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Abstract. Modeling atmospheric turbulence is a challenging problem
since the light rays arbitrarily bend before entering the camera. Such
models are critical to extend computer vision solutions developed in the
laboratory to real-world use cases. Simulating atmospheric turbulence by
using statistical models or by computer graphics is often computationally
expensive. To overcome this problem, we train a generative adversarial
network which outputs an atmospheric turbulent image by utilizing less
computational resources than traditional methods. We propose a novel
loss function to efficiently learn the atmospheric turbulence at the finer
level. Experiments show that by using the proposed loss function, our
network outperforms the existing state-of-the-art image to image trans-
lation network in turbulent image generation. We also perform extensive
ablation studies on the loss function to demonstrate the improvement in
the perceptual quality of turbulent images.

Keywords: Generative Adversarial Network · Atmospheric Turbulence
· Loss Function.

1 Introduction and Related Work

The performance of computer vision algorithms drastically decreases when de-
ployed in varying weather conditions [12,13]. Especially in applications like au-
tonomous navigation and aerial imaging, the atmospheric condition adversely
affects the performance of the underlying vision algorithm. The problem of com-
puter vision models adapting to changing weather could be solved by collecting
data for all the weather conditions and training vision algorithms on them. But,
collecting data for each weather condition would require a huge cost and time.
Hence, we propose a deep learning-based approach, which particularly models
the hot weather conditions among all weather conditions. We also show that
the computational time taken to generate hot weather images by our method
was less than the traditional methods. The phenomena of geometrical distortion
caused by extremely hot weather are termed as atmospheric turbulence.

The primary cause of atmospheric turbulence is the heterogeneous nature of
the atmosphere between the camera and the object. The heterogeneity in the
medium is caused by the time-space varying changes in temperature, air pressure,
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Fig. 1: Illustration of the overall pipeline to generate a turbulent image. Stage I :
In this stage, we create a turbulent dataset using [16] method to train our net-
work. Stage II : Training of our generative adversarial network using the created
turbulent dataset. After training, turbulent images can be generated by simply
passing the corresponding non-turbulent image through the network.

wind speed and humidity, which results in the introduction of geometrical distor-
tion as well as a decrease in perceptual information of an imaged object. Several
methods have been proposed to model the nature of atmospheric turbulence and
render images with the help of these models. Turbulence modeling methods can
be divided into two major approaches: Ray tracing in computer graphics [4,17]
and image distortion simulation [7,16]. Initial approaches in computer graphics
either used curved ray tracing [17] or solved physically-based differential equa-
tions [4,14] to estimate the parameters of atmospheric turbulence based on real
turbulent images, which help in describing the trajectory of light. Another ap-
proach to model atmospheric turbulence is to statistically model the turbulence
and distort images using those models. Earlier methods used light propagation
through multiple phase screens [7] for this purpose. Later methods model tur-
bulence as a simple Gaussian function [22] or derived a physics-based method
[16] by which turbulent fields were generated efficiently. However, these methods
are computationally expensive, which requires a large amount of computational
time to generate a large dataset. Recently, Deep learning [8] has become a pow-
erful framework to generate complex non-linear data such as images, speech,
and videos. In particular, Generative Adversarial Networks(GANs) are widely
used for the generation of images as it directly learns the empirical data dis-
tribution from the data samples. Application of GANs include images-to-image
translation tasks such as super-resolution [9], style transfer [2], and synthetic
data generation [18].

Leveraging the advantages of GANs, we train a deep adversarial network that
takes an input image and gives out the corresponding turbulent image. While
training, our GAN tries to learn the natural image distribution of the turbu-
lent image. GANs provides the flexibility of sampling infinite samples from the
learned distribution by simply feed-forwarding input samples into the network.
Hence after training, using our trained GAN, we can generate large datasets of
turbulent images at inference which would take few milliseconds to generate a
turbulent image on an average GPU enabled device. Hence, we solve the prob-
lem of high computational issues encountered with traditional methods by using
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   (a)                                                                                        (b)

Fig. 2: (a) and (b) are the samples turbulent images generated by our network.
Red boxes show the magnified patches of the input image and green boxes shows
the turbulent patches.

GAN. Additionally, we introduce a novel loss function specifically intended to
improve the quality of output turbulent images. To train the adversarial net-
work, we require a substantial number of turbulent and non-turbulent image
pairs. Since there was no public dataset available for training, we build a dataset
by generating turbulent fields using [16], method and then we randomly placed
the turbulent field onto the non-turbulent images to generate the correspond-
ing turbulent image. Figure 1 illustrates the overall pipeline of our approach
for generating turbulent images. We quantitatively and qualitatively show that
the turbulent images generated by our network are close to natural turbulent
images. Figure 2 shows the sample turbulent image generated by our model.
These generated turbulent images can be further used as turbulent datasets in
building restoration networks. Also, it increases the accuracy of various com-
puter vision algorithms such as classification and semantic segmentation in a
turbulent environment. The major contributions of this paper are:

1. We propose a deep generative network for the generation of turbulent images
by taking lesser computational time than traditional methods. To the best
of our knowledge, it is the first approach to generate turbulent images using
deep learning.

2. We propose a novel loss function by which deep network efficiently learns to
transfer atmospheric turbulence into the non-turbulent natural images. An
extensive ablation study is reported to demonstrate the effectiveness of the
loss function.

3. To train our network, we constructed a large scale dataset consisting of
turbulent and non-turbulent image pairs.

2 Proposed Model

Generative models are widely used for generating samples from a data distribu-
tion. GAN is one of the models among all the generative models. Consider, two
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Fig. 3: Overview of our proposed generative adversarial network. While training
the network, a non-turbulent image I is passed through generator Gα with learn-
able parameter α which gives the estimated turbulent image ÎTR. ITR and ÎTR

are passed through loss optimization block to minimize the L1 loss, MS-SSIM
loss and adversarial loss between them.

differential function generator Gα and Dβ where α and β are learnable param-
eters. The generator creates fake samples that are intended to be closer to the
training data distribution. The discriminator is a classifier where it examines
whether the given samples belong to training data distribution or not. The gen-
erator tries to generate fake samples by adjusting its α to fool the discriminator.
On the other hand, the discriminator learns to discriminate between real and
fake samples. In this way the generator and discriminator their parameters α and
β. This framework can be viewed as a mini-max game where the generator tries
to minimize the probability of its samples to be fake whereas discriminator tries
to maximize it. Formally, we assume Gα and Dβ to be a deep neural network.

In our problem setting, we train a generative adversarial network that aims to
estimate a turbulent image ÎTR from a non-turbulent image I. Here, ITR is the
turbulent image corresponding to a non-turbulent image I. Our goal is to train a
generator Gα with learnable parameter α, which can generate turbulent images
by minimizing loss function and can fool the discriminator Dβ . Here, Dβ is a
classification network which classifies between estimated non-turbulent turbulent
and non-turbulent images with learnable parameter β. Figure 3 shows the overall
outline of our proposed network architecture. In the subsequent subsections, we
describe the architecture of our generative adversarial network along with the
new loss function, which is particularly formulated to improve the quality of the
turbulent image generation process.

Network Architecture: The generative adversarial network is divided into two
networks: generator and discriminator. Our generator mainly follows the archi-
tecture of U-Net [15]. The architecture of our generator is divided into two paths:
contracting path and expanding path. The contracting path downsamples the
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input image into the feature space. It consists of four contracting blocks, where,
each block contains two 4×4 convolutional layer of stride 2 and padding 1. Each
convolutional layer is followed by a LeakyReLU layer and a batch normalization
layer. After, each contracting block, we double the depth of the feature maps. For
each contracting block, we have a corresponding expanding block in the expand-
ing path. An expanding block contains two 4×4 transpose convolutional layer
of stride 2 and padding 1. Each transpose convolutional layer is followed by a
ReLU layer and a batch normalization layer. Each expanding block concatenates
the cropped feature from its contracting block. The depth of the feature map de-
creases to half after each contracting block. The activation function of the outer
most convolution layer in the expanding path is tanh as our input image pixel
value ranges from -1 to 1. The contracting path and expanding path are joined
by a bottleneck. The bottleneck consists of a convolution layer with LeakyReLU
as activation and a transpose convolution layer with ReLu as activation. The
discriminator follows the standard architecture of [1] which is used in most of
the GANs architecture.

Loss Functions: Least absolute deviations(L1 loss) is widely used as a loss
function for many deep networks. However, the minimization of L1 loss for gen-
eration tasks results in blurry output images lacking in high-frequency details.
Hence, we add adversarial loss to our generator encourages it to produce images
that lie in natural image manifold with sharp textures. We use LS-GAN [11] over
vanilla GAN for better stability and faster convergence. We also use MS-SSIM
loss [20] to improve the generation of turbulence at the finer level. The final loss
function of our generator network is a weighted linear combination of L1 loss,
MS-SSIM loss and adversarial loss which is:

Lgenerator = λ1L1 + λ2LAdverserial + λ3LMS−SSIM (1)

Lgenerator=λ1|ITR−Gα(I)|1+λ2[Dβ(Gα(I))−1]2+λ3(1−MS-SSIM(ITR,Gα(I))) (2)

where, λ1, λ2 and λ3 are the hyper-parameter of the generator loss function.
Similarly, the loss of our discriminator network would be:

Ldiscriminator = Dβ(Gα(I))2 + (Dβ(ITR) − 1)2 (3)

Training Description: We train our network end-to-end by following the
training methodology from [10] and [9]. To optimize our network, we use Adam
[6] optimizer with β1 = 0.5 and β2 = 0.999 for computing running average of
gradient and its squares. The value of λ1, λ2, and λ3 were found to be 100, 1, and
5, respectively. We first train our network for 10,000 iterations with a learning
rate of 1e − 4 and then decrease the learning rate to 5e − 5 for another 15,000
iterations with a batch size of 16. For each iteration, the discriminator and the
generator are updated only once.

3 Experimentation

Dataset: We use physics-based method [16] for synthesizing our turbulent
dataset. The virtual camera parameters used while imaging in the turbulence
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         (a) (b)   (c)    (d)

Fig. 4: (a) and (c) show the sample turbulent images of the training dataset. (b)
and (d) shows the enlarged patches in red boxes.

Methods PSNR SSIM MSE

Encoder-Decoder (L1 loss) [3] 12.1040 0.1071 461.8092

Encoder-Decoder (MSE loss) [3] 14.9994 0.2423 333.6431

CycleGAN [21] 14.0471 0.2803 402.6070

Pix2Pix [5] 17.8422 0.4412 254.0445

Encoder-Decoder with skip connections (L1-loss) [10] 15.4503 0.2905 320.6347

Encoder-Decoder with skip connections (MSE loss) [10] 15.5124 0.2925 318.4140

Ours 18.2321 0.5211 234.9368

Table 1: Quantitative results of various turbulence models. Our method outper-
forms baseline methods by using the proposed loss function.

environment is: focal distance = 300mm having the lens diameter of ≈ 5.57cm
and a pixel size of 4 × 10−3mm. The placement of the virtual camera is at an
elevation of 5m with object distance of 3km. The value for structure constant
C2
n which expresses the atmospheric turbulent strength is 3×10−13m−2/3. Using

the above parameters, we rendered turbulent images by applying simulated tur-
bulent field on ImageNet dataset. The dataset consists of 100,000 of turbulent
and non-turbulent image pairs for training and the validation is performed on
ImageNet validation dataset. Figure 4 shows sample turbulent images.

Evaluation Metrics: To measure the structural and perceptual similarity
between the estimated turbulent image and ground-truth turbulent image, we
use Peak-Signal-To-Noise-Ratio (PSNR), Structural Similarity [19] (SSIM) and
Mean Squared Error (MSE). We use SSIM and PSNR as they calculate structural
similarity and perceptual quality between two images. These evaluation metrics
are applied to various generated turbulent images and ground-truth turbulent
images to give a qualitative comparison.

Results: We compare our results of final turbulence generation model with
the image-to-image translation networks: Pix2Pix [5], CycleGAN [21], Encoder-
Decoder [3], and Encoder-Decoder with skip connections [10]. Our final tur-
bulence generation model shows significant quantitative improvement over the
other aforementioned methods as shown in Table 1. In Table 1, we observe
that methods with MSE loss as a loss function give better results on evalua-
tion metrics over the L1 loss. The quantitative performance of Pix2Pix is bet-
ter than CycleGAN as Pix2Pix learns from paired images whereas CycleGAN
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Fig. 5: Qualitative results of various turbulence models. Row a: Input Img is the
non-turbulent input image to the network. Row b: ED is the Encoder-Decoder
network output. Row c: ED-Skip is the Encoder-Decoder with a skip-connections
network output. Row d: CycleGAN network output. Row e: Pix2Pix network
output. Row f: Our network output. Row g: Turbulent is the Ground-truth
turbulent image. (Best view when zoomed)

learns from unpaired images, which makes the generation of turbulent images
difficult. Qualitative results of turbulent image generation on ImageNet images
by various methods are shown in Figure 5. In Figure 5, we infer that CycleGAN
and Pix2Pix struggle to generate larger geometrical distortion compared to our
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Number of Images 1 100 500 1000

Schwartzman et al. [16] 184.367 197.357 280.472 389.559

Ours 0.018 0.979 5.243 10.646

Table 2: Computational resource time comparison between the turbulent image
generation methods on different number of turbulence images to be generated.
(All time values reported in seconds.)

       Input Image                   MSE                           L1                       L1 + Adv           L1+Adv+MS-SSIM     Turbulent Image    

Fig. 6: Qualitative results of the ablative study on the various loss function. Row
1: Input image to the network. Row 2: MSE loss output. Row 3: L1 loss output.
Row 4: L1 + Adv is the output of the combined output of L1 loss and adversarial
loss. Row 5: L1 + Adv + MS-SSIM is the output of the combined output of L1
loss, MS-SSIM, and adversarial loss. Row 6: Ground-truth turbulent image. Red
boxes show the zoomed image patch. (Best viewed when zoomed)

method. Moreover, Pix2Pix suffers from color artifacts which could be seen in
Figure 5 (column e)(iii)(iv). Encoder-Decoder and Encoder-Decoder with skip
connections failed to generate turbulent images with sharp details. Although
encoder-decoder suffers from the checkerboard effect which is eliminated by skip



Learning To Generate Atmospheric Turbulent Images 9

Loss Function PSNR SSIM MSE

L1 loss 16.7413 0.3523 293.5724

MSE loss 17.0215 0.3915 273.3178

L1 loss + Adversarial loss 17.5243 0.4215 259.2911

L1 loss + MS-SSIM loss + Adversarial Loss 17.6515 0.4402 256.5432

Table 3: Ablation study results of our loss function.

connections. Table 2 shows the comparison between the computational time
taken by Schwartzman et al. [16] and our method to generate atmospheric tur-
bulent images. We can observe from the table that our approach requires a small
fraction of computational time to generate turbulent images.

Ablation Study: We perform an ablation study on our loss function to show
its advantages qualitatively and quantitatively. The ablative study is performed
by training our generator architecture individually on L1 loss, MSE loss, L1
loss + Adversarial Loss, and L1 loss + Adversarial loss + MS-SSIM loss. We
use L1 loss instead of MSE loss as it leads to sharper images. All the networks
were trained for 10,000 iterations with the learning rate of 1e− 4 and batch size
of 16. From Table 3, we observe that adding MS-SSIM loss into the total loss
leads to higher PSNR and SSIM which implies that it improves the structural
as well as perceptual information of the generated image. Figure 6 shows the
qualitative results of the ablation where we can observe in Figure 6(row 5) the
output generated by ours looks more realistic. Although in Figure 6(row 4) the
output looks more promising when zoomed, it looks more like a uniform artifact.

4 Conclusion

In this paper, we proposed a turbulent image generation model by training a deep
adversarial network. Unlike, the traditional turbulent image generation methods
which rely on a statistical model, our approach uses data to learn the parameters
of the generative adversarial network, which transforms a non-turbulent image
into a turbulent image. We proposed a novel loss function that encourages the
learning of finer turbulence fields. To support our claim, we performed extensive
ablation studies on the loss function.
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