
Offline Handwriting Recognition on Devanagari using a new Benchmark Dataset

Kartik Dutta, Praveen Krishnan, Minesh Mathew and C.V. Jawahar
CVIT, IIIT Hyderabad, India

Email:{kartik.dutta, praveen.krishnan, minesh.mathew}@research.iiit.ac.in and jawahar@iiit.ac.in

Abstract—Handwriting recognition (HWR) in Indic
scripts, like Devanagari is very challenging due to the
subtleties in the scripts, variations in rendering and the cur-
sive nature of the handwriting. Lack of public handwriting
datasets in Indic scripts has long stymied the development of
offline handwritten word recognizers and made comparison
across different methods a tedious task in the field. In
this paper, we release a new handwritten word dataset for
Devanagari, IIIT-HW-Dev to alleviate some of these issues.

We benchmark the IIIT-HW-Dev dataset using a CNN-
RNN hybrid architecture. Furthermore, using this architec-
ture, we empirically show that usage of synthetic data and
cross lingual transfer learning helps alleviate the issue of lack
of training data. We use this proposed pipeline on a public
dataset, RoyDB and achieve state of the art results.

Keywords-CNN-RNN Hybrid Network, Devanagari
Dataset, Handwriting Recognition, Benchmarking.

I. INTRODUCTION

Handwritten text recognition is the process of automatic
conversion of handwritten text into machine-encoded text.
It has been a popular research area for many years due
to various applications such as digitizing handwritten
manuscripts [1], postal automation [2], etc. When consid-
ering a limited lexicon size or a limited number of writers,
robust solutions such as [3] have already been found.
However, not enough work has been done in the space
of unconstrained text recognition in Indic scripts. In this
work, we address the challenges associated with creating
a handwritten word recognizer for the most popular Indic
script – Devanagari. Devanagari is the most popular Indic
script, used by nearly 400 million people in northern
India [4]. It is used to write many languages such as Hindi,
Sanskrit, etc. It is read from left to right. Figure 1 shows
two examples of handwritten Devanagari script.

One of the main reason for the neglect of Devanagari
and other Indic scripts in the field of handwriting recog-
nition is the lack of a large publicly available handwrit-
ing datasets, which inhibits the training of modern deep
learning architectures. These modern architectures contain
millions of parameters and require substantial amount of
data for training. Another issue caused due to the lack of a
publicly available benchmark is that nearly every research
paper uses a different dataset, making it impossible to
compare any two methods that are present in literature.
This contrasts with works in handwriting recognition of
English where every method is benchmarked against the
IAM [5] dataset. To alleviate the above mentioned issues,
we release a new dataset, IIIT-HW-Dev, for handwritten
word recognition in Devanagari. We also experiment with

Figure 1. Examples of Handwritten Devanagari from (a) letter written
by Munshi Premchand (courtesy Nehru Memorial Museum) and (b)
contemporary writing.

various fine-tuning strategies to overcome the lack of real
training data.

A. Issues in Devanagari Script Recognition

The Devanagari script consists of 11 vowels and 37
consonants. A horizontal line called the Shirorekha is
present in the script from which the characters hang. When
multiple characters are written together the Shirorekha gets
extended. When a consonant is followed by a vowel in
Devanagari script, the shape of consonant character gets
modified and such a character is referred as a modified
character or modifier. When a consonant is followed by
another consonant and a diacritic called virama, a new
character gets formed which has an orthographic shape
and is called a compound character. Unlike Latin scripts,
Devanagari script has no concept of lowercase and upper-
case letters. For more details about the Devanagari script,
the reader can refer to [6].

Beside the aforementioned characters, there are vari-
ous characters from ancient languages such as Avestan,
Sanskrit, etc. that are part of the Devanagari script in
order to ensure compatibility of the script with ancient
manuscripts. Even if we ignore modifiers and conjuncts,
the number of characters in the script is more than double
of the number of characters present in English. With
the inclusion of modifiers and conjuncts, the number of
distinct characters in Devanagari script is well over a
thousand [7].

In addition to the script level challenges, there are
various issues associated with how the Devanagari script
is written, in the case of compound characters. The same
compound character can be correctly written in two differ-
ent ways, one in which the virama is hidden and another
where the virama is explicitly written. Any Devanagari

handwriting recognition system, for all possible compound
characters, must map both these variations to the same
compound character.

Also, a handwritten word recognizer for Devanagari
scripts has to deal with challenges associated with rec-
ognizing the varying styles of different writers and the
cursive nature of the handwriting. The presence of circular
arcs in the character shape causes distortions such as
skew while writing along with merging up of adjacent
characters.

B. Related Works

Earlier works in the field of Devanagari script recog-
nition were limited to the domain of printed documents.
Various methods such as KNN, multi-layer perceptrons
were tried out for the recognition task. A summary of
these methods can be found in [8]. In this work, we focus
on handwritten word images which are more challenging
than printed words.

There are three popular ways of building handwrit-
ten word recognizers in Devanagari. The first approach
consists of segmenting out the various characters and
then to use an isolated character (symbol) classifiers like
SVM’s [9] or lately CNN’s [10]. In [11], Roy et al.
segment the Devanagari word image into three regions,
namely the upper, middle and lower zone, using image
processing techniques such as morphological operations
and shape matching. The upper and lower zones are
recognized by using support vector machines while the
middle zone was recognized using a HMM decoded with
a lexicon of middle zone characters. Finally, the results
from the recognizers in all three zones are combined.
The second approach for building recognizers is to use
segmentation free methods which train on recognizing the
whole word or find a holistic representation [12], [13]. The
limitation of both first and second method is that they are
limited to recognizing a limited size lexicon.

The third and most popular approach, uses Recurrent
Neural Networks (RNN) [14], [15], which defines the
input as a sequence of feature vectors. They do not require
explicit symbol segmentation for recognition and are not
bound to recognizing a limited size lexicon. In this work,
we use the above approach, using a CNN-RNN hybrid
network and do a sequence to sequence transcription. In
this work, we present results in both lexicon-based and
lexicon-free (unconstrained) setting. Our proposed method
gives the state of the art results on the publicly available
Devanagari track of the RoyDB [11] dataset.

The paper is structured as follows: In Section II, we
talk about the IIIT-HW-Dev dataset. In Section III, we
discuss the CNN-RNN hybrid architecture & its training.
In Section IV, we benchmark IIIT-HW-Dev dataset to
the CNN-RNN hybrid network, along with discussing the
results of the various transfer learning experiments on
CNN-RNN hybrid architecture. Section V concludes our
work.

II. IIIT-HW-DEV DATASET

In the field of offline handwriting recognition for the
Devanagari script, there is a lack of publicly available
datasets annotated at the word or line level. Table I lists
all the publicly available offline handwriting datasets for
all Indic scripts. Here we have ignored datasets that only
contain isolated segmented characters or do not have any
ground truth data. Clearly, compared to an English dataset
like IAM [5], which has more than 100k annotated word
images, and written by 600 writers, Indic datasets are
much smaller in size. Few of the datasets which are
available in Devanagari either use a customized character
annotation scheme [11], or only contain images from a
small specialized vocabulary, say legal words [16].

To overcome these issues, we have created the IIIT-HW-
Dev dataset. This dataset is annotated using UTF-8, which
is the dominant character encoding scheme across the web.
It contains a vocabulary of 9,540 Devanagari words chosen
such that most of the characters present in the dataset are
from the UTF-8 Devanagari range. Almost all the words
in the vocabulary have the same number of samples in the
dataset. On an average, each word in the dataset consists
of 8 basic Unicode characters.

A total of 95,381 word samples were collected from
12 different individuals with different educational back-
grounds and ages. The writers were free to use pens of
their choice and write the words in their natural style.
Forms containing well separated boxes were used to
collect the data. Each box had a reference word image
and space to write the shown word image. The collected
data was digitized using a flatbed scanner in a resolution of
600 DPI in color and stored in JPEG format. Using mor-
phological operations, we were able to extract and label
the handwritten word images. However, the segmentation
was not manually corrected. Figure 2 shows few sample
images that were extracted from the dataset.

The train, validation and testing split has been done
such that there is no overlap of writers between the 3
sets. The training, validation and testing set are roughly
in a ratio of 70:15:15 and contain nearly 70k, 12k &
12k annotated word images respectively. The IIIT-HW-
Dev dataset introduced in this research work will be made
freely available for academic research purposes.

Table I
PUBLIC HANDWRITTEN DOCUMENT DATASETS FOR INDIC SCRIPTS.
HERE GT LEVEL REFERS TO THE MODALITY AT WHICH SEGMENTED

LABELS WERE PROVIDED FOR THE DATASET.

Name Language GT Level #Writers #Words

PBOK [17]
Bangla Page 199 21k
Oriya Page 140 27k

Kannada Page 57 29k
CMATER [18] Bangla Line 40 30k

RoyDB [11] Bangla Word 60 17k
Devanagari Word 60 16k

LAW [16] Devanagari Word 10 27k
Tamil-DB [19] Tamil Word 50 25k
IIIT-HW-Dev Devanagari Word 12 95k

Figure 2. Few sample word images from the IIIT-HW-Dev dataset. The
first two rows shows different words that have been written by the same
writer. The last two rows shows the same word images that have been
written by different writers.

III. METHOD

In this paper, we use a CNN-RNN Hybrid architecture,
first proposed in [20]. Figure 3 illustrates the proposed
architecture, which consists of a spatial transformer layer
(STN) [21], followed by a set of residual convolutional
blocks, which is proceeded by stacked bi-directional
LSTM layers and ends with CTC layer for transcribing
the labels.

A. CNN-RNN Hybrid Architecture

Our CNN-RNN hybrid architecture consists of a set of
convolutional layers, followed by recurrent neural network
(BLSTM) layers, whose output is given to a transcription
layer, modeled using connectionist temporal classification
(CTC) [22]. In general, CNN’s have been found to produce
excellent spatially discriminative and translation invariant
features, while RNN’s can perform sequence to sequence
transcription on an input of a sequence of feature vectors.
Here the input to the RNN is a sequence of feature
vectors, constructed from the feature maps of the last
convolutional layer by reshaping the 3 dimensional tensor
to a 2 dimensional shape. For example, given the feature
map of size α × β × γ, it is reshaped into a sequence
of γ feature vectors, each ∈ Rα×β . Here α, β and γ
refer to the the width, height and channel size of the
last convolutional layers feature map respectively. This
sequence of feature vectors is then forwarded to a stacked
set of recurrent layers,here a bi-directional LSTM [14]
network. The BLSTM network produces a prediction from
the label set at each time step. In our case, the label
set consists of all the characters present in UTF-8 for
Devanagari, plus a blank symbol. The CTC layer converts
the predictions generated by the BLSTM output layer
as a maximum probable label sequence for the input.
One of the key advantages of the above framework is
that the input images need not be resized to a fixed
size, thus avoiding distortion in the aspect ratio, since
both convolutional and recurrent layers can operate with
variable size images and feature sequences respectively.

Recent works in deep learning [23], [24] have shown
that adding more convolutional layers to a neural network
leads to an improvement in classification accuracy. How-
ever, merely increasing the number of convolutional layers
can actually cause a decrease in classification accuracy, as
shown by [25]. Also upon increasing the number of layers,
we encounter the issue of exploding/vanishing gradients

and internal covariate shifts [26]. In our architecture,
we take into account some of the recent proposed solu-
tions in the literature to overcome these problems. Batch
Normalization [26] is applied before each convolutional
layer to prevent internal covariate shifts. The convolutional
filters are arranged into multiple residual blocks with skip
connections as proposed in [25]. Also, as suggested in
[27] we apply dropout at the rate of 0.2 at the BLSTM
layers in our network.

B. Spatial Transformer Network (STN)

The spatial transformer network [21] is an end-to-
end trainable layer which performs an explicit geometric
transformation on the input. As shown by [28], this layer
transforms the input feature map such that the geometric
distortion is removed from the input and the corrected
input is forwarded to the network. It has three main
components – the localization network, the grid generator
and the sampler, as seen in Figure 3. A feature map is
given to the localization network as input and it outputs
λ, the transformation parameters to be applied to the input
feature map. The localization network is a neural network
having a |λ| dimensional fully connected layer at the
end. The grid generator generates a grid of coordinates in
the input feature map corresponding to each pixel from
the output feature map. Finally, the sampler generates
the output feature map using an interpolation scheme
after applying the learnt transformation. In the case of
handwritten images, the STN layer is useful, as it corrects
the distortions caused due to the variable hand movements.

C. Synthetic Data

For successful training of deep learning architecture,
availability of huge amounts of training data is crucial, as
any typical architecture contains millions of parameters.
We follow a pipeline similar to [29], for rendering word
images to create the synthetic data. We use nearly 100
publicly available Unicode fonts for Devanagari and used
the same vocabulary that was used in creating the IIIT-
HW-Dev dataset. The word is rendered using one of the
three following ways: with a bottom horizontal line or
following a curve or without either of the two distortions.
A varying amount of kerning and gaussian noise was
applied to the rendered images. We also applied a random
amount of rotation (+/- 5 degrees), shearing (+/- 0.5
degrees along the horizontal direction) and translation
along all four directions. The synthetic Devanagari train
data used in this work consisted of 1 million word images.
Figure 4 shows few examples of synthetic word images in
Devanagari.

D. Cross Lingual Transfer Learning

Works such as [24], [30] have shown that the filters
of lower convolutional layers learn generalized features
acting as edge and shape detectors. As we go to the higher
layers, the layers learn more specialized features specific
to the current task. More recently, [31] reported state of the
art word recognition results on the IAM dataset by firstly

Figure 3. Visualization of the CNN-RNN hybrid network. The various important components of the architecture are highlighted such as the spatial
transformer network, residual convolutional blocks, BLSTM layers and the CTC loss function.

Figure 4. Few word images that were used in the Devanagari synthetic
dataset.

training their CRNN network using a dataset that con-
tained Latin languages such as French, English, etc. and
Russian, a Slavic language. After training their network to
convergence on this mixed dataset, the authors fine-tuned
the model for each language separately, by reinitializing
its softmax layer from scratch, with its size now only
being the size of that particular language’s character set
plus a blank label. Inspired by these results, we conduct a
few experiments to empirically check how the recognition
performance is affected by the addition of real data from
an unrelated script (here English) along with the addition
of data generated synthetically in the language of interest.
We try out two different schemes of cross-lingual transfer
learning. First, our model is pre-trained on the IAM train
set and then fine-tuned on the synthetic data. In the second
approach, our model is first pre-trained on the IAM train
set. After the model converges, it is then fine-tuned on a
mixture dataset of Devanagari synthetic data and IIIT-HW-
Dev train set. Finally, in either approach we fine-tune the
model on the IIIT-HW-Dev train set. In the second case,
during pre-training, the character set includes only English
character set plus a blank label. During the subsequent
fine tuning, the character set includes all basic Devanagari
characters plus a blank label. After each phase of fine-
tuning, the softmax layer is reinitialized when the model
converges, as appropriate.

IV. EXPERIMENTS

Across all experiments, we use the word level annota-
tions and images that are part of the various datasets and
follow the standard partition for training, validation and
testing. We use the Character Error Rate (CER) and Word
Error Rate (WER) metrics to compare the various models.
CER is defined as (where RT : recognized text and GT:
ground truth)

CER =

∑
EditDistance(GT,RT)

#Characters

and WER is the defined as the number of words wrongly
transcribed out of total number of words.

In addition to the IIIT-HW-Dev dataset, we have used
the following two public datasets in our work:

• IAM Handwriting Database [5]: It includes contri-
butions from 657 writers and comprises of 115,320
words in English. On an average, a word in this
dataset consists of 7 characters.

• Indic Word Database / RoyDB [11]: It has been
compiled by 60 writers and consists of a Bengali and
a Devanagari track. The Devanagari track comprises
of 16,128 HW word images. On an average, the
image in either track represents a word consisting
of 4 characters.

A. Architectural Details

The localization network in the STN contains three
plain convolutional layers and two fully connected (FC)
layers. All the convolutional layers used in the localization
network have filter size, stride and padding of 3x3, 1 and
1 respectively. The number of channels in these layers
were 64, 64 and 128. 2x2 max pooling is applied before
the first convolutional block and after each subsequent
convolutional block. The first FC layer is of size 30 while
the second FC layer is of size 6, to learn the 6 parameters
used in an affine transformation.

The CNN-RNN Hybrid network contains eighteen con-
volutional layers. All except the first and last convolutional
layers have residual skip connections between them. All
the convolutional layers used in the hybrid network have a
filter size, stride and padding of 3x3, 1 and 1 respectively.
The first 5 convolutional layers have a channel size of 64,
the next 4 have a channel size of 128, the next 4 have a
channel size of 256, the last 5 have a channel size of 512.
Max pooling of 2x2 size is applied after the 1st, 5th and
9th convolution layer. Max pooling of 2x1 size is applied
after the 13th and 17th convolution layer. The RNN part of
the network consists of two BLSTM layers, each having
256 hidden units.

B. Quantitative Results on IIIT-HW-Dev Dataset

Table II shows the recognition results of the various
variants of the proposed CNN-RNN hybrid architecture on
the IIIT-HW-Dev dataset. The IIIT-HW-Dev train set was
augmented using the methodology mentioned in Section
III C. All the models mentioned in Table II have the same
architecture, except for the first entry. All except the last

entry show results for the unconstrained or lexicon free
setting in which decoding is not restricted to any set of
chosen words. The various models mentioned in Table II
are summarized as follows –

• CNN-RNN uses the architecture mentioned in Sec-
tion IV.A, without the STN module. It is trained only
on the IIIT-HW-Dev train set.

• SCNN-RNN uses the architecture mentioned in Sec-
tion IV.A (including the STN module). It is trained
only on the IIIT-HW-Dev train set.

• Synth-SCNN-RNN uses the same architecture as
above. It is first pre-trained on the synthetic data and
then fine-tuned on the IIIT-HW-Dev train set.

• IAM-Synth-SCNN-RNN uses the same architecture
as above. It is first pre-trained on the IAM train data,
then fine-tuned on the synthetic data and finally fine-
tuned on the IIIT-HW-Dev train set.

• Mixed-SCNN-RNN uses the same architecture as
mentioned above. It is first pre-trained the IAM train
set. Then its fine-tuned on a mixture of synthetic data
and the IIIT-HW-Dev train set. Finally, its fine-tuned
on the IIIT-HW-Dev train set.

• Mixed-SCNN-RNN-Lexicon uses the same architec-
ture and training pipeline as the above model but uses
lexicon based decoding.

Table II
WORD RECOGNITION PERFORMANCE OF THE CNN-RNN HYBRID

ARCHITECTURE ON THE IIIT-HW-DEV DATASET.

Method WER CER
CNN-RNN 45.72 17.56

SCNN-RNN 41.56 15.12
Synth-SCNN-RNN 30.36 10.02

IAM-Synth-SCNN-RNN 28.20 9.75
Mixed-SCNN-RNN 26.22 8.64

Mixed-SCNN-RNN-Lexicon 11.27 4.90

From Table II, we can see the effectiveness of the
STN module for multi-writer handwriting recognition, as
its inclusion leads to a significant reduction in WER.
The experiments with synthetic data empirically validate
our fine-tuning strategy. Whilst the English to Devanagari
cross lingual transfer learning ends up producing only a
modest reduction in WER, using both synthetic and IAM
data is beneficial in terms of lowering WER.

We also conducted experiments on a publicly available
dataset, the Devanagari track of RoyDB [11], using the
train, test and validation split as used in [11]. Here we used
the Mixed-SCNN-RNN pipeline as above, but instead of
using IIIT-HW-Dev data, we used the RoyDB Devanagari
train set while training our model. Table III compares

Table III
WORD RECOGNITION PERFORMANCE OF THE CNN-RNN HYBRID

ARCHITECTURE ON THE ROYDB DEVANAGARI TEST SET.

Method WER CER
Roy et al. – Lexicon [11] 15.76 -

Mixed-SCNN-RNN 9.57 3.24
Mixed-SCNN-RNN – Lexicon 4.32 2.07

Figure 5. Visualization of activations learnt by the second convolutional
layer of the CNN-RNN hybrid network. The first column shows the
original input image. The second column shows the activation of a
channel which acts a textual edge detector. The third column shows
a channel which activates on the image background. The fourth column
shows a channel which acts like a horizontal line detector, while the last
column shows a channel which acts like a vertical line detector.

Figure 6. Qualitative results of the CNN-RNN Hybrid architecture on
the IIIT-HW-Dev dataset. Here GT refers to ground truth.

our results with the one mentioned in [11]. Both our
lexicon-free and lexicon-based model hugely outperform
the results shown in [11].

C. Qualitative Results

Figures 6 and 7 show the recognized outputs for few
sample images from the IIIT-HW-Dev and Devanagari
track of RoyDB dataset respectively, using the Mixed-
SCNN-RNN network in an unconstrained setting. As we
can see, most of the errors were caused by ambiguities
in the original handwritten image which is due to the
small differences in the shape of basic characters. Also
if the image segmentation is incorrect, it is quite easy
for the recognition system to misinterpret the modified
character. To gain further insight into the working of the
convolutional layers of the CNN-RNN hybrid network,
we visualize the activations of a few channels from the
second convolution layer, when certain images are given
as input to the network. From Figure 5, we can see that
the channels in the second convolutional layer seem to be
acting like orientation specific edge detectors.

D. Implementation Details

In all the experiments, the network is trained using the
Adadelta [32] optimizer and stochastic gradient descent.
We initialize the parameters of the STN to represent the
identity transformation. All the input images are resized
to 96x256. We observed that doing so does not affect the
performance versus using variable length images. We use
a batch size of 64 for training.

Figure 7. Qualitative results of the CNN-RNN Hybrid architecture on
the Devanagari track of RoyDB dataset. Here GT refers to ground truth.

V. CONCLUSION

We introduce a new dataset, the IIIT-HW-Dev dataset
and benchmark it using a CNN-RNN hybrid network. We
show how fine-tuning the network using synthetic and real
handwritten data helps improve word recognition. Using
our fine-tuning strategy on the CNN-RNN hybrid network
gives state of the results on the RoyDB dataset. In the
future, we would like to relax the assumption of having
pre-segmented images. We also plan to extend this work
to include other Indic scripts.

ACKNOWLEDGEMENT

This work was partly supported by IMPRINT project,
Govt. of India. Praveen Krishnan and Minesh Mathew are
supported by TCS Research Scholar Fellowship.

REFERENCES

[1] T. M. Rath and R. Manmatha, “Word spotting for historical
documents,” IJDAR, 2007.

[2] S. N. Srihari and E. J. Kuebert, “Integration of hand-
written address interpretation technology into the united
states postal service remote computer reader system,” in
DAS, 1997.

[3] R. J. Milewski, V. Govindaraju, and A. Bhardwaj, “Auto-
matic recognition of handwritten medical forms for search
engines,” IJDAR, 2009.

[4] G. F. Simons and C. D. Fennig, “Ethnologue: Languages
of the world,” SIL International, 2017.

[5] U.-V. Marti and H. Bunke, “The iam-database: an english
sentence database for offline handwriting recognition,” IJ-
DAR, 2002.

[6] U. Pal and B. Chaudhuri, “Indian script character recogni-
tion: a survey,” PR, 2004.

[7] U. Stiehl, “Sanskrit-kompendium,” Heidelberg: Hüthing,
2002.

[8] U. Pal and B. Chaudhuri, “Indian script character recogni-
tion: a survey,” PR, 2004.

[9] S. Arora, D. Bhattacharjee, M. Nasipuri, L. Malik,
M. Kundu, and D. K. Basu, “Performance comparison
of SVM and ANN for handwritten devnagari character
recognition,” arXiv preprint arXiv:1006.5902, 2010.

[10] K. Mehrotra, S. Jetley, A. Deshmukh, and S. Belhe, “Un-
constrained handwritten devanagari character recognition
using convolutional neural networks,” in 4th International
Workshop on Multilingual OCR, 2013.

[11] P. P. Roy, A. K. Bhunia, A. Das, P. Dey, and U. Pal,
“HMM-based indic handwritten word recognition using
zone segmentation,” PR, 2016.

[12] B. Shaw, U. Bhattacharya, and S. K. Parui, “Combination
of features for efficient recognition of offline handwritten
devanagari words,” in ICFHR, 2014.

[13] B. Shaw, S. K. Parui, and M. Shridhar, “Offline handwritten
devanagari word recognition: A holistic approach based on
directional chain code feature and HMM,” in ICIT, 2008.

[14] A. Graves, M. Liwicki, S. Fernández, R. Bertolami,
H. Bunke, and J. Schmidhuber, “A novel connectionist
system for unconstrained handwriting recognition,” PAMI,
2009.

[15] N. Sankaran, A. Neelappa, and C. V. Jawahar, “Devanagari
text recognition: A transcription based formulation,” in
ICDAR, 2013.

[16] R. Jayadevan, S. R. Kolhe, P. M. Patil, and U. Pal,
“Database development and recognition of handwritten
devanagari legal amount words,” in ICDAR, 2011.

[17] A. Alaei, U. Pal, and P. Nagabhushan, “Dataset and ground
truth for handwritten text in four different scripts,” IJPRAI,
2012.

[18] R. Sarkar, N. Das, S. Basu, M. Kundu, M. Nasipuri, and
D. K. Basu, “Cmaterdb1: a database of unconstrained hand-
written bangla and bangla–english mixed script document
image,” IJDAR, 2012.

[19] S. Thadchanamoorthy, N. Kodikara, H. Premaretne, U. Pal,
and F. Kimura, “Tamil handwritten city name database
development and recognition for postal automation,” in
ICDAR, 2013.

[20] B. Shi, X. Bai, and C. Yao, “An end-to-end trainable
neural network for image-based sequence recognition and
its application to scene text recognition,” PAMI, 2016.

[21] M. Jaderberg, K. Simonyan, A. Zisserman et al., “Spatial
transformer networks,” in NIPS, 2015.

[22] A. Graves, S. Fernández, F. Gomez, and J. Schmidhu-
ber, “Connectionist temporal classification: labelling unseg-
mented sequence data with recurrent neural networks,” in
ICML, 2006.

[23] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed,
D. Anguelov, D. Erhan, V. Vanhoucke, and A. Rabinovich,
“Going deeper with convolutions,” in CVPR, 2015.

[24] K. Simonyan and A. Zisserman, “Very deep convolutional
networks for large-scale image recognition,” arXiv preprint
arXiv:1409.1556, 2014.

[25] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual
learning for image recognition,” in CVPR, 2016.

[26] S. Ioffe and C. Szegedy, “Batch normalization: Accelerat-
ing deep network training by reducing internal covariate
shift,” in ICML, 2015.

[27] V. Pham, T. Bluche, C. Kermorvant, and J. Louradour,
“Dropout improves recurrent neural networks for handwrit-
ing recognition,” in ICFHR, 2014.

[28] W. Liu, C. Chen, K.-Y. K. Wong, Z. Su, and J. Han,
“Star-net: A spatial attention residue network for scene text
recognition.” in BMVC, 2016.

[29] P. Krishnan and C. V. Jawahar, “Generating synthetic data
for text recognition,” arXiv preprint arXiv:1608.04224,
2016.

[30] M. D. Zeiler and R. Fergus, “Visualizing and understanding
convolutional networks,” in ECCV, 2014.

[31] T. Bluche and R. Messina, “Gated convolutional recurrent
neural networks for multilingual handwriting recognition,”
in ICDAR, 2017.

[32] M. D. Zeiler, “Adadelta: an adaptive learning rate method,”
arXiv preprint arXiv:1212.5701, 2012.

