. Some sample cropped word images from the LectureVideoDB dataset.
The first row images are taken from slides, 2nd from whiteboard, 3rd from
paper and 4th from blackboard.

TABLE I
DETAILS OF THE LECTUREVIDEODB DATASET. HERE TYPE REFERS TO

THE PRESENTATION/WRITING MEDIUM USED BY THE INSTRUCTOR.

Type #Frames #Words #Writers
Slides 1145 52225 5

Whiteboard 945 21160 7
Paper 1281 27900 9

Blackboard 2103 36460 14

text detection is based on edge detection and geometry based
algorithms and a commercial OCR is used for recognition.
Video indexing and keyword search is made possible by text
recongition in [4]. Off-the-shelf OCR systems are used for the
same. In another work both Automatic Speech Recognition
(ASR) and OCR are used to generate keywords for lecture
videos [21].

III. LECTURE VIDEO (LECTUREVIDEODB) DATASET

Text recognition in lecture videos have largely been unat-
tended, and there are no publicly available benchmarking
datasets for the same. This motivated us to compile a new
dataset, for text detection and recognition in lecture videos.
The dataset is created from course videos of 24 different
courses across science, management and engineering. The
camera angle and distance to the blackboard varies in these
videos, but the text being presented is always in focus in the
videos. These courses are offered by e-learning initiatives such
as MIT OCW [22], Khan Academy [23] and NPTEL [24].
Out of the 24 courses whose lectures videos were used in the
making of this dataset, the video quality varies widely, with
6 courses having videos in resolution of 1280×720 pixels, 7
courses having a resolution of less than 640×360 pixels and
the rest in between. The four styles/modalities of text present
in the dataset are the following:
1) Slides: This set includes the frames where a presentation

slide is shown. The text in this case is mostly born
digital text, which is relatively more legible and free from
distortions.

2) Whiteboard: This category generally encompasses frames
where either the instructor is using a physical white board
along with markers to explain a concept or is using a digital
pad to write on a personal computer.

TABLE II
PARTITION DETAILS OF THE LECTUREVIDEODB DATASET

Partition #Frames #Words #Writers
Train 3170 82263 17
Val 549 15379 5
Test 1755 40103 13
Total 5474 137745 35

TABLE III
TYPE OF IMAGES IN THE 3 PARTITIONS OF THE LECTUREVIDEODB

DATASET. HERE WE ARE REFERRING TO THE NUMBER OF SEGMENTED
WORD IMAGES.

Partition Slides Whiteboard Paper Blackboard
Train 27371 15214 15867 23811
Val 7757 0 1452 6170
Test 17097 5946 10581 6479
Total 52225 21160 27900 36460

3) Paper: The instructor explains the lecture content on a
paper using a pen.

4) Blackboard: Frames where the instructor writes on a black-
board using a chalk.

Table I describes the breakdown of the LectureVideoDB across
the four modalities mentioned above. While extracting the
frames from the course videos, we save only those frames
where there is a considerable change to the scene visually.
This helps us to avoid frames where the content is repeating.
Also we retain few frames with little text content in the
dataset. These frames act as distractors for the detection and
recognition modules.

After saving the frames, we used the pre-trained model of
TextSpotter [25], to predict word bounding boxes for all the
saved frames. We do not annotate equations and symbols. The
results of TextSpotter are used as the seed boxes for the next
round of manual annotation where human annotators annotate
each word by marking the bounding boxes and entering the
corresponding ground truth word. LabelImg [26] is used for
the annotation process. Fig. 3 shows a few cropped word
images that are part of the LectureVideoDB dataset in each
modality. As one can notice, the word images posses different
styles and also contains blurriness artifacts. Table II, III give
the partition details of the frames and the number of extracted
words into the train, val and test set. The partitioning was done
in such a way that all the frames and extracted word images
from all the videos in a course belong to only one of the 3
sets. This also makes the set of writers disjoint between all
the 3 partitions.

IV. METHOD

As mentioned before, the methods used in this work are
adopted from state-of-the art scene text detection, handwriting
recognition and word spotting methods. This section presents a
brief summary of these methods which we use for experiments
in Section V.



A. Word Localization

For detecting textual words in the lecture video frames,
we use two state-of-the-art scene text detection methods -
EAST [27] and Textboxes++ [28]. Both the methods, unlike
traditional multi-staged detection models, employ a deep fully
convolutional neural network (FCN) to directly output the
four coordinates of the localized text regions. The only post-
processing involved in both cases is a Non Maximal Sup-
pression (NMS) applied on the boxes outputted by the neural
network. Both the methods are capable of detecting arbitrarily
oriented text, and is suitable for lecture videos where text,
particularly the ones on blackboards usually have arbitrary
orientations.

B. Word Recognition

Once a word is localized in the image, the job of the
word recognizer is to transcribe the word to its corresponding
text. To this end we use CRNN [11] and CRNN-STN [13]
architectures. The original CRNN architecture in [11] com-
prise of convolutional layers followed by a bi-directional RNN
and a CTC transcription layer [29]. This hybrid CNN-RNN
architecture combines the feature learning abilities of a CNN
and the sequence learning abilities of an RNN into a single
end to end trainable network. At the end of the convolutional
layers a sequence of features are passed on to the bidirectional
RNN. The RNN layers models the sequential structure of the
input sequence. On top of the RNN block is a fully connected
classification layer with SoftMax activation. At each timestep
(an instance in the input sequence), the classification layer
outputs the probability distribution over the output classes. At
the test time various decoding methods such as naive decoding,
lexicon based decoding or beam search can be used to arrive
at an output string of characters, from the classification scores
across the timesteps.

The two major differences between the vanilla CRNN and
the CRNN-STN lies in the convolutional block. CRNN-STN
accommodates more number of layers by adding residual
convolutional layers. The deeper CNN architecture helps to
learn better features from the word images. Another differ-
ence is that CRNN-STN uses a Spatial Transformer Network
(STN) [30]. The STN block learns to correct geometric dis-
tortions in the word images and this improves the recognition
results. The STN block is a part of the larger CRNN-STN
and the entire network is trained end-to-end using the CTC
transcription loss like the original CRNN.

C. Word Spotting

Given that one of the important use cases in lecture videos
is spotting keywords for retrieving relevant videos, in this
work, we adopt [31] which is one of the recent end-to-
end word spotting method. The proposed architecture [31]
contain two parallel streams of network for feature extraction,
one for feeding the real handwritten word image while the
other stream is the concatenation of label information using a
synthetic image and its corresponding text represented using
PHOC [32] features. The features from individual streams are

Fig. 4. Examples of synthetic images in MJSynth [33] scene text dataset (top
2 rows) and images in the IAM [34] dataset(bottom 2 rows).

given to an embedding layer which projects both of them into
a common subspace where the image and its corresponding
text lie close to each other. The architecture uses a multi-task
loss function where the cross entropy based classification loss
is applied to the features coming from individual streams and
a cosine embedding loss is applied after the embedding layer.
Given a trained network, the holistic representation for word
images are computed as the L2 normalized features activation
at the penultimate layer of the network, which is found suitable
for word spotting.

V. EXPERIMENTS

A. Datasets

In addition to the LectureVideoDB, we use the following
two public datasets in our work. Both the datasets are used
for pre-training the word recognition models.

• IAM Handwriting Database [34]: It includes contribu-
tions from over 600 writers and comprises of 115,320
words in English.

• MJSynth [33]: This is a synthetically generated dataset
for scene text recognition. It contains 8 million training
images and their corresponding ground truth words. Fig. 4
shows a few sample images from the IAM and MJSynth
datasets.

B. Text Localization

For detection we use the same evaluation method which
is typically been followed for scene text detection [9]. A
bounding box is counted as a match if it overlaps a ground
truth bounding box (intersection over union) by more than
50%. Table IV shows the performance of state of the art text
detectors Textboxes++ [28] and EAST [27] on the four dif-
ferent modalities of the LectureVideoDB and the complete test
set. The models used here are off-the-shelf models provided
by the authors. Quite evidently both the methods perform
well only on the text on presentation slides. In most of the
failure cases, the detector split a single word into multiple
bounding boxes (Fig. 5) and hence increasing the number of
false positives. This occurs more in case of handwritten text
where breaks in the cursive writing are confused with spaces
between words.



TABLE IV
WORD LOCALIZATION PERFORMANCE OF VARIOUS ARCHITECTURES ON

THE DIFFERENT SPLITS OF LECTUREVIDEODB TEST SET. THE
PERFORMANCE IS EVALUATED IN THE SAME FASHION AS [9]

Architecture Data-Split Recall Precision F-score

Textboxes++ [28]

Slides 0.69 0.96 0.80
Whiteboard 0.37 0.47 0.41

Paper 0.51 0.67 0.58
Blackboard 0.62 0.69 0.66
Full-TestSet 0.58 0.76 0.66

EAST [27]

Slides 0.83 0.90 0.86
Whiteboard 0.42 0.42 0.47

Paper 0.56 0.69 0.62
Blackboard 0.61 0.73 0.66
Full-TestSet 0.68 0.73 0.70

C. Word Recognition

Table V shows the recognition results of various variants
of the CNN-RNN hybrid architecture on the test set of
LectureVideoDB dataset. The evaluation metrics used in this
case are Word Error Rate (WER) and Character Error Rate
(CER), which are commonly used for word recognition in
HWR and scene text recognition. The various models and their
training strategies are mentioned below:
• CRNN uses the architecture mentioned in [11]. It is trained

only on the MJSynth dataset.
• CRNN-Finetune uses the architecture mentioned in [11]. It

is first pre-trained on the MJSynth dataset and then fine-
tuned on the train set of LectureVideoDB dataset.

• CRNN-STNsynth uses the architecture mentioned in [13].
It is trained only on the MJSynth dataset.

• CRNN-STNIAM uses the same architecture as above. It is
first pre-trained on the train set of the IAM dataset and then
pre-trained on the MJSynth dataset.

• CRNN-STN-FinetuneIAM uses the same architecture as
above. It is first pre-trained on both the IAM and MJSynth
datasets and then fine-tuned on the train set of LectureV-
ideoDB.
From Table V we can see that, even the models fine tuned

on LectureVideoDB do not yield results comparable to the
performance of these methods on scene text datasets [11]
or IAM. Though the lecture videos comprise of plentiful
of handwritten text, CRNN variants trained purely on IAM
training data, performs poorly on LectureVideoDB (we do not
report these numbers since the error rates are very high).

In order to better understand the reason for this poor perfor-
mance, we separately report results for the four different kinds
of modalities present in the LectureVideoDB in Table VI. As
expected, the performance on word images extracted from
slides is quite good, compared to the other three modalities.
This is in line with our earlier observation that text on the
slides are pretty legible and easier to recognize among the
four modalities. Fig. 6 shows the recognized outputs for a few
sample images from the LectureVideoDB dataset using the
CRNN-STN-FinetuneIAM model in an unconstrained setting.
Some of the errors shown in the figure can be attributed to the
ambiguity in the original handwritten image.

TABLE V
WORD RECOGNITION PERFORMANCE OF VARIOUS ARCHITECTURE ON
THE LECTUREVIDEODB DATASET. HERE THE LEXICON USED WAS THE

SET OF ALL UNIQUE WORDS PRESENT IN THE DATASET.

Architecture WER CER Lexicon
CRNN [11] 62.96 27.98

FreeCRNN-STNsynth 60.68 27.06
CRNN-STNIAM 58.92 26.42

CRNN-Finetune [11] 41.66 16.83
CRNN-STN-FinetuneIAM 35.52 13.92

CRNN-Finetune [11] 22.85 9.78 BasedCRNN-STN-FinetuneIAM 20.00 8.53

TABLE VI
WORD RECOGNITION PERFORMANCE OF VARIOUS ARCHITECTURES ON

THE DIFFERENT SPLITS OF LECTUREVIDEODB TEST SET.

Architecture Data-Split WER CER

CRNN-Finetune [11]

Slides 9.12 3.28
Whiteboard 53.18 30.41

Paper 42.88 18.29
Blackboard 41.56 17.79
Full-Testset 41.66 16.83

CRNN-STN-FinetuneIAM

Slides 6.86 2.63
Whiteboard 48.92 28.47

Paper 34.62 13.58
Blackboard 36.82 15.71
Full-Testset 35.52 13.92

D. Word Spotting

We follow the evaluation protocol for word spotting as
presented in [32] using the train/val/test splits created for
the LectureVideoDB dataset. We conduct both query-by-string
(QBS) and query-by-example (QBE) on the test corpus. For
QBE setting, the queries are the subset of words taken from
the test corpus having a frequency more than 1. However all
the words were kept in the retrieval set. For QBS scenario,
we take the unique set of strings in the test set as queries. In
both cases, we report the mean average precision value (mAP)
which is standard measure for a retrieval task such as word
spotting. We also removed stopwords from the query set and
the performance is evaluated in a case-insensitive manner.

Table VII, presents the quantitative results of word spotting
on LectureVideoDB dataset under both QBE and QBS setting.
Here we first evaluated the performance of the pre-trained
End2End embedding network [31] on IAM train set. As
one can observe the performance is quite inferior where we
report the QBE and QBS mAP of 0.4311 and 0.4531. In
comparison with IAM test set performance [31], this is quite
low. Further the network is fine tuned using the training
samples from the LectureVideoDB. Here we observe a clear
improvement of performance with QBE being reported at
0.7909 and QBS of 0.7404, however this still does not reach
the level of performance on handwritten words in IAM. This
inferior performance can be attributed to the complexity of the
underlying problem for spotting text in instructional videos
due to the presence of multiple modalities along with the
challenges posed by image capture and low resolution videos
of some courses.



Fig. 5. Sample failure cases for text localization from the LectureVideoDB
dataset. In both cases the predicted bounding boxes intersect a single word
multiple times. Also in the left image the detector is not able to detect all the
words present in the image.

TABLE VII
WORD SPOTTING PERFORMANCE USING END2END EMBEDDING

ARCHITECTURE ON THE VARIOUS SPLITS OF LECTUREVIDEODB DATASET.

Train Dataset mAP Data-Split mAP
QBE QBS QBE QBS

IAM 0.4311 0.4531

Slides 0.7272 0.7157
Whiteboard 0.3628 0.3234

Paper 0.2165 0.3882
Blackboard 0.0721 0.2156

LectureVideoDB 0.7909 0.7404

Slides 0.8726 0.7977
Whiteboard 0.6205 0.4799

Paper 0.8035 0.8037
Blackboard 0.7151 0.7028

VI. CONCLUSION

In this paper, we present the results of text detection
and recognition on the new LectureVideoDB dataset, using
existing state-of-the art methods for scene text and handwritten
text. In future, we plan to work towards developing methods
which can work well on settings where text of multiple
modalities appear together in complex and low resolution
images. Another problem that we are interested is in making
use of the recognized text for larger video understanding
problems.
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