
A Deep Learning Approach for Robust Corridor Following

Vishnu Sashank Dorbala1, A.H. Abdul Hafez2 and C.V. Jawahar1

Abstract— For an autonomous corridor following task where
the environment is continuously changing, several forms of
environmental noise prevent an automated feature extraction
procedure from performing reliably. Moreover, in cases where
pre-defined features are absent from the captured data, a well
defined control signal for performing the servoing task fails to
get produced. In order to overcome these drawbacks, we present
in this work, using a convolutional neural network (CNN) to
directly estimate the required control signal from an image,
encompassing feature extraction and control law computation
into one single end-to-end framework. In particular, we study
the task of autonomous corridor following using a CNN and
present clear advantages in cases where a traditional method
used for performing the same task fails to give a reliable
outcome. We evaluate the performance of our method on this
task on a Wheelchair Platform developed at our institute for
this purpose.

I. INTRODUCTION

The task of autonomous corridor following has been well
discussed in the past [1]–[5], especially on smart wheelchair
platforms. Several classical works achieving this [6]–[11]
use vision based algorithms. They extract selected features
from a captured image, and pass them to a control law
that computes a corrective velocity signal for adjusting the
position of the robot on the corridor. There also exist other
approaches that use different sensors [12]–[14], and follow a
similar procedure. In all of these works, there is an inherent
reliance on a robust feature extraction and tracking step to
provide reliable features to the control law. As such, the
behaviour of the robot becomes undefined when the system
fails to provide these features reliably.

In traditional visual servoing (TVS) approaches, when
selected features do not appear in the captured image, or
when the extracted features are grossly inaccurate, the control
law fails to produce a reliable velocity for servoing the robot
along the corridor. We can infer from this that for a TVS
process to take place reliably, three major factors need to be
accounted for to a good degree of accuracy.

1) Quality image features need to be selected for servoing.
2) They need to be available in the environment.
3) A robust algorithm is needed for tracking and extracting

these features.
The works presented in [6], [7], [9] are examples of TVS

works. In [6], autonomous corridor following is performed

1 The authors are associated with the International Institute of In-
formation Technology, Hyderabad, India vdorbala@gmail.com,
jawahar@iiit.ac.in

2 A.H. Abdul Hafez is with Hasan Kalyoncu University, Gaziantep,
Turkey abdul.hafez@hku.edu.tr

Fig. 1: Overview of the proposed CNN Approach compared to the
Traditional Visual Servoing (TVS) used for autonomous corridor
following. While the TVS approach performs well on clean images,
it often fails to give a reliable output on noisy or occluded images
taken from dynamically changing environments. The dotted line
represents an unreliable step in the process. In such cases, a neural
network can be used to estimate a desirable output.

on a wheelchair following a TVS approach that uses van-
ishing point features from a corridor image for devising a
control signal. The work in [7] extends this to doorway
traversal and presents it comprehensively. A similar approach
for mobile robots is also proposed in [8] and extended further
in [9]. Steps for feature extraction which are suggested in
these works however do not account for images taken in
dynamically changing environments, or for various noise
types in the captured images. This hinders with the practical
capability of the robot, as motion noise and occlusions are a
common occurrence in the environment. Moreover, in cases
where the required features cannot be estimated from the
image, the outcome of the control law is undefined as it may
encounter mathematical singularities. In order to overcome
all of these challenges, we propose using a convolutional
neural network for approximating a velocity vector output
for corridor following directly from a camera image. Figure
1 provides an overview of the proposal to solve the problem
as a robust alternative to traditional visual servoing.

Although there are a few works in the literature that use
deep neural networks for visual servoing such as [15], [16],
our proposal (Also see [17]) differs from them as we combine
both the feature extraction and control signal computation in
one stage, while they primarily focus on approximating the
feature extraction stage. In [15] the authors finetune FlowNet
[18] to estimate the relative angular and translational pose
differences between the desired image and the current image.
Similarly in [16], AlexNet has been used to approximate
a relative pose between the current image and a reference
image. In both these papers, the approximated relative pose
is fed into a control law that computes a velocity vector
for servoing. The approach that we present in this work

combines the feature extraction and control law computation
stages into one framework to directly predict a velocity
vector, given an image.

In addition to this, in [19], a Q learning based approach for
visual servoing has been described for performing a target
following task using a drone in a simulated environment.
They demonstrate the efficacy in using deep features for
robust servoing in noisy and occluded environments which
further reinforces our usage of deep learning for this visual
servoing task.

Our paper makes the following two contributions: i) we
introduce a novel CNN based approach for performing an
image based visual servoing task of autonomous corridor
navigation, and ii) we present a robust comparison showcas-
ing the advantage of our CNN approach against some critical
drawbacks of the traditional approach described in [6]. We
carry out a rigorous analytical and practical analysis here to
make our case for supporting this claim.

The paper has been organized as follows. Section II
describes fundamental TVS concepts used for autonomous
corridor following, and provides details of our CNN based
approach. In Section III, we describe the methods we use
for robust analysis of our CNN approach where TVS-based
approaches fail to perform well. In IV, we showcase the re-
sults of our experimentation both statistically and practically
on a Wheelchair Platform developed at our institute. Finally,
we present the advantages of our method by evaluating it on
fail cases of the traditional approach.

II. CNN-BASED AUTONOMOUS CORRIDOR FOLLOWING

The basic modelling and control concepts of using TVS in
a corridor following task is presented in this section. After
that we discuss our CNN-based design along training and
data preparation issues.

A. TVS Modelling and Velocity Estimation

The wheelchair is assumed to be a four wheeled robot
with two passive castor wheels in front and two actuated
wheels in the rear. It thus behaves as a non-holonomic system
constrained by two degrees of freedom. In order to servo
this system along the corridor, a translational velocity ν

and an angular velocity ω that describe its motion need
to be computed. As our purpose for autonomous corridor
following is for assisting the disabled wheelchair users, a
constant and slow forward velocity ν , along with an ω for
adjusting the position of the chair on the corridor is sufficient
for completing the task.

In [6], the authors describe a traditional approach for
autonomous corridor following that makes use of vanishing
point and vanishing line features to perform this task. They
use an automated feature extraction mechanism that adds
constraints on the lines detected by the LSD algorithm [20],
[21] from a captured image to obtain xv and θv, the selected
features for servoing. xv is the x coordinate of the vanishing
point, while θv is the angle that the vanishing line makes
with the corridor plane. (Refer Figure 2)

Fig. 2: Vanishing Point (xv) and Vanishing Angle (θv) features
that are extracted by the TVS approach in [6]. These features are
passed through a control law that computes a corrective velocity
for autonomous corridor following. The red line is perpendicular to
the corridor plane.

In our approach, we use a human annotator to mark xv
and θv features on an image. This ensures that the outcome
of these features is reliable, as it is often the case that the
automated feature extraction step fails to extract accurate
features. This occurs mainly due to environmental noise
in the captured image or sub-optimal feature extraction
parameters which are difficult to tune.

For autonomous corridor following, the desired motion
is achieved when the wheelchair is moving straight and is
positioned at the center of the hallway. This occurs when
xv lies at the center of the captured frame i.e the origin,
and θv is perpendicular to the corridor plane in the image.
The corresponding feature values of (0,0) are consequently
chosen as the desired feature values.

In [22], a control law for servoing an image based path
following system such as ours is formulated as:

ω =−J+w (λe+ Jvν
∗) (1)

The ω value here represents the ground truth angular velocity
that we require to train our network. The Jacobians Jw and
Jv are defined in [6] as follows:

Jw =

[
1+ x2

v

−λθv lc+λθvwρ +ρs

]
(2)

Jν =

[
0

−λθvρ

]
(3)

Here xv and θv are the selected features, c= cosθv, s= sinθv,
ρ = xv cosθv + yv sinθv and λθv = cosθm/h. The h, w and l
values represent the position of the camera on the wheelchair,
which in our case is set to h = 0.5m, w = 0m, and l = 0m.
λ and ν∗ are gain and translational velocity constants that
are tuned to 102 and 0.2m/s for our task. The error e is
defined as the difference between the extracted features and
the desired feature values.

e = (xv,θv)− (0,0) (4)

The vanishing point coordinates are measured in meters and
the slope of the vanishing lines are taken in radians.

The ω obtained here is the ground truth value used for
training our convolutional neural network model.

Fig. 3: Samples of images present in the dataset. The diversity in corridor environments can be observed in (a). Four different types
of noises are artificially mixed with these images to obtain the noisy images shown in (b). Images where the required vanishing point
features for computing the ground truth ω could not be extracted are shown in (c). These have been discarded from training.

B. The Training Dataset

For training our network, we gather suitable corridor
images from various open access sources [23]–[27]. We also
create our own dataset of corridor images belonging to our
institute. The accumulated set consists of 3563 images in
total. A small subset of 403 images belonging to this set have
been discarded from training as their ground truths could not
be estimated. This is because the vanishing point feature xv in
these cases lies outside the frame of the image and cannot be
extracted reliably. These images are deemed unreliable and
Figure 3(c) shows examples of such cases. The remaining
samples compose a clean set of images.

We add 4 different types of artificial noise (Mild and
Strong Gaussian Blur, Motion Blur and JPEG Compression)
randomly to the entire clean set and obtain a separate noisy
set of images. The final dataset is a combination of the
clean and noisy sets and contains 6320 images. The ground
truth values for samples in the noisy set are identical to
their counterparts in the clean set. Fig 3(a) and 3(b) show
examples of clean images their noisy counterparts.

Adding noisy images to our dataset serves a dual purpose
of increasing the data used for training our model as well as
helping the neural network generalize better to noisy data.
The train-test split on the final dataset is 90-10% and 10%
of the train set generated is used for validation. As the test
set is randomly sampled from the final dataset, and contains
a mixture of clean and noisy images.

Fig. 4: Overview of our CNN Approach. An image captured
from the corridor environment and passed through the CNN. The
approximated velocity vector ω is then used to perform servoing
on the wheelchair.

C. Designing and Training our CNN

Figure 4 provides an overview of our visual servoing
approach. We employ a technique called transfer learning
[28], [29] for training our model. In the most literal sense,
transfer learning refers to ”transferring” knowledge obtained
from training one model to another model that performs a
task of a different nature. This is especially useful in cases
such as ours where the dataset size is small and there is
insufficient training material for neural network to converge.

We exploit this technique and fine-tune a ResNet-18
architecture [30] pre-trained on ImageNet for our task.
This setup was chosen considering ResNet-18’s exceptional
performance on ImageNet despite having a comparatively
small model size. The model was pre-trained on ImageNet
with an input size of 224x224, and an output size of 1000
classes. All images in our dataset have accordingly been re-
sized to 224x224 to make sense of the pre-trained weights.
We replace the final layer of this pre-trained model with
a 1-dimensional output that represents the required angular
velocity ω for our servoing task. We perform regression
using this setup.

A Mean Squared Error (MSE) loss function determines
the gradients for backpropagation for each iteration. In our
case, this can be written as,

loss =
1
n

n

∑
i=0

(ω̂−ω)2 (5)

Here, n is the batch size during training which has been set
to 8. ω̂ is the predicted angular velocity after a forward pass
through the network and ω is the target angular velocity for
that sample.

We train the network on an Nvidia 1080 Ti having 12GB
of GPU memory and 64GB of RAM. It takes around 30
minutes for running 40 train-validation epochs. We employ
a Stochastic Gradient Descent scheme with a weight decay of
0.005 and momentum of 0.9. The learning rate is set to 0.005.
10-fold cross validation was performed to understand the
variance in training data and accordingly tune these network
hyperparameters.

D. Network Evaluation Metric

The R2 value or coefficient of determination has been used
as an evaluation metric for assessing the performance of the
neural network on the task of regression. It can be defined
in our case as:

R2(ω, ω̂) = 1−
n−1

∑
i

(ωi− ω̂)2

(ωi− ω̄)2 (6)

Here, ω represents the true value i.e, the target distribution,
ω̂ represents the predicted distribution, and ω̄ is the mean
of the target distribution. n here represents the number of
samples taken from the distribution, which in our case is the
number of images in the test set.

The R2 value ranges from −∞ to 1. A positive value
closer to 0 indicates that the model is unable to explain the
variability of the data, while a value closer to 1 shows that
the output corresponds well with the target distribution.

III. ROBUSTNESS ANALYSIS OF CNN-BASED CORRIDOR
FOLLOWING SCHEME

In this section, we discuss two methods for evaluating the
performance of our CNN approach in cases when the TVS-
based approaches like the one based on vanishing feature
approach fails to perform well.

A. Comparing Deep and Vanishing Features

When the vanishing feature method fails to produce a good
ω , it is often due to feature extraction going wrong. Our CNN
approach is independent of this explicit feature extraction
step and gives an approximation for ω even in these fail
cases. In order to better understand the outcome of our CNN
approach, we try to estimate the deep feature xv from the ω

obtained by the CNN, and compare its performance against
the vanishing point feature xv obtained by the vanishing point
approach on the ground truth.

Recall the control law from [22] presented in section II.

ω =−J+w (λe+ Jvν
∗) (7)

Here, the Jacobians Jv, Jw and error e are described in
equations 2, 3, and 4 respectively. After substituting these
values and other constants mentioned in section II, we obtain:

ω =
[
−1− x2

v −ρ sinθv

][
λxv

λθv

]
+

[
−1− x2

v −ρ sinθv

][0
−ρ cosθvν∗/h

]
This equation can be reduced to the following:

ω =−λxv−λx3
v − ρλθv sinθv +

ρ2

h
sinθv cosθvν

∗ (8)

Now, as we have only one equation with three variables,
given ω we cannot find a closed form solution for xv, yv
and θv. We can however limit the range of these values
for our specific task to obtain a solution for a deep feature
representing the vanishing point coordinate xv from ω . Note

Fig. 5: Flowchart comparing Deep Features with TVS-based Van-
ishing Features. We perform a comparative analysis to understand
why our CNN approach performs better in cases when feature
extraction fails traditionally. This is achieved by extracting the
xv feature using both approaches and comparing them against a
common human annotated ground truth.

that we do this only for illustrating the performance of our
network against the TVS approach.

As the xv and yv values are represented in metres in
the image plane, we can safely assume that their absolute
values would be less than 1m. Thus, the absolute value
of ρ i.e.,

√
x2

v + y2
v also becomes less than 1. Using this

observation, we can neglect the last term in equation 8 as it
is comparatively smaller to the other terms that contain λ , a
large constant.

From [6], we can also conclude that θv ∈ (−π

2 ,
π

2). How-
ever, in our experiments, we have observed that for most
images in the dataset, θv ∈ (−π

6 ,
π

6). Due to this reason, we
chose to neglect the third term containing θv in equation
8 as it does not have a significant effect on the ω value
in our case. This can also be experimentally observed by
computing ω while changing the θv value. We can then solve
the following equation for xv:

ω =−λxv−λx3
v (9)

As this is a third degree equation, with the discriminant ∆ <
0, its real root xv can be expressed in terms of ω as:

xv =
3

√
−ω

2λ
+

√(
ω

2λ

)2
+

1
27

+
3

√
−ω

2λ
−
√(

ω

2λ

)2
+

1
27

xv here is a deep feature representing the vanishing point
coordinate, that is obtained from the ω predicted by our CNN
approach. This along with the traditional xv obtained from
a TVS-based automated feature extraction mechanism is
compared with the ground truth. Figure 5 shows a flowchart
of our approach.

B. Verifying Approximations for Unreliable Images

While training the model, we accounted for cases where
the captured image is noisy, by adding noisy samples to
the training data. However, there exist the unreliable images
(Figure 3(c)) that were discarded from training the model
as their ground truths could not be estimated using the

1

CNN -1.067 0.289 0.500 -0.622 0.059
TVS-Based -1.045 0.263 0.438 -0.689 -0.025
Ground Truth -0.978 0.275 0.437 -0.659 -0.017

2

CNN -1.472 -0.450 0.117 -0.346 -0.027
TVS-Based NIL -0.446 0.219 -0.389 -0.014
Ground Truth NIL -0.434 0.206 -0.359 -0.052

3

CNN 0.360 0.785 0.148 -0.252 -0.042
TVS-Based 2.687 0.227 0.146 -2.397 0.052
Ground Truth NIL 1.376 0.109 -0.445 0.03

TABLE I: Practical Results: Image sequences captured from different corridors locations at our institute. The red line represents the
ideal vanishing line when the wheelchair is at the center of the corridor and is used as a directional reference. The values are the estimated
angular velocities for our CNN approach, TVS-Based vanishing feature approach, and a human annotated Ground Truth (GT). A positive
ω value represents clockwise motion, and a negative value represents anti-clockwise motion.

traditional method. Our trained CNN model however can
predict an approximation for ω for these images.

Just by looking at these unreliable images, a human can
decipher if the wheelchair is meant to turn left or right to
initiate the corridor following task. Also once a prediction
is made, we know the direction of motion from the sign of
the ω value. We leverage upon these two pieces of detail for
partially verifying the accuracy of the predicted outcome on
unreliable images using human annotation.

For each unreliable image in the dataset, the following
steps are taken by a human annotator:
• Pass the image through the trained network and obtain

an approximation for ω . Classify it as left or right based
on the sign of the value predicted.

• Show the same image to a human annotator equipped
with a binary output console corresponding to the left
or right direction.

• Compare the human annotated output with the network
output and update two score values representing accu-
racy and false positive accuracy.

Each annotator is shown the entire dataset 3 times, and an
average of the scores obtained is chosen for evaluation.

The accuracy score tells us how well the network is able
to predict the correct direction of motion from the image.
It is the percentage of unreliable images that have had their
outcome predicted in the right direction of motion.

Accuracy Score =
ni

n
% (11)

Here, ni is the number of correctly predicted samples and n
is the total number of unreliable images.

The false positive score quantifies the severity of the
network’s bad performance on unreliable images. It is the
average of the absolute ω value on images where the wrong
direction has been predicted.

False Positive Score =
Σω j

n j
(12)

Here, n j is the total number of false positive samples and ω j
is the angular velocity predicted for these samples.

For autonomous corridor following in unreliable cases, a
high accuracy score and low false positive score is desired.

IV. EXPERIMENTS AND RESULTS

A. Evaluation of Neural Network Performance

We evaluate our trained model on 4 noisy test sets in
addition to the original test set using the R2 score described in
section II-D. Each noisy set comprises of images having one
specific type of artificial noise. Table II shows the percentage
R2 value for each test set. Here, a similar score in all the test
sets shows that the performance of the CNN on the noisy sets
is as good as its performance on the original, non-noisy set,
thereby establishing robustness to noise.

On the unreliable test set, following the human verification
method described in the earlier section (III-B), we get an
accuracy score of 78.75% on predicting the right direction
of motion on 403 unreliable images. We get a false positive
score of 0.180 on the 88 images that were predicted wrong.
This translates to 5.16% of the highest ω value obtained in
our tests which shows that even when the wrong direction
is predicted, the magnitude of the velocity vector output
remains relatively small. Although this is specific to our case,

Test Set Type R2 Value(%)
Original (Clean) 88.321

Motion Blur 88.011
JPEG Compression 88.572

Gaussian Blur 88.340

TABLE II: Comparison of R2 Values on Test Sets: Here, as the
R2 values are similar across all the test sets, we can safely conclude
that the performance of the neural network on noisy images is on
par with that of clean images.

it is a significant result as the CNN performs well on these
images where the traditional vanishing feature approach
would fail entirely.

B. Practical Implementation and Results

We practically evaluate our method on an Intelligent
Wheelchair Platform developed at IIIT, Hyderabad1. A
Kinect v2 has been retrofitted onto this platform as a sensor
for capturing images. All processing is done on board on a
laptop having an Nvidia 1050 Ti with 4GB GPU memory
and 8GB RAM. A Sabertooth motor controller attached to
the wheelchair takes serial commands from the laptop and
translates them into actuary signals that controls its motion.
The entire epoch time from capturing an image to actuation
takes ≈ 1.8 seconds or ≈ 0.6Hz on this setup. Although
slow for many real time systems, this control frequency
is sufficient for our task as our final application is on
an assistive wheelchair for the disabled. Our translational
velocity is set to 0.2m/s, ensuring that the wheelchair is slow
enough for sufficient coherency between subsequent frames.

We conduct autonomous corridor following experiments
on different corridors across our institute, including environ-
ments that were previously unseen in the training dataset.
In each experiment, the wheelchair is made to start at an
arbitrary position at the beginning of the corridor making an
arbitrary angle between [0◦,90◦] with the wall. The corridor
following task is then carried out using the proposed CNN
method and the images captured are stored along with their
corresponding CNN ω values. We then use the traditional
vanishing feature approach to estimate an ω on these stored
images, and also a ground truth ω using human annotation
(Refer II-A).

Table I has samples of image sequences captured during
the experiment and their corresponding ω values for the
CNN, vanishing feature approach and the ground truth. There
is a high correspondence between the values of the CNN
and vanishing feature approach in sequence 1. In sequence
2 however, when the wheelchair starts at a sharper angle
with the corridor wall, an ‘unreliable image’ is captured
due to which the traditional ω does not get computed. A
ground truth does not exist here either, as a human annotator
cannot accurately mark features outside the image frame. The
CNN approach here predicts a velocity in the anti-clockwise
direction, which enables the wheelchair to initiate and follow
through the servoing task.

1https://youtu.be/aRGVXq8cqDs

Fig. 6: Comparison of Deep vs Traditional Features. The yellow
arrow represents the traditional approach, the green one represents
the CNN approach, while the black one represents the ground
truth. The red line at the center of the image is for directional
reference. The angles that the arrows make with this line are directly
proportional to xv. In the normal sequence, observe the disruptive
value of the traditional xv when a person (environmental noise)
enters the frame. In the unreliable sequence, observe the inability
of the TVS method to extract the xv feature in the first two images.

Sequence 3 is taken from an environment outside the
training dataset. Observe the erratic ω values that the tra-
ditional approach estimates due to bad feature extraction.
This is primarily because we do not re-tune the traditional
approach parameters for extracting features from this envi-
ronment. The CNN on the other hand first predicts a small
value for servoing on the unreliable image captured in the
beginning. Once the corridor is fully visible, it predicts a
better approximation closer to the GT value, and successfully
completes the servoing task.

C. Advantages of the CNN approach

We use the method described in III-A to extract xv from
the CNN ω , and compare it with the vanishing point outcome
(Refer Figure 6).

1) Robustness to Environmental Noise: As our CNN is
trained offline on several images of various corridor
environments (both noisy and non-noisy) it works well
on different environments including ones that are dy-
namically changing.
The normal image sequence in Figure 6 illustrates
this with an example. In the second image, when a
person enters the frame, the traditional approach fails to
compute a correct ω , as its feature extraction step that
is dependant on a line detector fails. The xv obtained is
thus not representative of the actual vanishing point. Our
CNN approach on the other hand predicts a velocity ω

in the correct direction, which is backed up by a good
deep feature xv extracted from the image.

https://youtu.be/aRGVXq8cqDs

2) Approximations for Unreliable Images: As mentioned
earlier in Section II, using the traditional method for
servoing fails on unreliable images. This is due to the
feature extraction step failing by virtue of the required
vanishing point feature xv not lying on the image frame.
Here, even if xv is extracted as an extended coordinate,
its value is cannot be verified. A very large xv can cause
the control law parameters to “explode” leading to the
calculation of an unstable ω . This holds true especially
in cases where the xv extracted tends to ∞. The control
law reaches a mathematical singularity here.
Observe the unreliable image sequence in Figure 6.
Here, in the first two images, as a well defined vanishing
point xv does not exist, the traditional method fails.
However, our CNN estimates xv as a deep feature, that
enables motion in the correct direction, due to which
corridor following becomes feasible.

V. CONCLUSION AND FUTURE WORK

We have shown that our approach has an advantage where
a velocity outcome is predicted regardless of the input image.
This can also be a disadvantage in some cases, where the
wheelchair needs to stop in order to complete the task. To
overcome this, future work may include training the CNN
with ‘end of the corridor’ and ‘object of interest’ cases where
the wheelchair would have to stop and reconsider its position
before moving.

There is also a disadvantage in terms of the time taken
for gathering a dataset for the purpose of corridor following,
which is not required in traditional schemes. We plan to
release the dataset of corridor images along with their human
annotated ground truths to alleviate this issue for other
researchers.

In conclusion, we have presented an end to end CNN
based approach for autonomous corridor navigation on a
wheelchair. Our network is trained to predict a velocity signal
for the servoing task from a captured image. In doing this,
our method overcomes some key limitations of a traditional
visual servoing based approach. We demonstrate these by
performing a statistical and experimental validation of our
approach against the traditional approach.

REFERENCES

[1] S. R. Bista, P. R. Giordano, and F. Chaumette, “Appearance-based
indoor navigation by ibvs using line segments,” IEEE RA-L, vol. 1,
no. 1, pp. 423–430, 2016.

[2] J. M. Toibero, C. M. Soria, F. Roberti, R Carelli, and P Fiorini,
“Switching visual servoing approach for stable corridor navigation,”
in 2009 Int. Conf. on Advanced Robotics, IEEE, 2009, pp. 1–6.

[3] N. Ohnishi and A. Imiya, “Appearance-based navigation and homing
for autonomous mobile robot,” Image and Vision Computing, vol. 31,
no. 6-7, pp. 511–532, 2013.

[4] A. Paolillo, A. Faragasso, G. Oriolo, and M. Vendittelli, “Vision-
based maze navigation for humanoid robots,” Autonomous Robots,
vol. 41, no. 2, pp. 293–309, 2017.

[5] R. P. R. Padhy, S. Verma, S. Ahmad, S. K. Choudhury, and
P. K. Sa, “Deep neural network for autonomous uav navigation in
indoor corridor environments,” Procedia computer science, vol. 133,
pp. 643–650, 2018.

[6] F. Pasteau, M. Babel, and R. Sekkal, “Corridor following wheelchair
by visual servoing,” in IEEE/RSJ IROS, 2013, pp. 590–595.

[7] F. Pasteau, V. K. Narayanan, M. Babel, and F. Chaumette, “A visual
servoing approach for autonomous corridor following and doorway
passing in a wheelchair,” IEEE RAS, vol. 75, pp. 28 –40, 2016.

[8] S. H. J. Vassallo R Frizera and J. Santos-Victor, “Visual navigation:
Combining visual servoing and appearance based methods,” in Int.
Symposium on Intelligent Robotic Systems, SIRS, vol. 98, 1998.

[9] S. H. J. Vassallo Raquel F and J. Santos-Victor, “Visual servoing and
appearance for navigation,” IEEE RAS, vol. 31, no. 1-2, pp. 87–97,
2000.

[10] M. Meng and A. C. Kak, “Mobile robot navigation using neural
networks and nonmetrical environmental models,” IEEE Control
Systems Magazine, vol. 13, no. 5, pp. 30–39, 1993.

[11] N. Winters, J. Gaspar, G. Lacey, and J. Santos-Victor, “Omni-
directional vision for robot navigation,” in Proceedings IEEE Work-
shop on Omnidirectional Vision (Cat. No. PR00704), IEEE, 2000,
pp. 21–28.

[12] J. Park, T. Kim, and T. Park, “Autonomous navigation system for
a mobile robot using a laser scanner in a corridor environment,”
in IEEE/SICE International Symposium on System Integration (SII),
IEEE, 2015, pp. 512–516.

[13] R. Carelli and E. O. Freire, “Corridor navigation and wall-following
stable control for sonar-based mobile robots,” IEEE RAS, vol. 45,
no. 3-4, pp. 235–247, 2003.

[14] G. Schouten and J. Steckel, “A biomimetic radar system for au-
tonomous navigation,” IEEE Transactions on Robotics, pp. 1–10,
2019, ISSN: 1552-3098.

[15] A. Saxena, H. Pandya, G. Kumar, A. Gaud, and K. M. Krishna,
“Exploring convolutional networks for end-to-end visual servoing,”
in 2017 IEEE ICRA, 2017, pp. 3817–3823.

[16] Q. Bateux, E. Marchand, J. Leitner, F. Chaumette, and P. Corke,
“Training deep neural networks for visual servoing,” in 2018 IEEE
ICRA, 2018, pp. 1–8.

[17] V. S. Dorbala, A. H. Abdul Hafez, and C. V. Jawahar, “A deep
learning approach for robust corridor following from an arbitrary
pose,” 27th IEEE Signal Processing and Communications Applica-
tions Conf. (SIU), pp. 1–4, 2019.

[18] A. Dosovitskiy, P. Fischer, E. Ilg, P. Hausser, C. Hazirbas, V. Golkov,
P. van der Smagt, D. Cremers, and T. Brox, “Flownet: Learning
optical flow with convolutional networks,” in IEEE ICCV, 2015.

[19] A. X. Lee, S. Levine, and P. Abbeel, “Learning visual ser-
voing with deep features and fitted q-iteration,” arXiv preprint
arXiv:1703.11000, 2017.

[20] R. G. Von Gioi, J. Jakubowicz, J.-M. Morel, and G. Randall, “Lsd:
A fast line segment detector with a false detection control,” IEEE
transactions on pattern analysis and machine intelligence, vol. 32,
no. 4, pp. 722–732, 2010.

[21] J. J. Von Gioi Rafael Grompone, J.-M. Morel, and G. Randall, “Lsd:
A line segment detector,” Image Processing On Line, vol. 2, pp. 35–
55, 2012.

[22] A. Cherubini, F. Chaumette, and G. Oriolo, “Visual servoing for
path reaching with nonholonomic robots,” Robotica, vol. 29, no. 7,
1037–1048, 2011.

[23] A. Bonarini, W. Burgard, G Fontana, M. Matteucci, D. Sorrenti,
and J. Tardos, “Rawseeds: Robotics advancement through web-
publishing of sensorial and elaborated extensive data sets,” Jan. 2009.

[24] S. Ceriani, G. Fontana, A. Giusti, D. Marzorati, M. Matteucci, D.
Migliore, D. Rizzi, D. G. Sorrenti, and P. Taddei, “Rawseeds ground
truth collection systems for indoor self-localization and mapping,”
Autonomous Robots, vol. 27, no. 4, p. 353, 2009, ISSN: ”1573-7527”.

[25] G. Tsai and B. Kuipers, “Dynamic visual understanding of the local
environment for an indoor navigating robot,” in 2012 IEEE/RSJ
IROS, 2012, pp. 4695–4701.

[26] A. Quattoni and A. Torralba, “Recognizing indoor scenes,” in IEEE
CVPR, 2009, pp. 413–420.

[27] S. Yang, D. Maturana, and S. Scherer, “Real-time 3d scene layout
from a single image using convolutional neural networks,” in 2016
IEEE ICRA, May 2016, pp. 2183–2189.

[28] H. Larochelle, Y. Bengio, J. Louradour, and P. Lamblin, “Exploring
strategies for training deep neural networks,” Journal of machine
learning research, vol. 10, no. Jan, pp. 1–40, 2009.

[29] J. Yosinski, J. Clune, Y. Bengio, and H. Lipson, “How transferable
are features in deep neural networks?” In Advances in neural
information processing systems, 2014, pp. 3320–3328.

[30] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for
image recognition,” in IEEE CVPR, 2016.

	INTRODUCTION
	CNN-Based Autonomous Corridor following
	TVS Modelling and Velocity Estimation
	The Training Dataset
	Designing and Training our CNN
	Network Evaluation Metric

	Robustness Analysis of CNN-based Corridor following Scheme
	Comparing Deep and Vanishing Features
	Verifying Approximations for Unreliable Images

	Experiments and Results
	Evaluation of Neural Network Performance
	Practical Implementation and Results
	Advantages of the CNN approach

	Conclusion and Future Work

